首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whole cells and cell extracts of Pseudomonas putida grown in a medium containing ammonium mandelate have the capacity to produce the acyloin compound 2-hydroxypropiophenone when incubated with benzoylformate and acetaldehyde. Benzaldehyde and benzyl alcohol were formed as reaction by-products. The enantiomeric excess of the 2-hydroxypropiophenone product was found to be 91 to 92%. The absolute configuration of the enzymatically prepared product at the carbinol carbon was found to be S. The thiamine PPi-linked enzyme benzoylformate decarboxylase, purified to give a single protein band on polyacrylamide gel electrophoresis, was shown to be responsible for the catalysis of this novel condensation reaction.  相似文献   

2.
Whole cells and cell extracts of Pseudomonas putida grown in a medium containing ammonium mandelate have the capacity to produce the acyloin compound 2-hydroxypropiophenone when incubated with benzoylformate and acetaldehyde. Benzaldehyde and benzyl alcohol were formed as reaction by-products. The enantiomeric excess of the 2-hydroxypropiophenone product was found to be 91 to 92%. The absolute configuration of the enzymatically prepared product at the carbinol carbon was found to be S. The thiamine PPi-linked enzyme benzoylformate decarboxylase, purified to give a single protein band on polyacrylamide gel electrophoresis, was shown to be responsible for the catalysis of this novel condensation reaction.  相似文献   

3.
Benzoylformate (100 mM) was quantitatively converted to the acyloin compound, 2-hydroxypropiophenone (61.76 mM) and benzaldehyde (38.2 mM) by an enzyme extract from Pseudomonas putida ATCC 12633 in the presence of 1.6M acetaldehyde. Biotransformations were carried out at pH 6.0 and 30 degrees C with an incubation time of 60 min. Activity of the acyloin forming enzyme, benzoylformate decarboxylase, was 1.23 units/mL in the biotransformation mixture. Acyloin formation increased dramatically with pH in the range 4-5 and had a broad activity plateau in the pH range 5-8. A broad temperature optimum for acyloin formation was also observed in the range 20-40 degrees C.  相似文献   

4.
If an adequate biocatalyst is identified for a specific reaction, immobilization is one possibility to further improve its properties. The immobilization allows easy recycling, improves the enzyme performance, and it often enhances the stability of the enzyme. In this work, the immobilization of the benzoylformate decarboxylase (BFD) variant, BFD A460I-F464I, from Pseudomonas putida was accomplished on spherical silica. Silicagel is characterized by its high mechanical stability, which allows its application in different reactor types without restrictions. The covalently bound enzyme was characterized in terms of its activity, stability, and kinetics for the formation of chiral 2-hydroxypropiophenone (2-HPP) from benzaldehyde and acetaldehyde. Moreover, temperature as well as pressure dependency of immobilized BFD A460I-F464I activity and enantioselectivity were analyzed. The used wide-pore silicagel shows a good accessibility of the immobilized enzyme. The activity of the immobilized BFD A460I-F464I variant was determined to be 70% related to the activity of the free enzyme. Thereby, the enantioselectivity of the enzyme was not influenced by the immobilization. In addition, a pressure-induced change in stereoselectivity was found both for the free and for the immobilized enzyme. With increasing pressure, the enantiomeric excess (ee) of (R)-2-HPP can be increased from 44% (0.1 MPa) to 76% (200 MPa) for the free enzyme and from 43% (0.1 MPa) to 66% (200 MPa) for the immobilized enzyme.  相似文献   

5.
In previous site-directed mutagenesis study on thermolysin, mutations which increase the catalytic activity or the thermal stability have been identified. In this study, we attempted to generate highly active and stable thermolysin by combining the mutations so far revealed to be effective. Three mutant enzymes, L144S (Leu144 in the central alpha-helix located at the bottom of the active site cleft is replaced with Ser), G8C/N60C/S65P (Gly8, Asn60, and Ser65 in the N-terminal region are replaced with Cys, Cys, and Pro, respectively, to introduce a disulfide bridge between the positions 8 and 60), and G8C/N60C/S65P/L144S, were constructed by site-directed mutagenesis. In the hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide (FAGLA) and N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester (ZDFM), the k(cat)/K(m) values of L144S and G8C/N60C/S65P/L144S were 5- to 10-fold higher than that of the wild-type enzyme. The rate constants for thermal inactivation at 70 degrees C and 80 degrees C of G8C/N60C/S65P and G8C/N60C/S65P/L144S decreased to 50% of that of the wild-type enzyme. These results indicate that G8C/N60C/S65P/L144S is more active and stable than the wild-type thermolysin. Thermodynamic analysis suggests that the single mutation of Leu144-->Ser and the triple mutation of Gly8-->Cys, Asn60-->Cys, and Ser65-->Pro are independent.  相似文献   

