首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B2 repeats are a group of short interspersed elements (SINEs) specific for rodent genomes. Copy numbers were determined for different rodent genera. All the Muroid (rat, mouse, deer mouse, hamster, gerbil) rodent genomes analyzed exhibited 80,000–100,000 copies per haploid genome, whereas the squirrel genome contains only 2,500 copies, and fewer than 100 (if any) copies were observed for the Hystricognath rodents (guinea pig and nutria). These findings demonstrate that there was an explosion of amplification of B2 elements within muroid rodents. The similar copy number of B2 elements within the different muroid species could be explained by formation of a high proportion of the B2 elements prior to the divergence of the different muroid species. However, the 3-end of the B2 sequence is unique between murid and cricetid rodents suggesting that the majority of elements amplified after the divergence of these species. Also consistent with recent amplification of these elements in parallel within the muroid genomes is the finding that within mouse and rat there are distinct subfamilies of B2 repeats. The pattern of consistent parallel amplification of B2 elements in muroid species contrasts with the sporadic nature of ID repeat amplification in the same genomes. The consensus of the young mouse subfamily of elements corresponds to the B2 RNA that is preferentially transcribed in embryonic, tumor, and normal liver cells. The subfamily is young based on both its low divergence from the subfamily consensus sequence and the finding that the most recent B2 element insertions in the mouse genome are members of this subfamily.  相似文献   

2.
Fluorescence-labeled DNA probes constructed from three whole house mouse (Mus domesticus) chromosomes were hybridized to metaphase spreads from deer mouse (Peromyscus maniculatus) to identify homologies between the species. Mus Chr 7 probe hybridized strongly to the ad-centromeric two-thirds of Peromyscus Chr 1q. Most of Mus 3 probe hybridized principally to two disjunct segments of Peromyscus Chr 3. Mus Chr 9 probe hybridized entirely to the whole Peromyscus Chr 7. Three Peromyscus linkage groups were assigned to chromosomes, based on linkage homology with Mus. The data also are useful in interpretation of chromosomal evolutionary history in myomorphic rodents. Received: 1 December 1998 / Accepted: 17 February 1999  相似文献   

3.
John H. Harris 《Oecologia》1986,68(3):417-421
Summary I studied diet in relation to microhabitat use in two desert rodents:Microdipodops megacephalus, the dark kangaroo mouse, andPeromyscus maniculatus, the deer mouse. Contrary to expectation, both species ate primarily arthropods, which were most abundant near shrubs.Peromyscus used the area near shrubs, in contrast toMicrodipodops, which used open microhabitat. As a consequence, the diet ofPeromyscus was narrower and more concentrated on abundant prey types than that ofMicrodipodops. Thus microhabitat segregation, which is frequently reported for desert rodents, is related to a diet-breadth difference between these rodents. The use of open microhabitat and low density resources byMicrodipodops, when compared with the large bipedalDipodomys and small quadrupedalPerognatus, suggests that bipedal locomotion in desert rodents is related to use of open microhabitat, and that body size is related to density of food resources.  相似文献   

