首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Embryonic chick notochords were studied during their metabolically active and involuting periods for the expression of collagen type I and II. The staining was carried out on notochords in vivo at stage 20 and stage 35 and on mesenchyme-contaminated and mesenchyme-free notochords at stage 20, which were cultured in vitro for 6 days. The results show that type II collagen is demonstrable in the notochords, at all the examined stages, both in vivo and in vitro. However, the expression of type I collagen was stage-dependent in vivo and in vitro. At stage 20, the perinotochordal sheath is positively immunostained for collagen type I, but the notochord itself is negative. At stage 35, the perinotochordal sheath as well as the notochord are positively immunostained for collagen type I. The mesenchyme-contaminated and the mesenchyme-free notochords and their sheaths are also positively immunostained for the type I collagen after6 days in vitro. The current results, at late developmental stages, indicate that the involuting notochords express collagen type I, which seems not to be altered by changing the micro-environment in vivo.  相似文献   

2.
In traditional Chinese medicine, Gynostemma pentaphyllum (Thunb.) Makino is a herbal drug of extreme versatility and has been extensively researched in China. The dammarane saponins isolated from Gynostemma pentaphyllum, namely gypenosides or gynosaponins, are believed to be the active components responsible for its various biological activities and reported clinical effects. This review attempts to encompass the available literature on Gynostemma pentaphyllum, from its cultivation to the isolation of its chemical entities and a summary of its diverse pharmacological properties attributed to its gypenoside content. Other aspects such as toxicology and pharmacokinetics are also discussed. In vitro and in vivo evidence suggests that Gynostemma pentaphyllum may complement the popular herbal medicine, Panax ginseng, as it also contains a high ginsenoside content and exhibits similar biological activities.  相似文献   

3.
Demineralized adult bone contains factors which stimulate nonskeletal mesenchymal cells to undergo a developmental progression resulting in de novo endochondral ossification. In this study, isolated embryonic stage 24 chick limb bud mesenchymal cells maintained in culture were utilized as an in vitro assay system for detection of specific bioactive components solubilized from adult chicken bone matrix. Guanidinium chloride extracts (4 M) of demineralized-defatted bone were fractionated and tested in limb mesenchymal cell cultures for possible effects upon growth and chondrogenesis. Two low-molecular-weight fractions were found to be active in these cultures. A cold water-insoluble, but warm Trisbuffered saline-soluble fraction provoked a dose-dependent increase in the amount of cartilage formed after 7 days of continuous exposure as evidenced by an increased number of chondrocytes observed in living cultures, elevated cell-layer-associated 35S incorporation per microgram DNA, and greater numbers of toluidine blue-staining foci (i.e., cartilage nodules). Growth inhibitory substances were detected in a low-molecular-weight, water-soluble fraction; 7 days of continuous exposure to this material resulted in less cartilage formation and reduced cell numbers (accumulated DNA) on each plate. These observations demonstrate the usefulness of stage 24 chick limb bud cell cultures for identifying bioactive factors extracted from adult bone matrix. In addition, the action of these factors on mesenchymal cells may now be studied in a cell culture system.  相似文献   

4.
5.
In the present investigation, evidence is presented directly implicating proteoglycans produced by the embryonic notochord in the control of somite chondrogenesis. It has been demonstrated by several histochemical techniques that during the period of its interaction with somites, the notochord synthesizes perinotochordal proteoglycans, and these proteoglycans have been shown to contain chondroitin 4-sulfate (40%), chondroitin 6-sulfate (40%), and heparan sulfate (20%). Dissection of notochords from embryos with the aid of a brief treatment with trypsin results in the removal of perinotochordal extracellular matrix materials including proteoglycans, while dissection of notochords without the aid of enzyme treatment or with a low concentration of collagenase results in their retention. There is a considerable increase in the rate and amount of cartilage formation and a corresponding 2 to 3-fold increase in the amount of sulfated glycosaminoglycan accumulated by somites cultured in association with notochords dissected under conditions in which perinotochordal materials are retained. Treatment of collagenase-dissected or freely dissected notochords with highly purified enzymes (chondroitinase ABC, AC, and testicular hyaluronidase) which specifically degrade proteoglycans causes a loss of histochemically detectable perinotochordal proteoglycans. These notochords are considerably impaired in their ability to support in vitro somite chondrogenesis. In addition, when trypsin-treated notochords are cultured (“precultured”) for 24 hr on nutrient agar (in the absence of somites), perinotochordal material reaccumulates. Somites cultured in association with such “precultured” notochords exhibit considerable increase in the amount of cartilage formed and a 2- to 3-fold increase in the amount of sulfated glycosaminoglycan accumulated as compared to somites cultured in association with trypsin-treated notochords which have not been “precultured.” This observation indicates that trypsin-treated notochords reacquire their ability to maximally stimulate in vitro somite chondrogenesis by resynthesizing and accumulating perinotochordal material. Finally, “precultured” notochords treated with chondroitinase to remove perinotochordal proteoglycans are considerably impaired in their ability to support in vitro somite chondrogenesis. These observations are consonant with the concept that proteoglycans produced by the embryonic notochord play an important role in somite chondrogenesis.  相似文献   