6.
谷氨酸脱羧酶(Glutamate decarboxylase,GAD)是用于催化L-谷氨酸脱羧合成γ-氨基丁酸(γ-aminobutyrate,GABA)的唯一酶,提高GAD的催化活力或热稳定性,有利于GABA的高效制备和生产。以热稳定性和活性为筛选目标,通过研究短乳杆菌GAD1407三维模拟结构的拉氏图,确定不稳定氨基酸残基位点K413,采用定点突变的方法构建该位点的突变体,并测定野生型酶和突变酶的热稳定性和活力。结果表明突变酶K413A和突变酶K413I分别在热稳定性和酶活力上获得了提高,突变酶K413A在50℃的半衰期为105 min,是野生酶的2.1倍;突变酶K413I热稳定性没有明显的提高,但其酶活力却得到了有效提高,约为野生型的1.6倍。因此,通过拉氏图提供的结构信息可为利用理性设计提高GAD活性和热稳定性提供指导。  相似文献   

7.
The genes that encode the five known enzymes of the mandelate pathway of Pseudomonas putida (ATCC 12633), mandelate racemase (mdlA), (S)-mandelate dehydrogenase (mdlB), benzoylformate decarboxylase (mdlC), NAD(+)-dependent benzaldehyde dehydrogenase (mdlD), and NADP(+)-dependent benzaldehyde dehydrogenase (mdlE), have been cloned. The genes for (S)-mandelate dehydrogenase and benzoylformate decarboxylase have been sequenced; these genes and that for mandelate racemase [Ransom, S. C., Gerlt, J. A., Powers, V. M., & Kenyon, G. L. (1988) Biochemistry 27, 540] are organized in an operon (mdlCBA). Mandelate racemase has regions of sequence similarity to muconate lactonizing enzymes I and II from P. putida. (S)-Mandelate dehydrogenase is predicted to be 393 amino acids in length and to have a molecular weight of 43,352; it has regions of sequence similarity to glycolate oxidase from spinach and ferricytochrome b2 lactate dehydrogenase from yeast. Benzoylformate decarboxylase is predicted to be 499 amino acids in length and to have a molecular weight of 53,621; it has regions of sequence similarity to enzymes that decarboxylate pyruvate with thiamin pyrophosphate as cofactor. These observations support the hypothesis that the mandelate pathway evolved by recruitment of enzymes from preexisting metabolic pathways. The gene for benzoylformate decarboxylase has been expressed in Escherichia coli with the trc promoter, and homogeneous enzyme has been isolated from induced cells.  相似文献   

8.
Creatinase (creatine amidinohydrolase, EC 3.5.3.3) from Pseudomonas putida is a homodimer of 45 kDa subunit molecular mass, the three-dimensional structure of which is known at 1.9 A resolution. Three point mutants, A109V, V355M, and V182I, as well as one double mutant combining A109V and V355M, and the triple mutant with all three replacements, were compared with wild-type creatinase regarding their physical and enzymological properties. High-resolution crystal data for wild-type creatinase and the first two mutants suggest isomorphism at least for these three proteins (R. Huber, pers. comm.). Physicochemical measurements confirm this prediction, showing that the mutations have no effect either on the quaternary structure and gross conformation or the catalytic properties as compared to wild-type creatinase. The replacement of V182 (at the solvent-exposed end of the first helix of the C-terminal domain) does not cause significant differences in comparison with the wild-type enzyme. The other point mutations stabilize the first step in the biphasic denaturation transition without affecting the second one. In sum, the enhanced stability seems to reflect slight improvements in the local packing without creating new well-defined bonds. The increase in hydrophobicity generated by the introduction of additional methyl groups (A109V, V182I) must be compensated by minor readjustments of the global structure. Secondary or quaternary interactions are not affected. In going from single to double and triple mutants, to a first approximation, the increments of stabilization are additive.  相似文献   

