首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduction of bicyclo[2.2.2]octane-2,6-dione with baker's yeast gave (lR,4S,6S)-6-hydroxybi-cyclo[2.2.2]octan-2-one (95% e.e.) contaminated with 8% of its (1S,4R,6S)-isomer. Similarly, the yeast reduction of 1-methylbicyclo[2.2.2]octane-2,6-dione furnished (1R,4S,6S)-6-hydroxy-1-methylbi-cyclo[2.2.2.]octan-2-one (99.5% e.e.) in 59% yield. The yeast reduction of 4-methylbi-cyclo[2.2.2.]octane-2,6-dione afforded (1R,4S,6S)-6-hydroxy-4-methylbicyclo[2.2.2.]octan-2-one (98% e.e.) contaminated with 3% of its (1S,4R,6S)-isomer in 58% yield.  相似文献   

2.
Reduction of bicyclo[2.2.2]octane-2,6-dione to (1R, 4S, 6S)-6-hydroxy-bicyclo[2.2.2]octane-2-one by whole cells of Saccharomyces cerevisiae was improved using an engineered recombinant strain and process design. The substrate inhibition followed a Han-Levenspiel model showing an effective concentration window between 12 and 22 g/l, in which the activity was kept above 95%. Yeast growth stage, substrate concentration and a stable pH were shown to be important parameters for effective conversion. The over-expression of the reductase gene YDR368w significantly improved diastereoselectivity compared to previously reported results. Using strain TMB4110 expressing YDR368w in batch reduction with pH control, complete conversion of 40 g/l (290 mM) substrate was achieved with 97% diastereomeric excess (de) and >99 enantiomeric excess (ee), allowing isolation of the optically pure ketoalcohol in 84% yield.  相似文献   

3.
The stereoselective reduction of the bicyclic diketone bicyclo[2.2.2]octane-2,6-dione, to the ketoalcohol (1R,4S,6S)-6-hydroxybicyclo[2.2.2]octane-2-one, was used as a model reduction to optimize parameters involved in NADPH-dependent reductions in Saccharomyces cerevisiae with glucose as co-substrate. The co-substrate yield (ketoalcohol formed/glucose consumed) was affected by the initial concentration of bicyclic diketone, the ratio of yeast to glucose, the medium composition, and the pH. The reduction of 5 g l(-1) bicyclic diketone was completed in less than 20 h in complex medium (pH 5.5) under oxygen limitation with an initial concentration of 200 g l(-1) glucose and 5 g l(-1) yeast. The co-substrate yield was further enhanced by genetically engineered strains with reduced phosphoglucose isomerase activity and with the gene encoding alcohol dehydrogenase deleted. Co-substrate yields were increased 2.3-fold and 2.4-fold, respectively, in these strains.  相似文献   

4.
Stereoselective baker's yeast-catalysed bioreduction of bicyclo [2.2.2]octane-2,6-dione generates (1R, 4S, 6S)-6-hydroxy-bicyclo [2.2.2]octane-2-one (endo-alcohol) with high enantiomeric and diastereomeric excess. In contrast, whole cells and crude membrane fractions of Candida sp. have been reported to produce the unusual (1R, 4S, 6S)-diastereomer (exo-alcohol) as a major product. Previous in silico screening has identified seven membrane or membrane-bound reductases in C. albicans as candidates for the exo-activity. In this work, purification of the corresponding exo-reductase(s) as well as the heterologous cloning of the seven candidate genes was attempted in C. tropicalis. The overexpression of IPF4033 (AYR1) gene generated an increased exo-to-endo ratio and exo-alcohol production in whole cells and membranes of C. tropicalis. In addition, a slight increased exo-to-endo ratio was observed when overexpressing IPF4033 in S. cerevisiae, although the reduction rate and exo-to-endo ratio were several fold lower compared to those obtained with C. tropicalis.  相似文献   