4.
5.
Evolution of secondary structure in the family of 7SL-like RNAs   总被引:8,自引:0,他引:8  
Primate and rodent genomes are populated with hundreds of thousands copies of Alu and B1 elements dispersed by retroposition, i.e., by genomic reintegration of their reverse transcribed RNAs. These, as well as primate BC200 and rodent 4.5S RNAs, are ancestrally related to the terminal portions of 7SL RNA sequence. The secondary structure of 7SL RNA (an integral component of the signal recognition particle) is conserved from prokaryotes to distant eukaryotic species. Yet only in primates and rodents did this molecule give rise to retroposing Alu and B1 RNAs and to apparently functional BC200 and 4.5S RNAs. To understand this transition and the underlying molecular events, we examined, by comparative analysis, the evolution of RNA structure in this family of molecules derived from 7SL RNA.RNA sequences of different simian (mostly human) and prosimian Alu subfamilies as well as rodent B1 repeats were derived from their genomic consensus sequences taken from the literature and our unpublished results (prosimian and New World Monkey). RNA secondary structures were determined by enzymatic studies (new data on 4.5S RNA are presented) and/or energy minimization analyses followed by phylogenetic comparison. Although, with the exception of 4.5S RNA, all 7SL-derived RNA species maintain the cruciform structure of their progenitor, the details of 7SL RNA folding domains are modified to a different extent in various RNA groups. Novel motifs found in retropositionally active RNAs are conserved among Alu and B1 subfamilies in different genomes. In RNAs that do not proliferate by retroposition these motifs are modified further. This indicates structural adaptation of 7SL-like RNA molecules to novel functions, presumably mediated by specific interactions with proteins; these functions were either useful for the host or served the selfish propagation of RNA templates within the host genome.Abbreviations FAM fossil Alu element - FLAM free left Alu monomer - FRAM free right Alu monomer - L-Alu left Alu subunit - R-Alu right Alu subunit Correspondence to: D. LabudaDedicated to Dr. Robert Cedergren on the occasion of his 25th anniversary at the University of Montreal  相似文献   

6.
Summary Two distinct members of the LINE-1 (L1) family in Peromyscus were characterized. The two clones, denoted L1Pm55 and L1Pm62, were 1.5 kb and 1.8 kb in length, respectively, and align to the identical region of the L1 sequence of Mus domesticus. Sequence similarity was on the order of 70% between L1Pm55 and L1Pm62, which approximates that between either Peromyscus sequence and Mus Ll. L1Pm62 represents a more prevalent subfamily than L1Pm55. L1Pm62 exists in about 500 copies per haploid genome, while L1Pm55 exists in about 100 copies. The existence of major and minor subpopulations of L1 within Peromyscus is in contrast to murine rodents and higher primates, where L1 copy number is on the order of 20,000 to 100,000, and where levels of intraspecific divergence among L1 elements are typically less than 15–20%. Additional Peromyscus clones are similarly divergent from both L1Pm62 and LIPm55, implying the existence of more than two distinct L1 subfamilies. The highly divergent L1 subfamilies in Peromyscus apparently have been evolving independently for more than 25 million years, preceding the divergence of cricetine and murine rodents. Investigations of the evolution of L1 within Peromyscus by restriction and Southern analysis was performed using species groups represented by the partially interfertile species pairs P. maniculatus-P. polionotus, P. leucopus-P. gossypinus, and P. truei-P. difficilis of the nominate subgenus and P. californicus of the Haplomylomys subgenus. Changes in L1 and species group taxonomic boundaries frequently coincided. The implications for phylogeny are discussed.  相似文献   

7.
We identified and characterized the relics of an ancient rodent Ll family, referred to as Lx, which was extensively amplified at the time of the murine radiation about 12 million years ago, and which we showed was ancestral to the modern L1 families in rat and mouse. Here we have extended our analysis of the Lx amplification by examining more murine and nonmurine species for Lx sequences using both blot hybridization and the polymerase chain reaction for a total of 36 species. In addition we have determined the relative copy number and sequence divergence, or age, of Lx elements in representative murine genera. Our results show that while Lx sequences are confined to murine genera, the extent of the amplification was different in the different murine lineages, indicating that the amplification of Lx did not precede, but was coincident with, the murine radiation. The implications of our findings for the evolutionary dynamics of L1 families and the utility of ancestral amplification events for systematics are discussed. Correspondence to: A.V. Furano  相似文献   