9.
Malonate decarboxylase from Pseudomonasputida is composed of five subunits, alpha, beta, gamma, delta, and epsilon. Two subunits, delta and epsilon, have been identified as an acyl-carrier protein (ACP) and malonyl-CoA:ACP transacylase, respectively. Functions of the other three subunits have not been identified, because recombinant subunits expressed in Escherichia coi formed inclusion bodies. To resolve this problem, we used a coexpression system with GroEL/ES from E. coli, and obtained active recombinant subunits. Enzymatic analysis of the purified recombinant subunits showed that the alpha subunit was an acetyl-S-ACP:malonate ACP transferase and that the betagamma-subunit complex was a malonyl-S-ACP decarboxylase.  相似文献   

10.
Despite directed evolution being a practical and efficient method of improving the properties of enzymes, a trade-off between the targeted property and other essential properties often exists which hinders the efficiency of directed evolution. In our previous work, mutant CVH of an esterase from Rhodobacter sphaeroides with high enantioselectivity was obtained by directed evolution, unfortunately its activity cannot catch another mutant YH. To compensate the trade-off of mutant CVH, site-directed saturation mutagenesis was conducted on four residues, three (Asn62, Met121, and Leu145) were hot spots determined from directed evolution, and one (Tyr27) was introduced to make up the large distance between a mutation (Asn62) and the substrate. A new mutant (HMVY) with high enantioselectivity and comparable activity to YH was obtained. According to the kinetic analysis and molecular dynamics simulations, it was understood that the high enantioselectivity and poor activity of mutant CVH was caused by different decrement of efficiency constants to two isomers, (R)-, (S)-methyl mandelate, and the high enantioselectivity and activity of mutant HWVY was caused by improved activity towards the preferred substrate ((S)-methyl mandelate), which provided the interpretation of the trade-off compensation. This work could provide a way to compensate the trade-off of enantioselectivity and activity in the process of enzyme evolution.  相似文献   

11.
[背景]角蛋白酶KerZ1能在60℃的最适温度下高效降解角蛋白底物,然而其在低于最适温度条件下的酶活极低,难以适应工业生产和实际应用的要求.[目的]提升角蛋白酶KerZ1的低温催化活性.[方法]结合同源比对与折叠自由能分析向角蛋白酶KerZ1引入氨基酸突变,并对突变体的酶学性质进行研究.[结果]对KerZ1柔性环区域(...  相似文献   

12.
A heat-stable raw-starch-digesting amylase (RSDA) was generated through PCR-based site-directed mutagenesis. At 65 degrees C, the half-life of this mutant RSDA, which, compared with the wild-type RSDA, lacks amino acids R178 and G179, was increased 20-fold. While the wild type was inactivated completely at pH 3.0, the mutant RSDA still retained 41% of its enzymatic activity. The enhancement of RSDA thermostability was demonstrated to be via a Ca(2+)-independent mechanism.  相似文献   

13.
In order to assess the roles of specific amino acid residues in the delta 5-3-ketosteroid isomerase from Pseudomonas putida biotype B during catalysis, we replaced aspartic acid 40 with asparagine (D40N) and tyrosine 16 with phenylalanine (Y16F) in the enzyme by site-directed mutagenesis. Both purified mutant enzymes resulted in profound decreases in catalytic activities, 10(3.3)-fold in the Y16F mutant and 10(6.2)-fold in the D40N mutant. Aspartic acid 40 and tyrosine 16 of the enzyme are the corresponding amino acids in the active site of the homologous enzyme from Comamonas testosteroni. Our results indicate that active-site residues of the two homologous enzymes are similar. This is opposite to the previous identification of a cysteine in an active site-directed photoinactivation study of the enzyme.  相似文献   