5.
6-Oxo camphor hydrolase (OCH) is an enzyme of the crotonase superfamily that catalyzes carbon-carbon bond cleavage in bicyclic beta-diketones via a retro-Claisen reaction (Grogan, G., Roberts, G. A., Bougioukou, D., Turner, N. J., and Flitsch, S. L. (2001) J. Biol. Chem. 276, 12565-12572). The native structure of OCH has been solved at 2.0-A resolution with selenomethionine multiple wave anomalous dispersion and refined to a final R(free) of 19.0. The structure of OCH consists of a dimer of trimers that resembles the "parent" enzyme of the superfamily, enoyl-CoA hydratase. In contrast to enoyl-CoA hydratase, however, two octahedrally coordinated sodium atoms are found at the 3-fold axis of the hexamer of OCH, and the C-terminal helix of OCH does not form a discrete domain. Models of the substrate, 6-oxo camphor, and a proposed enolate intermediate in the putative active site suggest possible mechanistic roles for Glu-244, Asp-154, His-122, His-45, and His-145.  相似文献   

6.
The crotonase homolog, 6-oxo camphor hydrolase (OCH), catalyzes the desymmetrization of bicyclic beta-diketones to optically active keto acids via an enzymatic retro-Claisen reaction, resulting in the cleavage of a carbon-carbon bond. We have previously reported the structure of OCH (Whittingham, J. L., Turkenburg, J. P., Verma, C. S., Walsh, M. A., and Grogan, G. (2003) J. Biol. Chem. 278, 1744-1750), which suggested the involvement of five residues, His-45, His-122, His-145, Asp-154, and Glu-244, in catalysis. Here we report mutation studies on OCH that reveal that H145A and D154N mutants of OCH have greatly reduced values of k(cat)/K(m) derived from a very large increase in K(m) for the native substrate, 6-oxo camphor. In addition, H122A has a greatly reduced value of k(cat), and its K(m) is five times that of the wild-type. The location of the active site is confirmed by the 1.9-A structure of the H122A mutant of OCH complexed with the minor diastereoisomer of (2S,4S)-alpha-campholinic acid, the natural product of the enzyme. This shows the pendant acetate of the product hydrogen bonded to a His-145/Asp-154 dyad and the endocyclic carbonyl of the cyclopentane ring hydrogen bonded to Trp-40. The results are suggestive of a base-catalyzed mechanism of C-C bond cleavage and provide clues to the origin of prochiral selectivity by the enzyme and to the recruitment of the crotonase fold for alternate modes of transition state stabilization to those described for other crotonase superfamily members.  相似文献   

7.
In this study we investigate the NADPH-dependent stereoselective reduction of the bicyclic diketone bicyclo[2.2.2]octane-2,6-dione (BCO2,6D) to the chiral ketoalcohol (1R,4S,6S)-6-hydroxybicyclo[2.2.2]octane-2-one (BCO2one6ol). Our aim was to develop a whole cell batch process for reduction of carbonyl substrates with (i) a high cosubstrate yield (formed product/consumed cosubstrate) and (ii) a high conversion rate under anaerobic conditions with Saccharomyces cerevisiae as biocatalyst and glucose as cosubstrate. Five open reading frames (ORFs), YMR226c, YDR368w, YOR120w, YGL157w, and YGL039w, encoding reductases involved in the conversion of BCO2,6D were identified using cell-free extract from strains belonging to the ExClone collection (yeast ORF expression clones; ResGen, Invitrogen Corp., UK). We report the one-step purification and characterization of three major BCO2,6D reductases, YMR226cp, YDR368wp (YPR1p), and YOR120wp (GCY1p). The reductases were overexpressed under a strong constitutive promoter and the impact on cosubstrate yield, conversion time, glucose consumption rate, and reduction rate was investigated when reductases were overexpressed either alone or in combination with low phosphoglucose isomerase activity (encoded by YBR196c). Combining overexpression of BCO2,6D reductase with reduced glycolytic rate (low phosphoglucose isomerase activity) offers a fast whole cell stereoselective bioreduction system useful for facilitated anaerobic batch conversions.  相似文献   