6.
为了解山壳骨(Pseuderanthemum latifolium)的化学成分和生物活性,运用LC-MS联用技术分离得到羽扇豆醇(1)和豆甾醇(2)。体外活性评价结果表明,化合物1和2均具有中等的抗MRSA活性,但不具有神经保护作用。这是首次对山壳骨进行化学成分和生物活性研究,为综合开发与利用山壳骨提供科学依据。  相似文献   

7.
Summary Micromass cultures of chick and mouse limb-bud mesenchymal cells are commonly used for in vitro studies of cellular differentiation. Previously, adaptation of these cultures to 96-well plates facilitated analyses of various aspects of cellular behavior and the effects of different media components in these cultures. These adjustments allowed development of a serum-free medium for chick limb-bud mesenchymal cells and substantially decreased costs associated with media and reagents. Here we report a further development for this model system; a Hoechst 33342-based in situ DNA assay that provides reliable data much more quickly and with considerably less effort than had been feasible in the past. Because it allows quantitation of products of cellular differentiation and DNA in the same cultures, the number of cultures needed to provide the same data is essentially halved and the accuracy of normalized values for quantitative estimates of markers of differentiation is improved. Studies of the effects of retinoic acid on chick limb-bud mesenchymal cells were performed to document the usefulness of this method.  相似文献   

8.
Essentially normal development of early embryonic pancreatic epithelium occurs only in the presence of mesenchymal tissues (Golosow and Grobstein, 1962), or a particulate fraction (MF) obtained from extracts of chicken embryos (Rutter et al., 1964). We have shown that this fraction also stimulates the incorporation of thymidine-3H into DNA. This stimulatory activity was detected in particulate fractions from homogenates of several mesodermal tissues from rat and chick embryos, as well as in fibroblasts cultured from these tissues, but not in embryonic epithelial tissues. This activity may thus be related to the mesodermal tissue requirement for pancreatic development. MF was solubilized and partially purified from homogenates of chick embryos. It is stable to collagenase, hyaluronidase, and neuraminidase. Activity is lost by heating and by treatment with trypsin. It is presumed, therefore, that the factor is associated with a protein that is not collagen.The effects of the MF upon macromolecular synthesis were tested in pancreatic tissues from 12-day rat embryos. When isolated epithelia were cultured in the absence of mesoderm or MF, the rate of thymidine-3H incorporation into DNA decreased to low levels. The specific activities of DNA polymerase and deoxycytidylate deaminase in epithelial extracts also declined. In contrast, the rate of thymidine-3H incorporation into DNA increased 5- to 8-fold over the initial rates in epithelia cultured with MF. Concurrently DNA polymerase activity in tissue extracts increased by 2- to 3-fold; deoxycytidylate deaminase activity declined slightly.MF also affected RNA and protein synthesis. The rate of leucine-3H incorporation into protein and uridine-14C incorporation into RNA in isolated pancreatic epithelia was comparable to that of intact rudiments. Cultures in the presence of MF increased these rates severalfold after 20 hr. These results suggest that MF, and by implication, mesoderm, may supply a growth factor for epithelial tissue and thus serves a permissive rather than a determining role in the differentiation process in pancreatic development.  相似文献   