14.
Benzoylformate decarboxylase (BFD) from Pseudomonas putida is a thiamine diphosphate‐dependent (ThDP) enzyme that catalyzes the asymmetric C? C bond formation to (S)‐2‐hydroxypropiophenone [(S)‐HPP] starting from benzaldehyde and acetaldehyde. The enantioselectivity of BFD was shown to be a function of temperature and substrate concentration. It can additionally be changed by site‐directed mutagenesis on hot spot positions in the active site. In this article, we present the effect of hydrostatic pressure up to 250 MPa on the enantioselectivity for the recombinant wtBFD as well as for the variants BFD F464I, BFD A460I, and BFD A460I‐F464I. A general tendency toward lower amounts of (S)‐HPP could be observed at increasing pressures. For two of these variants an increase in pressure even caused an inversion in the enantioselectivity and thus increasing enantiomeric excesses, respectively. A pressure‐induced increase in enantioselectivity could therefore be observed for the first time in biocatalysis to the best of our knowledge. Furthermore, the pH is shown to be a parameter that also significantly influences the enantioselectivity of the reaction mentioned above. Biotechnol. Bioeng. 2010; 106: 18–26. © 2009 Wiley Periodicals, Inc.  相似文献   

15.
In the present study, glutaryl-7-amino cephalosporanic acid acylase from Pseudomonas sp. strain 130 (CA130) was mutated to improve its enzymatic activity and stability. Based on the crystal structure of CA130, two series of amino acid residues, one from those directly involved in catalytic function and another from those putatively involved in surface charge, were selected as targets for site-directed mutagenesis. In the first series of experiments, several key residues in the substrate-binding pocket were substituted, and the genes were expressed in Escherichia coli for activity screening. Two of the mutants constructed, Y151alphaF and Q50betaN, showed two- to threefold-increased catalytic efficiency (k(cat)/K(m)) compared to wild-type CA130. Their K(m) values were decreased by ca. 50%, and the k(cat) values increased to 14.4 and 16.9 s(-1), respectively. The ability of these mutants to hydrolyze adipoyl 6-amino penicillinic acid was also improved. In the second series of mutagenesis, several mutants with enhanced stabilities were identified. Among them, R121betaA and K198betaA had a 30 to 58% longer half-life than wild-type CA130, and K198betaA and D286betaA showed an alkaline shift of optimal pH by about 1.0 to 2.0 pH units. To construct an engineered enzyme with the properties of both increased activity and stability, the double mutant Q50betaN/K198betaA was expressed. This enzyme was purified and immobilized for catalytic analysis. The immobilized mutant enzyme showed a 34.2% increase in specific activity compared to the immobilized wild-type CA130.  相似文献   

16.
Escherichia blattae acid phosphatase/phosphotransferase (EB-AP/PTase) exhibits C-5'-position selective pyrophosphate-nucleoside phosphotransferase activity in addition to its intrinsic phosphatase. Improvement of its phosphotransferase activity was investigated by sequential site-directed mutagenesis. By comparing the primary structures of higher 5'-inosinic acid (5'-IMP) productivity and lower 5'-IMP productivity acid phosphatase/phosphotransferase, candidate residues of substitution were selected. Then a total of 11 amino acid substitutions were made with sequential substitutions. As the number of substituted amino acid residues increased, the 5'-IMP productivity of the mutant enzyme increased, and the activity of the 11 mutant phosphotransferases of EB-AP/PTase reached the same level as that of Morganella morganii AP/PTase. This result shows that Leu63, Ala65, Glu66, Asn69, Ser71, Asp116, Thr135, and Glu136, whose relevance was not directly established by structural analysis alone, also plays an important role in the phosphotransferase activity of EB-AP/PTase.  相似文献   

17.
The extreme process condition of high temperature and high alkali limits the applications of most of natural xylanases in pulp and paper industry. Recently, various methods of protein engineering have been used to improve the thermal and alkalic tolerance of xylanases. In this work, directed evolution and site-directed mutagenesis were performed to obtain a mutant xylanase improved both on alkali stability and thermostability from the native Paenibacillus campinasensis Family-11 xylanase (XynG1-1). Mutant XynG1-1B43 (V90R/P172H) with two units increased in the optimum pH (pH 7.0–pH 9.0) and significant improvement on alkali stability was selected from the second round of epPCR library. And the further thermoduric mutant XynG1-1B43cc16 (V90R/P172H/T84C-T182C/D16Y) with 10 °C increased in the optimum temperature (60–70 °C) was then obtained by introducing a disulfide bridge (T84C-T182C) and a single amino acid substitution (D16Y) to XynG1-1B43 using site-directed mutagenesis. XynG1-1B43cc16 also showed higher thermostability and catalytic efficiency (k cat /K m ) than that of wild-type (XynG1-1) and XynG1-1B43. The attractive improved properties make XynG1-1B43cc16 more suitable for bioleaching of cotton stalk pulp under the extreme process condition of high temperature (70 °C) and high alkali (pH 9.0).  相似文献   