8.
Crotonase superfamily enzymes catalyze a wide variety of reactions, including hydrolytic C–C bond cleavage in symmetrical β‐diketones by 6‐oxo camphor hydrolase (OCH) from Rhodococcus sp. The organic solvent tolerance and temperature stability of OCH and its structurally related ortholog Anabaena β‐diketone hydrolase have been investigated. Both enzymes showed excellent tolerance toward organic solvents; for instance, even in the presence of 80% (v/v) THF or dioxane, OCH was still active. In most solvent mixtures, except methanol, the stereospecificity was conserved (>99% e.e. of product), hence neither the type of solvent nor its concentration appeared to have an effect on the stereoselectivity of the enzyme. Attempts to correlate the observed activities with log P, functional solvent group or denaturing capacity (DC) of the solvent were only successful in the case of DC for water miscible solvents. This study represents the first investigation of organic solvent stability for members of the crotonase superfamily. Biotechnol. Bioeng. 2011;108: 2815–2822. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
The enzyme 6-oxocamphor hydrolase, which catalyzes the desymmetrization of 6-oxocamphor to yield (2R,4S)-alpha-campholinic acid, has been purified with a factor of 35.7 from a wild type strain of Rhodococcus sp. NCIMB 9784 grown on (1R)-(+)-camphor as the sole carbon source. The enzyme has a subunit molecular mass of 28,488 Da by electrospray mass spectrometry and a native molecular mass of approximately 83,000 Da indicating that the active protein is trimeric. The specific activity was determined to be 357.5 units mg(-)1, and the K(m) was determined to be 0.05 mm for the natural substrate. The N-terminal amino acid sequence was obtained from the purified protein, and using this information, the gene encoding the enzyme was cloned. The translation of the gene was found to bear significant homology to the crotonase superfamily of enzymes. The gene is closely associated with an open reading frame encoding a ferredoxin reductase that may be involved in the initial step in the biodegradation of camphor. A mechanism for 6-oxocamphor hydrolase based on sequence homology and the known mechanism of the crotonase enzymes is proposed.  相似文献   

10.
Benning MM  Haller T  Gerlt JA  Holden HM 《Biochemistry》2000,39(16):4630-4639
The molecular structure of methylmalonyl CoA decarboxylase (MMCD), a newly defined member of the crotonase superfamily encoded by the Escherichia coli genome, has been solved by X-ray crystallographic analyses to a resolution of 1.85 A for the unliganded form and to a resolution of 2.7 A for a complex with an inert thioether analogue of methylmalonyl CoA. Like two other structurally characterized members of the crotonase superfamily (crotonase and dienoyl CoA isomerase), MMCD is a hexamer (dimer of trimers) with each polypeptide chain composed of two structural motifs. The larger N-terminal domain contains the active site while the smaller C-terminal motif is alpha-helical and involved primarily in trimerization. Unlike the other members of the crotonase superfamily, however, the C-terminal motif is folded back onto the N-terminal domain such that each active site is wholly contained within a single subunit. The carboxylate group of the thioether analogue of methylmalonyl CoA is hydrogen bonded to the peptidic NH group of Gly 110 and the imidazole ring of His 66. From modeling studies, it appears that Tyr 140 is positioned within the active site to participate in the decarboxylation reaction by orienting the carboxylate group of methylmalonyl CoA so that it is orthogonal to the plane of the thioester carbonyl group. Surprisingly, while the active site of MMCD contains Glu 113, which is homologous to the general acid/base Glu 144 in the active site of crotonase, its carboxylate side chain is hydrogen bonded to Arg 86, suggesting that it is not directly involved in catalysis. The new constellation of putative functional groups observed in the active site of MMCD underscores the diversity of function in this superfamily.  相似文献   

11.
E Butkus  S Stoncius  A Zilinskas 《Chirality》2001,13(10):694-698
A study of the enantiomers of bicyclo[3.3.1]nonane-2,7-dione, a chiral molecule containing two carbonyl chromophores, was performed. Enantiomers of this structure were obtained by HPLC resolution and the (+)-(1R,5S)-enantiomer by enantiospecific synthesis from(+)-(1S,5S)-bicyclo[3.3.1]nonane-2,6-dione. The title structure is an interesting molecule to demonstrate the validity of the octant rule. The location of the major chair-chair conformer into octants placing each chromophore into the origin of the octants led to the opposite configuration assignments. In order to prove unequivocally absolute configuration, enantiospecific synthesis of the title compound was carried out. The kinetic resolution of racemic bicyclo[3.3.1]nonane-2,6-dione using baker's yeast afforded (+)-(1S,5S)-2,6-dione. Employing a reaction sequence analogous to one developed earlier by us with racemic substrates led to carbonyl group shift giving enantiomerically pure (+)-(1R,5S)-bicyclo[3.3.1]nonane-2,7-dione. The absolute configuration of the investigated compound was established by combined use of the octant rule and chemical correlation.  相似文献   