8.
Short retroposons can be used as natural phylogenetic markers. By means of hybridization and PCR analysis, we demonstrate that B2 retroposon copies are present only in the three rodent families: Muridae, Cricetidae, and Spalacidae. This observation highlights the close phylogenetic relation between these families. Two novel B2-related retroposon families, named DIP and MEN elements, are described. DIP elements are found only in the genomes of jerboas (family Dipodidae) and birch mice (family Zapodidae), demonstrating the close relationship between these rodents. MEN element copies were isolated from the squirrel, Menetes berdmorei, but were not detected in three other species from the family Sciuridae. The MEN element has an unusual dimeric structure: the left and right monomers are B2- and B1-related sequences, respectively. Comparison of the B2, DIP, MEN, and 4.5S1 RNA elements revealed an 80-bp core sequence located at the beginning of the B2 superfamily retroposons. This observation suggests that these retroposon families descended from a common progenitor. A likely candidate for this direct progenitor could be the ID retroposon. Received: 20 December 1996 / Accepted: 17 June 1997  相似文献   

9.
Identifier (ID) elements are members of a family of short interspersed nuclear elements (SINEs) in rodents. We investigated the genomic organization and chromosomal distribution of the ID elements in the rat, mouse and Chinese hamster. Southern blot hybridization analysis revealed that the ID elements are widespread in the rat genome, but concentrated in the mouse and Chinese hamster genomes, and that the copy of ID elements in the rat is about 5 times and 50 times that in the mouse and Chinese hamster, respectively. FISH analysis showed that the ID elements are predominantly distributed in the R-band regions of rat chromosomes. In mouse and Chinese hamster chromosomes, no specific distribution pattern of the ID elements was found. Furthermore, we found a distinct group of derivative ID elements in the rat, which contain partially repeated ID core domains, by PCR amplification using an ID core sequence. Such derivatives were not found in either the mouse or Chinese hamster. These findings suggest that explosive amplification of the ID elements in the rat has been accompanied by the occurrence of derivative ID elements and a predominant localization to the R-band regions. Similar associations found in the Alu family, one of the human SINEs, allow us to speculate that the rat ID elements and the human Alu family have analogous functions in chromosomal organization.  相似文献   

10.
Based on previous observations that newly inserted LINEs and SINEs have particularly long 3' A-tails, which shorten rapidly during evolutionary time, we have analyzed the rat and mouse genomes for evidence of recently inserted SINEs and LINEs. We find that the youngest predicted subfamilies of rodent identifier (ID) elements, a rodent-specific SINE derived from tRNA(Ala), are preferentially associated with A-tails over 50 bases in the rat genome, as predicted. Furthermore, these studies detected a subfamily of ID elements that has made over 15,000 copies that is younger than any previously reported ID subfamily. We use PCR analysis of genomic loci to demonstrate that all subfamily members tested inserted after the divergence of Rattus norvegicus from Rattus rattus. We also found evidence that the rodent B1 family of elements is much more active currently in mouse than in rat. These data provide useful estimates of recent activity from all of the mammalian retrotransposons, as well as allowing identification of the most recent insertions for use as population and speciation markers in those species. Both the current rat ID and mouse B1 elements that are active have small, specific interruptions in their 3' A-tail sequences. We suggest that these interruptions stabilize the length of the A-tails and contribute to the activity of these subfamilies. We present a model in which the dynamics of the 3' A-tail may be a central controlling factor in SINE activity.  相似文献   

11.
A recent analysis of amino acid sequence data (Graur et al.) suggested that the mammalian order Rodentia is polyphyletic, in contrast to most morphological data, which support rodent monophyly. At issue is whether the hystricognath rodents, such as the guinea pig, represent an independent evolutionary lineage within mammals, separate from the sciurognath rodents. To resolve this problem, we sequenced a region (2,645 bp) of the mitochondrial genome of the guinea pig containing the complete 12S ribosomal RNA, 16S ribosomal RNA, and transfer RNA(VAL) genes for comparison with the available sciurognath and other mammalian sequences. Several methods of analysis and statistical tests of the data all show strong support for rodent monophyly (91%-98% bootstrap probability, or BP). Calibration with the mammalian fossil record suggests a Cretaceous date (107 mya) for the divergence of sciurognaths and hystricognaths. An older date (38 mya) for the controversial Mus- Rattus divergence also is supported by these data. Our neighbor-joining analyses of all available sequence data (25 genes) confirm that some individual genes support rodent polyphyly but that tandem analysis of all data does not. We propose that the conflicting results are due to several compounding factors. The unique biochemical properties of some hystricognath metabolic proteins, largely responsible for generating this controversy, may have a single explanation: a cascade effect resulting from inactivation of the zinc-binding abilities of insulin. After excluding six genes possibly affected by insulin inactivation, analyses of all available sequence data (7,117 nucleotide sites, 3,099 amino acid sites) resulted in strong support for rodent monophyly (94% BP for DNA sequences, 90% for protein sequences), which lends support to the insulin-cascade hypothesis.   相似文献   