18.
贾云耀  方芳 《生物工程学报》2020,36(8):1640-1649
氨基甲酸乙酯(Ethylcarbamate,EC)是一种存在于发酵食品和酒精饮料中的可致癌物,过量摄入可能会影响人体健康。酶法降解是减少发酵食品中氨基甲酸乙酯及其前体尿素含量的有效方法之一。脲酶具有氨基甲酸乙酯水解酶和尿素酶两种活性,因此在减少发酵食品中氨基甲酸乙酯及其前体尿素方面具有良好的应用前景。目前脲酶降解发酵酒精饮料中氨基甲酸乙酯面临的主要问题是脲酶对氨基甲酸乙酯的催化活性及亲和力较低,因而其降解效果不理想。文中成功在大肠杆菌Escherichia coli中表达了来源于解淀粉芽孢杆菌Bacillus amyloliquefaciens JP-21的脲酶,表达水平为尿素酶3 291.74 U/L,氨基甲酸乙酯水解酶227.26 U/L。通过模拟脲酶中催化亚基UreC与氨基甲酸乙酯对接的结构,确定了M326和M374这两个影响酶与底物结合的位点。采用点饱和突变获得了3株氨基甲酸乙酯水解酶活性提高的突变体M374A、M374T和M326V,以EC为底物时的Km分别为101.84mmol/L、129.49 mmol/L和121.67 mmol/L,比野生型分别降低了37.47%–50...  相似文献   

19.
路遥  蒋立科  陈美玲  还连栋  钟瑾 《微生物学报》2010,50(11):1481-1487
【目的】通过定点突变技术改变乳链菌肽(nisin)特定位置氨基酸,获得性质改善的nisin突变体,为扩大其应用范围提供依据。【方法】在抑菌谱扩大的nisin单突变体M21K nisinZ的基础上,对M21K nisZ基因第29位丝氨酸密码子进行定点突变;将其克隆至乳酸菌表达载体pMG36e,并在Lactococcus lactis NZ9800中进行表达;双突变体M21K/S29K nisinZ经分离纯化后检测其在抑菌活性、抑菌谱和稳定性等方面的变化。【结果】与单突变体M21K nisinZ及野生型nisinZ(wild-type,WT)相比,双突变体M21K/S29K nisinZ对指示菌的抑菌活性虽有所下降,但其对温度及pH值的稳定性有显著提高。同时其抑菌谱与M21K nisinZ相同,可抑制革兰氏阴性菌,扩大了WT的抑菌谱。【结论】通过改变nisin分子特定位置的氨基酸可以改善nisin分子的理化性质,有可能得到应用范围更广的nisin品种。  相似文献   

20.
A combination of site-directed mutagenesis and chemical modification was employed to alter protein structure with the objective of improving diastereopreference over that achieved by simple site-directed mutagenesis. Conformational analysis using molecular dynamic (MD) simulation of Pseudomonas alcaligenes lipase (PAL) indicated that stronger steric exclusion and structural rigidity facilitated diastereopreference. A cysteine (Cys) residue was introduced using site-directed mutagenesis to construct variant A272C. The modifier 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) was then reacted with the introduced Cys residue to provide stronger steric exclusion and structural rigidity. The modification was verified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Diastereopreference was improved significantly. The diastereomeric excess (dep) of l-menthol increased from 35% with wild type PAL to 90% with A272C-DTNB modified PAL when the conversion ratio of l-menthyl propionate was nearly 100%. Conformation and kinetic parameter analysis showed that A272C-DTNB modified PAL exhibited stronger steric exclusion and increased structural rigidity around the modification site that inhibited the hydrolysis of non-targeted substrates. The combination of site-directed mutagenesis and chemical modification could be an effective method to alter protein properties and enhance diastereopreference through the combined effect of steric exclusion and structural rigidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号