12.
Crystal structures of enoyl-coenzyme A (CoA) isomerase from Bosea sp. PAMC 26642 (BoECI) and enoyl-CoA hydratase from Hymenobacter sp. PAMC 26628 (HyECH) were determined at 2.35 and 2.70 Å resolution, respectively. BoECI and HyECH are members of the crotonase superfamily and are enzymes known to be involved in fatty acid degradation. Structurally, these enzymes are highly similar except for the orientation of their C-terminal helix domain. Analytical ultracentrifugation was performed to determine the oligomerization states of BoECI and HyECH revealing they exist as trimers in solution. However, their putative ligand-binding sites and active site residue compositions are dissimilar. Comparative sequence and structural analysis revealed that the active site of BoECI had one glutamate residue (Glu135), this site is occupied by an aspartate in some ECIs, and the active sites of HyECH had two highly conserved glutamate residues (Glu118 and Glu138). Moreover, HyECH possesses a salt bridge interaction between Glu98 and Arg152 near the active site. This interaction may allow the catalytic Glu118 residue to have a specific conformation for the ECH enzyme reaction. This salt bridge interaction is highly conserved in known bacterial ECH structures and ECI enzymes do not have this type of interaction. Collectively, our comparative sequential and structural studies have provided useful information to distinguish and classify two similar bacterial crotonase superfamily enzymes.  相似文献   

13.
The thiamine diphosphate (ThDP) dependent flavoenzyme cyclohexane-1,2-dione hydrolase (CDH) (EC 3.7.1.11) catalyses a key step of a novel anaerobic degradation pathway for alicyclic alcohols by converting cyclohexane-1,2-dione (CDO) to 6-oxohexanoate and further to adipate using NAD(+) as electron acceptor. To gain insights into the molecular basis of these reactions CDH from denitrifying anaerobe Azoarcus sp. strain 22Lin was structurally characterized at 1.26 ? resolution. Notably, the active site funnel is rearranged in an unprecedented manner providing the structural basis for the specific binding and cleavage of an alicyclic compound. Crucial features include a decreased and displaced funnel entrance, a semi-circularly shaped loop segment preceding the C-terminal arm and the attachment of the C-terminal arm to other subunits of the CDH tetramer. Its structural scaffold and the ThDP activation is related to that observed for other members of the ThDP enzyme family. The selective binding of the competitive inhibitor 2-methyl-2,4-pentane-diol (MPD) to the open funnel of CDH reveals an asymmetry of the two active sites found also in the dimer of several other ThDP dependent enzymes. The substrate binding site is characterized by polar and non-polar moieties reflected in the structures of MPD and CDO and by three prominent histidine residues (His28, His31 and His76) that most probably play a crucial role in substrate activation. The NAD(+) dependent oxidation of 6-oxohexanoate remains enigmatic as the redox-active cofactor FAD seems not to participate in catalysis, and no obvious NAD(+) binding site is found. Based on the structural data both reactions are discussed.  相似文献   

14.
We have determined the crystal structures of three homologous proteins from the pathogenic protozoans Leishmania donovani, Leishmania major, and Trypanosoma cruzi. We propose that these proteins represent a new subfamily within the isochorismatase superfamily (CDD classification cd004310). Their overall fold and key active site residues are structurally homologous both to the biochemically well-characterized N-carbamoylsarcosine-amidohydrolase, a cysteine hydrolase, and to the phenazine biosynthesis protein PHZD (isochorismase), an aspartyl hydrolase. All three proteins are annotated as mitochondrial-associated ribonuclease Mar1, based on a previous characterization of the homologous protein from L. tarentolae. This would constitute a new enzymatic activity for this structural superfamily, but this is not strongly supported by the observed structures. In these protozoan proteins, the extended active site is formed by inter-subunit association within a tetramer, which implies a distinct evolutionary history and substrate specificity from the previously characterized members of the isochorismatase superfamily. The characterization of the active site is supported crystallographically by the presence of an unidentified ligand bound at the active site cysteine of the T. cruzi structure.  相似文献   