12.
This study was undertaken to determine which rodent species serve as primary reservoirs for the Lyme disease spirochete Borrelia burgdorferi in commonly occurring woodland types in inland areas of northwestern California, and to examine whether chaparral or grassland serve as source habitats for dispersal of B. burgdorferi‐ or B. bissettii‐infected rodents into adjacent woodlands. The western gray squirrel (Sciurus griseus) was commonly infected with B. burgdorferi in oak woodlands, whereas examination of 30 dusky‐footed woodrats (Neotoma fuscipes) and 280 Peromyscus spp. mice from 13 widely‐spaced Mendocino County woodlands during 2002 and 2003 yielded only one infected woodrat and one infected deer mouse (P. maniculatus). These data suggest that western gray squirrels account for the majority of production by rodents of fed Ixodes pacificus larvae infected with B. burgdorferi in the woodlands sampled. Infections with B. burgdorferi also were rare in woodrats (0/47, 0/3) and mice (3/66, 1/6) captured in chaparral and grassland, respectively, and therefore these habitats are unlikely sources for dispersal of this spirochete into adjacent woodlands. On the other hand, B. bissettii was commonly detected in both woodrats (22/47) and mice (15/66) in chaparral. We conclude that the data from this and previous studies in northwestern California are suggestive of a pattern where inland oak‐woodland habitats harbor a B. burgdorferi transmission cycle driven primarily by I. pacificus and western gray squirrels, whereas chaparral habitats contain a B. bissettii transmission cycle perpetuated largely by I. spinipalpis, woodrats, and Peromyscus mice. The dominant role of western gray squirrels as reservoirs of B. burgdorferi in certain woodlands offers intriguing opportunities for preventing Lyme disease by targeting these animals by means of either host‐targeted acaricides or oral vaccination against B. burgdorferi.  相似文献   

13.
Spatial distribution, population density, and reproductive success of many wildlife species may be altered by changes in vegetation composition, habitat structure, and availability of food. Altered distributions of key herbivores such as white-tailed deer (Odocoileus virginianus) may impact all of these factors. Our objective was to determine the direct and indirect effects of supplemental feeding of deer on rodent populations in south Texas. We modeled effects of supplemental feeding and habitat change due to deer browsing through surveys of rodents. Rodents have a short generation time and populations respond quickly to change, so they are a suitable indicator of changes in habitat structure brought about by deer browsing pressure. We sampled rodent populations near to and far from deer feeders within twelve 81-ha enclosures containing three different densities of deer with and without supplemental feed. The three deer densities were low (8.1 ha/deer), medium (3.2 ha/deer), and high (2 ha/deer). We conducted rodent trapping during March and April of 2007 and 2008. Abundance of rodents was much higher (P < 0.001) in 2008 than in the previous year due to an increase in rainfall. However, we found little effect of deer density, supplemental feeding of deer, or distance from deer feeders on rodent populations. Thus we conclude that supplemental feeding of deer and deer density had little influence on rodent communities in this environment. Rodent species native to semi-arid environments are probably adapted to large changes in vegetative productivity brought about by the highly variable annual rainfall patterns, therefore they can adapt to the less abrupt habitat changes resulting from changing densities of deer. Conservation concerns that providing supplemental feed to deer in semi-arid rangeland will disrupt the ecology of the land through changes in rodent populations were not supported. © 2011 The Wildlife Society.  相似文献   