9.
Various kinds of in vitro culture systems of tissues and organs have been developed, and applied to understand multicellular systems during embryonic organogenesis. In the research field of feather bud development, tissue recombination assays using an intact epithelial tissue and mesenchymal tissue/cells have contributed to our understanding the mechanisms of feather bud formation and development. However, there are few methods to generate a skin and its appendages from single cells of both epithelium and mesenchyme. In this study, we have developed a bioengineering method to reconstruct an embryonic dorsal skin after completely dissociating single epithelial and mesenchymal cells from chick skin. Multiple feather buds can form on the reconstructed skin in a single row in vitro. The bioengineered feather buds develop into long feather buds by transplantation onto a chorioallantoic membrane. The bioengineered bud sizes were similar to those of native embryo. The number of bioengineered buds was increased linearly with the initial contact length of epithelial and mesenchymal cell layers where the epithelial‐mesenchymal interactions occur. In addition, the bioengineered bud formation was also disturbed by the inhibition of major signaling pathways including FGF (fibroblast growth factor), Wnt/β‐catenin, Notch and BMP (bone morphogenetic protein). We expect that our bioengineering technique will motivate further extensive research on multicellular developmental systems, such as the formation and sizing of cutaneous appendages, and their regulatory mechanisms.  相似文献   

10.
During germination of barley grains, DNA fragmentation was observed in the aleurone. The appearance of DNA fragmentation in the aleurone layer, observed by TUNEL staining in aleurone sections, started near the embryo and extended to the aleurone cells far from the embryo in a time dependent manner. The same spatial temporal activities of hydrolytic enzymes such as -amylase were observed in aleurone. DNA fragmentation could also be seen in vitro under osmotic stress, in isolated aleurone. During aleurone protoplast isolation, a very enhanced and strong DNA fragmentation occurred which was not seen in protoplast preparations of tobacco leaves. ABA was found to inhibit DNA fragmentation occurring in barley aleurone under osmotic stress condition and during protoplast isolation, while the plant growth regulator gibberellic acid counteracted the effect of ABA. Addition of auxin or cytokinin had no significant effect on DNA fragmentation in these cells. To study the role of phosphorylation in ABA signal transduction leading to control of DNA fragmentation (apoptosis), the effects of the phosphatase inhibitor okadaic acid and of phenylarisine oxide on apoptosis were studied. We hypothesize that the regulation of DNA fragmentation in aleurone plays a very important role in spatial and temporal control of aleurone activities during germination. The possible signal transduction pathway of ABA leading to the regulation of DNA fragmentation is discussed.  相似文献   

11.
Myoblasts from embryonic, fetal, and adult quail and chick muscles were transplanted into limb buds of chick embryos to determine if myoblasts can form muscle fibers in heterochronic limbs and to define the conditions that affect the ability of transplanted cells to populate newly developing limb musculature. Myoblasts from each developmental stage were either freshly isolated and transplanted or were cultured prior to transplantation into limb buds of 4- to 5-day (ED4-5) chick embryos. Transplanted myoblasts, regardless of the age of the donor from which they were derived, formed muscle fibers within embryonic limb muscles. Transplanted cloned myoblasts formed muscle fibers, although there was little evidence that the number of transplanted myoblasts significantly increased following transplantation or that they migrated any distance from the site of injection. The fibers that formed from transplanted clonal myoblasts often did not persist in the host limb muscles until ED10. Diminished fiber formation from myoblasts transplanted into host limbs was observed whether myoblasts were cloned or cultured at high density. However, when freshly isolated myoblasts were transplanted, the fibers they formed were numerous, widely dispersed within the limb musculature, and persisted in the muscles until at least ED10. These results indicate that transplanted myoblasts of embryonic, fetal, and adult origin are capable of forming fibers during early limb muscle formation. They also indicate that even in an embryonic chick limb where proliferation of endogenous myoblasts and muscle fiber formation is rapidly progressing, myoblasts that are cultured in vitro do not substantially contribute to long-term muscle fiber formation after they are transplanted into developing limbs. However, when the same myoblasts are freshly isolated and transplanted without prior cell culture, substantial numbers of fibers form and persist after transplantation into developing limbs. Thus, these studies demonstrate that the extent to which transplanted myoblasts fuse to form fibers which persist in host musculature depends upon whether donor myoblasts are freshly isolated or maintained in vitro prior to injection.  相似文献   