15.
Replacement of the pentyl chain on our original bicyclo[2.2.2]octyltriazole leads 1 and 2 has led to the discovery that heteroaryl substituted bicyclo[2.2.2]octyltriazoles are potent and selective 11beta-hydroxysteroid dehydrogenase type I (11beta-HSD1) inhibitors with excellent pharmacokinetic profiles.  相似文献   

16.
MenB, the 1,4-dihydroxy-2-naphthoyl-CoA synthase from the bacterial menaquinone biosynthesis pathway, catalyzes an intramolecular Claisen condensation (Dieckmann reaction) in which the electrophile is an unactivated carboxylic acid. Mechanistic studies on this crotonase family member have been hindered by partial active site disorder in existing MenB X-ray structures. In the current work the 2.0 ? structure of O-succinylbenzoyl-aminoCoA (OSB-NCoA) bound to the MenB from Escherichia coli provides important insight into the catalytic mechanism by revealing the position of all active site residues. This has been accomplished by the use of a stable analogue of the O-succinylbenzoyl-CoA (OSB-CoA) substrate in which the CoA thiol has been replaced by an amine. The resulting OSB-NCoA is stable, and the X-ray structure of this molecule bound to MenB reveals the structure of the enzyme-substrate complex poised for carbon-carbon bond formation. The structural data support a mechanism in which two conserved active site Tyr residues, Y97 and Y258, participate directly in the intramolecular transfer of the substrate α-proton to the benzylic carboxylate of the substrate, leading to protonation of the electrophile and formation of the required carbanion. Y97 and Y258 are also ideally positioned to function as the second oxyanion hole required for stabilization of the tetrahedral intermediate formed during carbon-carbon bond formation. In contrast, D163, which is structurally homologous to the acid-base catalyst E144 in crotonase (enoyl-CoA hydratase), is not directly involved in carbanion formation and may instead play a structural role by stabilizing the loop that carries Y97. When similar studies were performed on the MenB from Mycobacterium tuberculosis, a twisted hexamer was unexpectedly observed, demonstrating the flexibility of the interfacial loops that are involved in the generation of the novel tertiary and quaternary structures found in the crotonase superfamily. This work reinforces the utility of using a stable substrate analogue as a mechanistic probe in which only one atom has been altered leading to a decrease in α-proton acidity.  相似文献   

17.
Yu W  Chu X  Deng G  Liu X  Chen G  Li D 《Biochimica et biophysica acta》2006,1760(12):1874-1883
We report here a novel example of generating hydratase activity through site-directed mutagenesis of a single residue Lys242 of rat liver mitochondrial Delta3-Delta2-enoyl-CoA isomerase, which is one of the key enzymes involved in fatty acid oxidation and a member of the crotonase superfamily. Lys242 is at the C-terminal of the enzyme, which is far from the active site in the crotonase superfamily and forms a salt bridge with Asp149. A variety of mutant expression plasmids were constructed, and it was observed that mutation of Lys242 to nonbasic residues allowed the mutants to have enoyl-CoA hydratase activity confirmed by HPLC analysis of the incubation mixture. Kinetic studies of these mutants were carried out for both isomerase and hydratase activities. Mutant K242C showed a k(cat) value of 1.0 s(-1) for hydration reaction. This activity constitutes about 10% of the total enzyme activity, and the remaining 90% is its natural isomerase activity. To the best of our knowledge, this is the first report on the generation of functional promiscuity through single amino acid mutation far from the active site. This may be a simple and efficient approach to designing a new enzyme based on an existing template. It could perhaps become a general methodology for facilitating an enzyme to acquire a type enzymatic activity that belongs to another member of the same superfamily, by interrupting a key structural element in order to introduce ambiguity, using site-directed mutagenesis.  相似文献   

