首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
20-hydroxyecdysone was discovered as the major biologically active insect steroid hormone half a century ago, yet much remains to be learned about its biosynthesis and its activities. 20-hydroxyecdysone controls many biological processes, including progression between larval stages, entry to pupariation and metamorphosis. A number of genes required for 20-hydroxyecdysone production have been identified, including those encoding enzymes that mediate four of the late steps of biosynthesis. A second smaller group of low ecdysone mutants do not encode enzymes. Here, we report identification of one such gene, which we call molting defective, on the basis of its lethal phenotype. molting defective encodes a nuclear zinc finger protein required for ecdysone biosynthesis.  相似文献   

3.
4.
In Caenorhabditis elegans, the heterochronic pathway controls the timing of developmental events during the larval stages. A component of this pathway, the let-7 small regulatory RNA, is expressed at the late stages of development and promotes the transition from larval to adult (L/A) stages. The stage-specificity of let-7 expression, which is crucial for the proper timing of the worm L/A transition, is conserved in Drosophila melanogaster and other invertebrates. In Drosophila, pulses of the steroid hormone 20-hydroxyecdysone (ecdysone) control the timing of the transition from larval to pupal to adult stages. To test whether let-7 expression is regulated by ecdysone in Drosophila, we used Northern blot analysis to examine the effect of altered ecdysone levels on let-7 expression in mutant animals, organ cultures, and S2 cultured cells. Experiments were conducted to test the role of Broad-Complex (BR-C), an essential component in the ecdysone pathway, in let-7 expression. We show that ecdysone and BR-C are required for let-7 expression, indicating that the ecdysone pathway regulates the temporal expression of let-7 in Drosophila. These results demonstrate an interaction between steroid hormone signaling and the heterochronic pathway in insects.  相似文献   

5.
6.
Studies of Drosophila metamorphosis have been hampered by our inability to visualize many of the remarkable changes that occur within the puparium. To circumvent this problem, we have expressed GFP in specific tissues of living prepupae and pupae and compiled images of these animals into time-lapse movies. These studies reveal, for the first time, the dynamics and coordination of morphogenetic movements that could only be inferred from earlier studies of dissected staged animals. We also identify responses that have not been described previously. These include an unexpected variation in some wild-type animals, where one of the first pairs of legs elongates in the wrong position relative to the second pair of legs and then relocates to its appropriate location. At later stages, the antennal imaginal discs migrate from a lateral position in the head to their final location at the anterior end, as leg and mouth structures are refined and the wings begin to fold. The larval salivary glands translocate toward the dorsal aspect of the animal and undergo massive cell death following head eversion, in synchrony with death of the abdominal muscles. These death responses fail to occur in rbp(5) mutants of the Broad-Complex (BR-C), and imaginal disc elongation and eversion is abolished in br(5) mutants of the BR-C. Leg malformations associated with the crol(3) mutation can be seen to arise from defects in imaginal disc morphogenesis during prepupal stages. This approach provides a new tool for characterizing the dynamic morphological changes that occur during metamorphosis in both wild-type and mutant animals.  相似文献   

7.
To understand the roles of secretory peptides in developmental signaling, we have studied Drosophila mutant for the gene peptidylglycine alpha-hydroxylating monooxygenase (PHM). PHM is the rate-limiting enzyme for C-terminal alpha-amidation, a specific and necessary modification of secretory peptides. In insects, more than 90% of known or predicted neuropeptides are amidated. PHM mutants lack PHM protein and enzyme activity; most null animals die as late embryos with few morphological defects. Natural and synthetic PHM hypomorphs revealed phenotypes that resembled those of animals with mutations in genes of the ecdysone-inducible regulatory circuit. Animals bearing a strong hypomorphic allele contain no detectable PHM enzymatic activity or protein; approximately 50% hatch and initially display normal behavior, then die as young larvae, often while attempting to molt. PHM mutants were rescued with daily induction of a PHM transgene and complete rescue was seen with induction limited to the first 4 days after egg-laying. The rescued mutant adults produced progeny which survived to various stages up through metamorphosis (synthetic hypomorphs) and displayed prepupal and pupal phenotypes resembling those of ecdysone-response gene mutations. Examination of neuropeptide biosynthesis in PHM mutants revealed specific disruptions: Amidated peptides were largely absent in strong hypomorphs, but peptide precursors, a nonamidated neuropeptide, nonpeptide transmitters, and other peptide biosynthetic enzymes were readily detected. Mutant adults that were produced by a minimal rescue schedule had lowered PHM enzyme levels and reproducibly altered patterns of amidated neuropeptides in the CNS. These deficits were partially reversed within 24 h by a single PHM induction in the adult stage. These genetic results support the hypothesis that secretory peptide signaling is critical for transitions between developmental stages, without strongly affecting morphogenetic events within a stage. Further, they show that PHM is required for peptide alpha-amidating activity throughout the life of Drosophila. Finally, they define novel methods to study neural and endocrine peptide biosynthesis and functions in vivo.  相似文献   

8.
The discovery that several inherited human diseases are caused by mtDNA depletion has led to an increased interest in the replication and maintenance of mtDNA. We have isolated a new mutant in the lopo (low power) gene from Drosophila melanogaster affecting the mitochondrial single-stranded DNA-binding protein (mtSSB), which is one of the key components in mtDNA replication and maintenance. lopo(1) mutants die late in the third instar before completion of metamorphosis because of a failure in cell proliferation. Molecular, histochemical, and physiological experiments show a drastic decrease in mtDNA content that is coupled with the loss of respiration in these mutants. However, the number and morphology of mitochondria are not greatly affected. Immunocytochemical analysis shows that mtSSB is expressed in all tissues but is highly enriched in proliferating tissues and in the developing oocyte. lopo(1) is the first mtSSB mutant in higher eukaryotes, and its analysis demonstrates the essential function of this gene in development, providing an excellent model to study mitochondrial biogenesis in animals.  相似文献   