12.
Germination of lupine (Lupinus luteus L.) seeds was accompanied by an increase in concentration of free radicals with g 1 and g 2 values of 2.0056 ± 0.0003 and 2.0033 ± 0.0005, respectively. The highest intensity of free radical signal was observed in embryo axes immediately after radicle protruded through the seed coat. Hydrogen peroxide accumulated in embryonic axes and cotyledons during imbibition before the onset of germination in the seed population. The activities of superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6) rose progressively in embryo axes. In cotyledons SOD activity did not change significantly, while that of CAT increased during germination. The enhancement of Cu, Zn-SODs and Mn-SOD isoforms in embryonic axes was observed. A new isoform of catalase was synthesized, suggesting that it plays a relevant role during germination. SOD and CAT activities were detected in dry seeds. Free radical generation and response of antioxidative enzymes differed between embryo axes and cotyledons during the germination timecourse.  相似文献   

13.
RNA and protein synthesis in sperm cells isolated from Zea mays L. pollen   总被引:1,自引:1,他引:0  
Summary Sperm cells are thought to be quiescent in pollen and activated upon pollen germination. To test this hypothesis, protein, RNA and DNA synthesis were assessed in Zea mays sperm cells at different times after isolation from pollen. Protein synthesis changed with time; while some proteins were found to be constitutive in both 0 and 24 h cells, others were synthesized and some disappeared. Overall, the number of proteins detected at 24 h doubled compared with freshly isolated cells. Incorporation of [3H]leucine in 24 h cells was about 50 times that in freshly isolated cells, and that of [5, 6-3H]uridine, about 7 times. Very low incorporation of [6-3H]thymidine into the cells was detected; there was no difference between freshly isolated and 24 h cells. It is possible that the differences in synthetic activity between freshly isolated and 24-h-old cells might correspond to sperm cell activation during pollen tube growth. If so, these metabolic changes may play an important role in fertilization.Supported by funds from a Strategic Grant (D.D.C.) and an Operating Grant (D.J.G.) from the Natural Sciences and Engineering Research Council of Canada  相似文献   

14.
Current DNA isolation methods are limited in their ability to obtain quality and/or quantity DNA from plants, such asEmblica officinalis, Terminalia belerica, andTerminalia chebula, which have low pH and high amounts of secondary metabolites in tissue extracts. Our modified DNA isolation method yields good-quality, high-molecular-weight DNA that is free of contaminants and colored pigments and is suitable for PCR amplification. This method is also useful for isolating DNA from dry powders.  相似文献   

15.
Previous morphometric and biochemical studies suggested that osteoblasts develop in cultures derived from phenotypically unexpressive stage 24 chick limb mesenchymal cells. Others have shown that osteoblast expression is marked by an increase in bone-specific alkaline phosphatase activity. Our results indicate that chick limb mesenchymal cells develop alkaline phosphatase activity that is identical to that of the chick embryonic bone-specific isoenzyme. The alkaline phosphatase isozymes were partially purified from samples of chick intestine, liver, stage 38 embryonic limbs, and cultures of stage 24 limb mesenchymal cells. These tissues were separately extracted with butanol, acetone precipitated, redissolved, and passed over a DEAE-Sephacel ion-exchange column and ion-filtration column (Sephadex A-25). From the data obtained during this purification scheme, we conclude that the alkaline phosphatase from stage 38 limbs (bones) and Day 4 cultures are identical, and this activity is different from the enzyme purified from intestine and liver. The cell culture isozyme has an apparent Km, heat lability, response to specific inhibitors, electrophoretic mobility, and molecular weight similar to those of bone-specific alkaline phosphatase. These observations support the view that osteoblastic progenitor cells are present in the stage 24 limb mesenchyme and that under specific culture conditions, bone development can be uniquely observed in vitro.  相似文献   

16.
d-ribose is an essential component of multiple important biological molecules and must first be phosphorylated by ribokinase before entering metabolic pathways. However, the function and regulation of ribokinases in Mycobacterium tuberculosis, the causative agent of tuberculosis, and its related species are largely unknown. In this study, we have characterized the activities of two putative ribokinases, Rv2436 and Ms4585, from M. tuberculosis and Mycobacterium smegmatis, respectively. The mycobacterial topoisomerase I (TopA) was found to physically interact with its ribokinase both in vitro and in vivo. By creating two ribokinase mutants that showed defective interactions with TopA, we further showed that the interaction between ribokinase and TopA had opposite effects on their respective function. While the interaction between the two proteins inhibited the ability of TopA to relax supercoiled DNA, it stimulated ribokinase activity. A cross-regulation assay revealed that the interaction between the two proteins was conserved in the two mycobacterial species. Thus, we uncovered an interplay between ribokinase and topoisomerase I in mycobacteria, which implies the existence of a novel regulatory strategy for efficient utilization of d-ribose in M. tuberculosis that may be useful in stressful environments with restricted access to nutrients.  相似文献   