18.
Hydroxysteroid dehydrogenases (HSDs) are essential for the biosynthesis and mechanism of action of all steroid hormones. We report the complete kinetic mechanism of a mammalian HSD using rat 3alpha-HSD of the aldo-keto reductase superfamily (AKR1C9) with the substrate pairs androstane-3,17-dione and NADPH (reduction) and androsterone and NADP(+) (oxidation). Steady-state, transient state kinetics, and kinetic isotope effects reconciled the ordered bi-bi mechanism, which contained 9 enzyme forms and permitted the estimation of 16 kinetic constants. In both reactions, loose association of the NADP(H) was followed by two conformational changes, which increased cofactor affinity by >86-fold. For androstane-3,17-dione reduction, the release of NADP(+) controlled k(cat), whereas the chemical event also contributed to this term. k(cat) was insensitive to [(2)H]NADPH, whereas (D)k(cat)/K(m) and the (D)k(lim) (ratio of the maximum rates of single turnover) were 1.06 and 2.06, respectively. Under multiple turnover conditions partial burst kinetics were observed. For androsterone oxidation, the rate of NADPH release dominated k(cat), whereas the rates of the chemical event and the release of androstane-3,17-dione were 50-fold greater. Under multiple turnover conditions full burst kinetics were observed. Although the internal equilibrium constant favored oxidation, the overall K(eq) favored reduction. The kinetic Haldane and free energy diagram confirmed that K(eq) was governed by ligand binding terms that favored the reduction reactants. Thus, HSDs in the aldo-keto reductase superfamily thermodynamically favor ketosteroid reduction.  相似文献   

19.
The first step in the biosynthesis of the medicinally important carbapenem family of beta-lactam antibiotics is catalyzed by carboxymethylproline synthase (CarB), a unique member of the crotonase superfamily. CarB catalyzes formation of (2S,5S)-carboxymethylproline [(2S,5S)-t-CMP] from malonyl-CoA and l-glutamate semialdehyde. In addition to using a cosubstrate, CarB catalyzes C-C and C-N bond formation processes as well as an acyl-coenzyme A hydrolysis reaction. We describe the crystal structure of CarB in the presence and absence of acetyl-CoA at 2.24 A and 3.15 A resolution, respectively. The structures reveal that CarB contains a conserved oxy-anion hole probably required for decarboxylation of malonyl-CoA and stabilization of the resultant enolate. Comparison of the structures reveals that conformational changes (involving His(229)) in the cavity predicted to bind l-glutamate semialdehyde occur on (co)substrate binding. Mechanisms for the formation of the carboxymethylproline ring are discussed in the light of the structures and the accompanying studies using isotopically labeled substrates; cyclization via 1,4-addition is consistent with the observed labeling results (providing that hydrogen exchange at the C-6 position of carboxymethylproline does not occur). The side chain of Glu(131) appears to be positioned to be involved in hydrolysis of the carboxymethylproline-CoA ester intermediate. Labeling experiments ruled out the possibility that hydrolysis proceeds via an anhydride in which water attacks a carbonyl derived from Glu(131), as proposed for 3-hydroxyisobutyryl-CoA hydrolase. The structural work will aid in mutagenesis studies directed at altering the selectivity of CarB to provide intermediates for the production of clinically useful carbapenems.  相似文献   

20.
Microbial degradation of phenylacetic acid proceeds via the hybrid pathway that includes formation of a coenzyme A thioester, ring hydroxylation, non‐oxygenolytic ring opening, and β‐oxidation‐like reactions. A phenylacetic acid degradation protein PaaG is a member of the crotonase superfamily, and is a candidate non‐oxygenolytic ring‐opening enzyme. The crystal structure of PaaG from Thermus thermophilus HB8 was determined at a resolution of 1.85 Å. PaaG consists of three identical subunits related by local three‐fold symmetry. The monomer is comprised of a spiral and a helical domain with a fold characteristic of the crotonase superfamily. A putative active site residue, Asp136, is situated in an active site cavity and surrounded by several hydrophobic and hydrophilic residues. The active site cavity is sufficiently large to accommodate a ring substrate. Two conformations are observed for helix H2 located adjacent to the active site. Helix H2 is kinked at Asn81 in two subunits, whereas it is kinked at Leu77 in the other subunit, and the side chain of Tyr80 is closer to Asp136. This indicates that catalytic reaction of PaaG may proceed with large conformational changes at the active site. Asp136 is the only conserved polar residue in the active site. It is located at the same position as those of 4‐chlorobenzoyl‐CoA dehalogenase and peroxisomal Δ32‐enoyl‐CoA isomerase, indicating that PaaG may undergo isomerization or a ring‐opening reaction via a Δ32‐enoyl‐CoA isomerase‐like mechanism. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号