14.
Smit  R.  Bokdam  J.  den Ouden  J.  Olff  H.  Schot-Opschoor  H.  Schrijvers  M. 《Plant Ecology》2001,155(1):119-127
In this study we analysed the effects of large herbivores on smallrodent communities in different habitats using large herbivore exclosures. Westudied the effects of three year grazing introduction by red deer(Cervus elaphus L.) in previously ungrazed pine and oakwoodland and the exclusion of grazing by red deer, roe deer(Capreoluscapreolus L.) and mouflon (Ovis ammon musiminL.) in formerly, heavily grazed pine woodland and heathland. At eight exclosuresites within each habitat type, small rodents were captured with live trapsusing trapping grids. At each trapping grid, seed plots of beechnuts(Fagus sylvatica L.) and acorns (Quercusrobur L.) were placed to measure seed predation by rodents.Exclusion of grazing by large herbivores in formerly, heavily grazedhabitats had a significant effect on small rodent communities. Insideexclosureshigher densities of mainly wood mice (Apodemus sylvaticusL.) and field voles (Microtus agrestis L.) were captured.Introduction of grazing by red deer appeared to have no significant negativeeffects on small rodent communities. The seed predation intensity of beechnutsand acorns by small rodents was significantly higher in ungrazed situations,particularly in habitats that were excluded from grazing. The differencesbetween grazing introduction and exclusion effects on small rodent communitiescan be explained by differences in vegetation structure development. Therecovery of heavily browsed understory vegetation after large herbivore grazingexclusion proceeded faster than the understory degradation due to grazingintroduction. Small rodents depend on structural rich vegetations mainly forshelter. We conclude that large herbivores can have significant effects onvegetation dynamics not only via direct plant consumption but also throughindirect effects by reducing the habitat quality of small rodent habitats.  相似文献   

15.
Release of exotic insects as biological control agents is a common approach to controlling exotic plants. Though controversy has ensued regarding the deleterious direct effects of biological control agents to non-target species, few have examined the indirect effects of a ”well-behaved” biological control agent on native fauna. We studied a grassland in west-central Montana infested with spotted knapweed (Centaurea maculosa) to examine the effects of knapweed invasion and two gall flybiological control agents (Urophora affinis and U. quadrifasciata) on the native deer mouse (Peromyscus maniculatus). Stomach-content analysis revealed that Urophora were the primary food item in Peromyscus diets for most of the year and made up 84–86% of the winter diet. Stomach contents indicated that wild-caught mice consumed on average up to 247 Urophora larvae mouse–1 day–1, while feeding trials revealed that deer mice could depredate nearly 5 times as many larvae under laboratory conditions. In feeding trials, deer mice selected knapweed seedheads with greater numbers of galls while avoiding uninfested seedheads. When Urophora larvae were present in knapweed seedheads, deer mice selected microhabitats with moderately high (31–45% cover) and high knapweed infestation (≥46% cover). After Urophora emerged and larvae were unavailable to Peromyscus, mice reversed habitat selection to favor sites dominated by native-prairie with low knapweed infestation (0–15%). Establishment of the biological control agent, Urophora spp., has altered deer mouse diets and habitat selection by effecting changes in foraging strategies. Deer mice and other predators may reduce Urophora populations below a threshold necessary to effectively control spotted knapweed. Received: 04 May 1999 / Accepted: 14 August 1999  相似文献   