17.
Summary Free radicals have an important role in the metabolism and development of aerobic organisms; however, their uncontrolled production leads to oxidative stress. This paper explores the possibility that free radical mediated stress has a role in tissue culture recalcitrance. In the context of this paper, recalcitrance is considered to be the inabilit of plant tissue cultures to respond to culture manipulations; in its broadest terms, this study also concerns the time-related decline (i.e. in vitro aging) and loss of morphogenetic competence and totipotent capacity. Studies on a diverse range of in vitro plant systems have shown that tissue cultures produce free radicals, lipid peroxides and toxic, aldehydic lipid peroxidation products. Levels of these compounds vary in response to different tissue culture manipulations, but their production is enhanced during dedifferentation and antioxidant profiles also vary throughout different phases of culture. A hypothesis is presented which suggests that tissue culture manipulations cause major metabolic and developmental changes, some of which may predispose in vitro cultures to increased free radical formation. If antioxidant protection is compromised, oxidative stress ensues and free radicals and their reaction products react with macromolecules such as DNA, proteins and enzymes, causing cellular dysfuction and as a result, the cultures become recalcitrant.  相似文献   

18.
An improved method has been developed for the isolation of nuclei from Saccharomyces cerevisiae for the study of RNA synthesis in vitro. Utilization of Ficoll in the isolation procedure greatly increases the activity of RNA polymerase in isolated nuclei. Nuclei prepared by this procedure are essentially free of mitochondrial DNA.  相似文献   

19.
The cyanobiont ofCycas circinalis (identified asNostoc sp.) was isolated and its heterotrophic metabolism was studied in free culture under nitrogen-fixing conditions. Morphology, growth rate, nitrogenase activity, biochemical composition, efficiency of assimilation of organic carbon and molecular nitrogen were determined under different conditions of energy and carbon supply. The study has revealed the high potential of the heterotrophic metabolism in this symbiotic cyanobacterium. Although low rates of metabolic activities were attained under heterotrophic conditions, the efficiencies of organic carbon utilization (0.48 g cell-carbon per g glucose-carbon in chemoheterotrophy, from 0.65 to 0.74 under photoheterotrophy) and of N2 assimilation (35.0 mg N2 fixed per g glucose used in chemoheterotrophy, from 58.3 to 61.9 under photoheterotrophy) displayed by this organism were among the highest ever found in diazotrophically grown microorganisms. The isolate fromC. circinalis was able to grow indefinitely in the dark under nitrogen-fixing conditions, maintaining a well balanced biosynthetic activity and the capacity to resume photosynthetic metabolism quickly. The significance of the heterotrophic potential of this symbioticNostoc is discussed.  相似文献   

20.
The relationship between the rates of increase of corneal protein fractions and incorporation of labeled precursors has been examined during embryonic and early posthatching development of the chick corneal stroma. Non-collagen protein increased gradually from 9 through 20 days of incubation. Collagen accumulated approximately logarithmically through the 19th day, the most rapid rate occurring between 13 and 20 days of incubation. The rates at which labeled amino acids are incorporated into collagen in vivo and in vitro undergo marked changes during the last week of embryonic development, corresponding closely to the rate of collagen accumulation in vivo; whereas incorporation into non-collagen protein changes much less markedly. Changes in the rate of incorporation of precursors into collagen are not due to changes in the rate of conversion of collagen from the soluble to insoluble form, or to changes in the endogenous amino acid pool size. Chick embryo corneal stroma collagen turns over very slowly, if at all. Non-collagen protein turns over more rapidly. An increase in cell number, as indicated by DNA content, does not account for the increased rate of collagen synthesis between the 9th and 16th day of incubation. It is concluded that the observed changes in collagen synthesis reflect changing activities in the individual cornea fibroblasts. These activities are comparable in the intact tissue in vivo and in isolated corneas in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号