首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atomic solvation parameters (ASP) are widely used to estimate the solvation contribution to the thermodynamic stability of proteins as well as the free energy of association for protein-ligand complexes. They are also included in several molecular mechanics computer programs. In this work, a total of eight atomic solvation parametric sets has been employed to calculate the solvation contribution to the free energy of folding delta Gs for 17 proteins. A linear correlation between delta Gs and the number of residues in each protein was found for each ASP set. The calculations also revealed a great variety in the absolute value and in the sign of delta Gs values such that certain ASP sets predicted the unfolded state to be more stable than the folded, whereas others yield precisely the opposite. Further, the solvation contribution to the free energy of association of helix pairs and to the disassociation of loops (connection between secondary structural elements in proteins) from the protein tertiary structures were computed for each of the eight ASP sets and discrepancies were evident among them.  相似文献   

2.
For systems involving highly and oppositely charged proteins, electrostatic forces dominate association and contribute to biomolecular complex stability. Using experimental or theoretical alanine-scanning mutagenesis, it is possible to elucidate the contribution of individual ionizable amino acids to protein association. We evaluated our electrostatic free energy calculations by comparing calculated and experimental data for alanine mutants of five protein complexes. We calculated Poisson-Boltzmann electrostatic free energies based on a thermodynamic cycle, which incorporates association in a reference (Coulombic) and solvated (solution) state, as well as solvation effects. We observe that Coulombic and solvation free energy values correlate with experimental data in highly and oppositely charged systems, but not in systems comprised of similarly charged proteins. We also observe that correlation between solution and experimental free energies is dependent on dielectric coefficient selection for the protein interior. Free energy correlations improve as protein dielectric coefficient increases, suggesting that the protein interior experiences moderate dielectric screening, despite being shielded from solvent. We propose that higher dielectric coefficients may be necessary to more accurately predict protein-protein association. Additionally, our data suggest that Coulombic potential calculations alone may be sufficient to predict relative binding of protein mutants.  相似文献   

3.
Atomic solvation parameters (ASPs) are widely used to estimate the solvation contribution to the thermodynamic stability of proteins as well as the free energy of association for protein-ligand complexes. In view of discrepancies in the results of free energies of solvation of folding for various proteins obtained using different atomic solvation parameter sets, systematic studies have been carried out for the calculation of accessible surface area and the changes in free energy of solvation of folding (deltaG(s,f)) for mutants of lysozyme T4 where threonine 157 is replaced by amino acids: cysteine, aspartate, glutamate, phenylalanine, glycine, histidine, isoleucine, leucine, asparagine, arginine, serine and valine. The deviations of the calculated results from the experimental results are discussed to highlight the discrepancies in the atomic solvation parameter sets and possible reasons for them. The results are also discussed to throw light on the effect of chain free energy and hydrogen bonding on the stability of mutants. The octanol to water-based ASP sets 'Sch1' and 'EM' perform better than the vacuum to water-based ASP sets. The vacuum to water-based ASP sets 'Sch3' and 'WE' can be used to predict the stability of mutants if a proper method to calculate the hydrogen bond contribution to overall stability is in place.  相似文献   

4.
Park H  Lee S 《Biophysical chemistry》2005,114(2-3):191-197
Comparative protein structure modeling and free energy perturbation simulation have been applied in a consecutive manner to investigate the mutation-induced stabilization of membrane proteins (MPs) in aqueous solution without knowledge of their three-dimensional structures. The calculated difference in protein solvation free energy between the wild type and a mutant compares well with their relative thermodynamic stabilities in solution. For monomeric MPs, a mutant reveals a higher stability than the wild type if the calculated solvation free energy indicates a favorable change. On the contrary, for oligomeric MPs the stability of a mutant increases as the solvation free energy of a mutated monomer becomes less favorable, indicating that the oligomeric MP mutant would be stabilized in solution due to the reduced desolvation cost for oligomerization. The present computational strategy is expected to find its way as a useful tool for assessing the relative stability of a mutant MP with respect to its wild type in solution.  相似文献   