16.
17.
The rodent genus Peromyscus is the most numerous and species-rich mammalian group in North America. The naturally occurring diversity within this genus allows opportunities to investigate the genetic basis of adaptation, monogamy, behavioral and physiological phenotypes, growth control, genomic imprinting, and disease processes. Increased genomic resources including a high quality genetic map are needed to capitalize on these opportunities. We produced interspecific hybrids between the prairie deer mouse (P. maniculatus bairdii) and the oldfield mouse (P. polionotus) and scored meiotic recombination events in backcross progeny. A genetic map was constructed by genotyping of backcross progeny at 185 gene-based and 155 microsatellite markers representing all autosomes and the X-chromosome. Comparison of the constructed genetic map with the molecular maps of Mus and Rattus and consideration of previous results from interspecific reciprocal whole chromosome painting allowed most linkage groups to be unambiguously assigned to specific Peromyscus chromosomes. Based on genomic comparisons, this Peromyscus genetic map covers ~83 % of the Rattus genome and 79 % of the Mus genome. This map supports previous results that the Peromyscus genome is more similar to Rattus than Mus. For example, coverage of the 20 Rattus autosomes and the X-chromosome is accomplished with only 28 segments of the Peromyscus map, but coverage of the 19 Mus autosomes and the X-chromosome requires 40 chromosomal segments of the Peromyscus map. Furthermore, a single Peromyscus linkage group corresponds to about 91 % of the rat and only 76 % of the mouse X-chromosomes.  相似文献   

18.
Intracisternal A-particle (IAP) elements are present in multiple copies in the mouse and other rodent genomes. The bulk of this sequence family in Mus musculus consists of 7 Kb long elements, but the majority of IAP sequences involved in known transpositions have been deleted forms. The present study describes a subset of deleted IAP sequences (type II IAP) characterized by insertion of a particular short sequence element (AIIins). AIIins are interspersed and the majority occur as part of the type II IAP elements in the mouse genome. AIIins sequences are absent or in low copy number outside Mus musculus. We have isolated clones containing AIIins from a mouse genomic DNA library and have sequenced three isolates of AIIins and their surrounding IAP sequences to define the detailed structure of type II elements. AIIins are 272, 268 and 264 bp long and 90% homologous in sequence. They are bracketed by 9 bp duplications, suggesting they may be inserted elements. A 75 bp region containing a core enhancer sequence is repeated at the 5' end in type II IAP elements. Insertion into the IAP genome, with potential to encode an integrase function, may have played a role in the amplification of AIIins.  相似文献   

19.
The purpose of this study was to determine whether species differences in neonatal vocalizations of rodent pups could be observed. Ultrasonic vocalizations of pups of 5 rodent species, mouse (ICR), vole (Microtus arvalis), Syrian hamster, rat (Wistar-Imamichi), and Mongolian gerbil were recorded from 3 to 15 or 21 days of age. Recordings were made under conditions of separation from mothers and litter mates in a cooled chamber (approximately 10 degrees C). The major species differences observed were age specific and species specific frequencies. The Mongolian gerbil displayed a different frequency change with age. Namely, the day on which ultrasonic vocalizations ceased was delayed in Mongolian gerbil compared with the other rodents. The modal peak frequencies of ultrasound emitted from pups at 3 days of age were low (around 35 kHz) in the vole and the Syrian hamster, medium (around 45 kHz) in the rat and the Mongolian gerbil, and high (around 55 kHz) in the mouse.  相似文献   

20.
The eyes and visual capacity of the naked mole-rat, Heterocephalus glaber, a subterranean rodent, were evaluated using anatomical, biochemical, and functional assays, and compared to other rodents of similar body size (mouse and gerbil). The eye is small compared to mouse, yet possesses cornea, lens, and retina with typical mammalian organization. The optic nerve cross-sectional area and fiber density are ~10% and ~50% that of gerbil, respectively. Levels per unit retinal area of 11-cis and all-trans retinal, derivatives of vitamin A associated with the visual cycle, are comparable to mouse. The corneal electroretinogram (ERG) exhibits early and late negative components that scale with flash strength; raising the body temperature of this poikilothermic animal from 30°C (normal for H. glaber ) to 37°C (normal for mouse) revealed an ERG response with typically mammalian features, but greatly attenuated and with slower kinetics. Leaving the nest chamber was a behavior correlated with light onset displayed preferentially by breeding females. Optical models of five mole-rat eyes suggest reasonable, but variable, image formation at the retina, possibly related to age. Results are consistent with amorphous light detection, possibly useful for circadian entrainment or escape behavior in the event of tunnel breeches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号