9.
10.
Epithelial morphogenesis is an essential process in all metazoans during both normal development and pathological processes such as wound healing. The coordinated regulation of cell shape, cell size, and cell adhesion during the migration of epithelial sheets ultimately gives rise to the diversity of body plans among different organisms as well as the diversity of cellular structures and tissues within an organism. Metamorphosis of the Drosophila pupa is an excellent system to study these transformative events. During pupal development, the cells of the wing imaginal discs migrate dorsally and fuse to form the adult thorax. Here I show centralspindlin, a protein complex well known for its role in cytokinesis, is essential for migration of wing disc cells and proper thorax closure. I show the subcellular localization of centralspindlin is important for its function in thorax development. This study demonstrates the emerging role of centralspindlin in regulating cell migration and cell adhesion in addition to its previously known function during cytokinesis. genesis 52:387–398, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
We measured the energetic cost of metamorphosis in the fruitfly, Drosophila melanogaster. Metabolic rates decreased rapidly in the first 24 h and remained low until shortly before eclosion, when the rates increased rapidly, thus creating a U-shaped metabolic curve. The primary fuel used during metamorphosis was lipid, which accounted for >80% of total metabolism. The total energy consumed during metamorphosis was lowest at 25 °C, compared to 18 and 29 °C, due to differences in metabolic rates and the length of pupal development. Temperature differentially affected metabolic rates during different stages of metamorphosis. Prepupal and late pupal stages exhibited typical increases in metabolic rate at high temperatures, whereas metabolic rates were independent of temperature during the first 2/3 of pupal development.We tested two hypotheses for the underlying cause of the U-shaped metabolic curve. The first hypothesis was that pupae become oxygen restricted as a result of remodeling of the larval tracheal system. We tested this hypothesis by exposing pupae to hypoxic and hyperoxic atmospheres, and by measuring lactic acid production during normoxic development. No evidence for oxygen limitation was observed. We also tested the hypothesis that the U-shaped metabolic curve follows changes in metabolically active tissue, such that the early decrease in metabolic rates reflects the histolysis of larval tissues, and the later increase in metabolic rates is associated with organogenesis and terminal differentiation of adult tissues. We assayed the activity of a mitochondrial indicator enzyme, citrate synthase, and correlated it with tissue-specific developmental events during metamorphosis. Citrate synthase activity exhibited a U-shaped curve, suggesting that the pattern of metabolic activity is related to changes in the amount of potentially active aerobic tissue.  相似文献   

12.
13.
Octopamine is a major monoamine in invertebrates and affects many physiological processes ranging from energy metabolism to complex behaviors. Octopamine binds to receptors located on various cell types and activates distinct signal transduction pathways to produce these diverse effects. We previously identified one of the Drosophila octopamine receptors named OAMB that produces increases in cAMP and intracellular Ca2+ upon ligand binding. It is expressed at high levels in the brain. To explore OAMB's physiological roles, we generated deletions in the OAMB locus. The resultant oamb mutants were viable without gross anatomical defects. The oamb females displayed normal courtship and copulation; however, they were impaired in ovulation with many mature eggs retained in their ovaries. RT-PCR, in situ hybridization, and expression of a reporter gene revealed that OAMB was also expressed in the thoracicoabdominal ganglion, the female reproductive system, and mature eggs in the ovary. Moreover, analysis of various alleles pinpointed the requirement for OAMB in the body, but not in the brain, for female fecundity. The novel expression pattern of OAMB and its genetic resource described in this study will help advance our understanding on how the neuromodulatory or endocrine system controls reproductive physiology and behavior.  相似文献   

14.
15.
16.
17.
18.
The actin cytoskeleton is essential for cellular remodeling and many developmental and morphological processes. Twinfilin is a ubiquitous actin monomer-binding protein whose biological function has remained unclear. We discovered and cloned the Drosophila twinfilin homologue, and show that this protein is ubiquitously expressed in different tissues and developmental stages. A mutation in the twf gene leads to a number of developmental defects, including aberrant bristle morphology. This results from uncontrolled polymerization of actin filaments and misorientation of actin bundles in developing bristles. In wild-type bristles, twinfilin localizes diffusively to cytoplasm and to the ends of actin bundles, and may therefore be involved in localization of actin monomers in cells. We also show that twinfilin and the ADF/cofilin encoding gene twinstar interact genetically in bristle morphogenesis. These results demonstrate that the accurate regulation of size and dynamics of the actin monomer pool by twinfilin is essential for a number of actin-dependent developmental processes in multicellular eukaryotes.  相似文献   

19.
20.
Intracellular vesicular trafficking is one of the important tools in maintaining polarity, adhesion, and shape of epithelial cells. Rab11, a subfamily of the Ypt/Rab gene family of ubiquitously expressed GTPases and a molecular marker of recycling endosomes, transports different components of plasma membrane. Here, we report that Rab11 affects tubulogenesis of Malpighian tubules (MTs). MTs are simple polarized epithelial tubular structures, considered as functional analogue of human kidney. Rab11 has pleiotropic effects on MTs development as down‐regulation of Rab11 in principal cells (PCs) of MTs from embryonic stages of development results in reduced endoreplication, clustering of cells, disorganized cytoskeleton, and disruption of polarity leading to shortening of MTs in third instar larvae. Rab11 is also required for proper localization of different transporters in PCs, essential for physiological activity of MTs. Collectively, our data suggest that Rab11 plays a key role in the process of tubulogenesis of MTs in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号