5.
A theoretical analysis is made of the decomposition into contributions from individual interactions of the free energy calculated by thermodynamic integration. It is demonstrated that such a decomposition, often referred to as “component analysis,” is meaningful, even though it is a function of the integration path. Moreover, it is shown that the path dependence can be used to determine the relation of the contribution of a given interaction to the state of the system. To illustrate these conclusions, a simple transformation(Cl? to Br? in aqueous solution) is analyzed by use of the Reference Interaction Site Model-Hypernetted Chain Closure integral equation approach; it avoids the calculational difficulties of macromolecular simulation while retaining their conceptual complexity. The difference in the solvation free energy between chloride and bromide is calculated, and the contributions of the Lennard-Jones and electrostatic terms in the potential function are analyzed by the use of suitably chosen integration paths. The model is also used to examine the path dependence of individual contributions to the double free energy differences (ΔΔG or ΔΔA) that are often employed in free energy simulations of biological systems. The alchemical path, as contrasted with the experimental path, is shown to be appropriate for interpreting the effects of mutations on ligand binding and protein stability. The formulation is used to obtain a better understanding of the success of the Poisson-Boltzmann continuum approach for determining the solvation properties of polar and ionic systems. © 1994 Wiley-Liss, Inc.  相似文献   

6.
Two-dimensional free energy surfaces for four rotamers of cis-enol malonaldehyde in water have been investigated by umbrella sampling molecular dynamics (MD) calculations. Biasing potential used in the umbrella sampling calculation was adopted to be the minus of conformational free energy preliminary obtained by the thermodynamic integration MD calculations for the rigid malonaldehyde whose stretching and bending were all fixed. The calculated free energy surface shows that, in water, a rotamer that has an intramolecular hydrogen bond is most stable among the rotamers. This is the same as that in vacuum, while order of relative stability of the other three rotamers is different in water and in vacuum. Inclusion of intramolecular vibrations changed the free energy surface little, i.e. at most 2.6 kJ/mol, which is much smaller than the solvation free energy. Free energy barriers from the most stable intramolecular hydrogen bonded rotamer to the others are lowered by hydration but they are still very high, >50 kJ/mol, such that the malonaldehyde molecule spends most of its time in water taking this conformation. Thus, reaction coordinate for intramolecular proton transfer reaction in water may be constructed assuming this rotamer.  相似文献   

7.
Monte Carlo simulations of molecular recognition at the consensus binding site of the constant fragment (Fc) of human immunoglobulin G (Ig) protein have been performed to analyze structural and thermodynamic aspects of binding for the 13-residue cyclic peptide DCAWHLGELVWCT. The energy landscape analysis of a hot spot at the intermolecular interface using alanine scanning and equilibrium-simulated tempering dynamics with the simplified, knowledge-based energy function has enabled the role of the protein hot spot residues in providing the thermodynamic stability of the native structure to be determined. We have found that hydrophobic interactions between the peptide and the Met-252, Ile-253, His-433, and His-435 protein residues are critical to guarantee the thermodynamic stability of the crystallographic binding mode of the complex. Binding free energy calculations, using a molecular mechanics force field and a solvation energy model, combined with alanine scanning have been conducted to determine the energetic contribution of the protein hot spot residues in binding affinity. The conserved Asn-434, Ser-254, and Tyr-436 protein residues contribute significantly to the binding affinity of the peptide-protein complex, serving as an energetic hot spot at the intermolecular interface. The results suggest that evolutionary conserved hot spot protein residues at the intermolecular interface may be partitioned in fulfilling thermodynamic stability of the native binding mode and contributing to the binding affinity of the complex.  相似文献   

8.
An essential requirement for theoretical protein structure prediction is an energy function that can discriminate the native from non-native protein conformations. To date most of the energy functions used for this purpose have been extracted from a statistical analysis of the protein structure database, without explicit reference to the physical interactions responsible for protein stability. The use of the statistical functions has been supported by the widespread belief that they are superior for such discrimination to physics-based energy functions. An effective energy function which combined the CHARMM vacuum potential with a Gaussian model for the solvation free energy is tested for its ability to discriminate the native structure of a protein from misfolded conformations; the results are compared with those obtained with the vacuum CHARMM potential. The test is performed on several sets of misfolded structures prepared by others, including sets of about 650 good decoys for six proteins, as well as on misfolded structures of chymotrypsin inhibitor 2. The vacuum CHARMM potential is successful in most cases when energy minimized conformations are considered, but fails when applied to structures relaxed by molecular dynamics. With the effective energy function the native state is always more stable than grossly misfolded conformations both in energy minimized and molecular dynamics-relaxed structures. The present results suggest that molecular mechanics (physics-based) energy functions, complemented by a simple model for the solvation free energy, should be tested for use in the inverse folding problem, and supports their use in studies of the effective energy surface of proteins in solution. Moreover, the study suggests that the belief in the superiority of statistical functions for these purposes may be ill founded.  相似文献   

9.
Pitera JW  Kollman PA 《Proteins》2000,41(3):385-397
We have extended and applied a multicoordinate free energy method, chemical Monte Carlo/Molecular Dynamics (CMC/MD), to calculate the relative free energies of different amino acid side-chains. CMC/MD allows the calculation of the relative free energies for many chemical species from a single free energy calculation. We have previously shown its utility in host:guest chemistry (Pitera and Kollman, J Am Chem Soc 1998;120:7557-7567)1 and ligand design (Eriksson et al., J Med Chem 1999;42:868-881)2, and here demonstrate its utility in calculations of amino acid properties and protein stability. We first study the relative solvation free energies of N-methylated and acetylated alanine, valine, and serine amino acids. With careful inclusion of rotameric states, internal energies, and both the solution and vacuum states of the calculation, we calculate relative solvation free energies in good agreement with thermodynamic integration (TI) calculations. Interestingly, we find that a significant amount of the unfavorable solvation of valine seen in prior work (Sun et al., J Am Chem Soc 1992;114:6798-6801)3 is caused by restraining the backbone in an extended conformation. In contrast, the solvation free energy of serine is calculated to be less favorable than expected from experiment, due to the formation of a favorable intramolecular hydrogen bond in the vacuum state. These monomer calculations emphasize the need to accurately consider all significant conformations of flexible molecules in free energy calculations. This development of the CMC/MD method paves the way for computations of protein stability analogous to the biochemical technique of "exhaustive mutagenesis." We have carried out just such a calculation at position 133 of T4 lysozyme, where we use CMC/MD to calculate the relative stability of eight different side-chain mutants in a single free energy calculation. Our T4 calculations show good agreement with the prior free energy calculations of Veenstra et al. (Prot Eng 1997;10:789-807)4 and excellent agreement with the experiments of Mendel et al. (Science 1992;256:1798-1802).  相似文献   

10.
11.
We develop a protocol for estimating the free energy difference between different conformations of the same polypeptide chain. The conformational free energy evaluation combines the CHARMM force field with a continuum treatment of the solvent. In almost all cases studied, experimentally determined structures are predicted to be more stable than misfolded "decoys." This is due in part to the fact that the Coulomb energy of the native protein is consistently lower than that of the decoys. The solvation free energy generally favors the decoys, although the total electrostatic free energy (sum of Coulomb and solvation terms) favors the native structure. The behavior of the solvation free energy is somewhat counterintuitive and, surprisingly, is not correlated with differences in the burial of polar area between native structures and decoys. Rather. the effect is due to a more favorable charge distribution in the native protein, which, as is discussed, will tend to decrease its interaction with the solvent. Our results thus suggest, in keeping with a number of recent studies, that electrostatic interactions may play an important role in determining the native topology of a folded protein. On this basis, a simplified scoring function is derived that combines a Coulomb term with a hydrophobic contact term. This function performs as well as the more complete free energy evaluation in distinguishing the native structure from misfolded decoys. Its computational efficiency suggests that it can be used in protein structure prediction applications, and that it provides a physically well-defined alternative to statistically derived scoring functions.  相似文献   

12.
Alfred Holtzer 《Biopolymers》1994,34(3):315-320
The development of Flory–Huggins (FH) theory is reviewed, particularly with regard to the molecular significance of the interaction parameter that scales the contact interaction of solute and solvent. The chemical potential given by FH theory for an “idealute” solute is then compared with that provided by a more general, statistical thermodynamic approach. It is found that the FH contact term does not directly correspond to the solvation free energy. The significance of this result for the interpretation of free energies of transfer of a solute from one solvent to another is examined. It is shown that neither the earlier recommended standard free energy change for the process (using the infinitely dilute reference state, mole fraction units) nor the recently recommended FH-corrected standard free energy change provides the solvation energy desired. Instead, the standard free energy using the infinitely dilute reference state and molarity units, as long advocated by Ben-Naim, provides the desired solvation free energy. Correction of extant values, based on mole fraction units, is easily made. However, application of such results to problems of protein folding is not straightforward. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
The present article reports long timescale (200 ns) simulations of four beta-D-hexopyranoses (beta-D-glucose, beta-D-mannose, beta-D-galactose and beta-D-talose) using explicit-solvent (water) molecular dynamics and vacuum stochastic dynamics simulations together with the GROMOS 45A4 force field. Free-energy and solvation free-energy differences between the four compounds are also calculated using thermodynamic integration. Along with previous experimental findings, the present results suggest that the formation of intramolecular hydrogen-bonds in water is an 'opportunistic' consequence of the close proximity of hydrogen-bonding groups, rather than a major conformational driving force promoting this proximity. In particular, the conformational preferences of the hydroxymethyl group in aqueous environment appear to be dominated by 1,3-syn-diaxial repulsion, with gauche and solvation effects being secondary, and intramolecular hydrogen-bonding essentially negligible. The rotational dynamics of the exocyclic hydroxyl groups, which cannot be probed experimentally, is found to be rapid (10-100 ps timescale) and correlated (flip-flop hydrogen-bonds interconverting preferentially through an asynchronous disrotatory pathway). Structured solvent environments are observed between the ring and lactol oxygen atoms, as well as between the 4-OH and hydroxymethyl groups. The calculated stability differences between the four compounds are dominated by intramolecular effects, while the corresponding differences in solvation free energies are small. An inversion of the stereochemistry at either C(2) or C(4) from equatorial to axial is associated with a raise in free energy. Finally, the particularly low hydrophilicity of beta-D-talose appears to be caused by the formation of a high-occurrence hydrogen-bonded bridge between the 1,3-syn-diaxial 2-OH and 4-OH groups. Overall, good agreement is found with available experimental and theoretical data on the structural, dynamical, solvation and energetic properties of these compounds. However, this detailed comparison also reveals some discrepancies, suggesting the need (and providing a solid basis) for further refinement.  相似文献   

14.
Effects of hydrated water on protein unfolding   总被引:5,自引:0,他引:5  
The conformational stability of a protein in aqueous solution is described in terms of the thermodynamic properties such as unfolding Gibbs free energy, which is the difference in the free energy (Gibbs function) between the native and random conformations in solution. The properties are composed of two contributions, one from enthalpy due to intramolecular interactions among constituent atoms and chain entropy of the backbone and side chains, and the other from the hydrated water around a protein molecule. The hydration free energy and enthalpy at a given temperature for a protein of known three-dimensional structure can be calculated from the accessible surface areas of constituent atoms according to a method developed recently. Since the hydration free energy and enthalpy for random conformations are computed from those for an extended conformation, the thermodynamic properties of unfolding are evaluated quantitatively. The evaluated hydration properties for proteins of known transition temperature (Tm) and unfolding enthalpy (delta Hm) show an approximately linear dependence on the number of constituent heavy atoms. Since the unfolding free energy is zero at Tm, the enthalpy originating from interatomic interactions of a polypeptide chain and the chain entropy are evaluated from an experimental value of delta Hm and computed properties due to the hydrated water around the molecule at Tm. The chain enthalpy and entropy thus estimated are largely compensated by the hydration enthalpy and entropy, respectively, making the unfolding free energy and enthalpy relatively small. The computed temperature dependences of the unfolding free energy and enthalpy for RNase A, T4 lysozyme, and myoglobin showed a good agreement with the experimental ones.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Computer simulations utilizing a classical force field have been widely used to study biomolecular properties. It is important to identify the key force field parameters or structural groups controlling the molecular properties. In the present paper the sensitivity analysis method is applied to study how various partial charges and solvation parameters affect the equilibrium structure and free energy of avian pancreatic polypeptide (APP). The general shape of APP is characterized by its three principal moments of inertia. A molecular dynamics simulation of APP was carried out with the OPLS/Amber force field and a continuum model of solvation energy. The analysis pinpoints the parameters which have the largest (or smallest) impact on the protein equilibrium structure (i.e., the moments of inertia) or free energy. A display of the protein with its atoms colored according to their sensitivities illustrates the patterns of the interactions responsible for the protein stability. The results suggest that the electrostatic interactions play a more dominant role in protein stability than the part of the solvation effect modeled by the atomic solvation parameters. © 1995 Wiley-Liss, Inc.  相似文献   

16.
The group-additive decomposition of the unfolding free energy of a protein in an osmolyte solution relative to that in water poses a fundamental paradox: whereas the decomposition describes the experimental results rather well, theory suggests that a group-additive decomposition of free energies is, in general, not valid. In a step toward resolving this paradox, here we study the peptide-group transfer free energy. We calculate the vacuum-to-solvent (solvation) free energies of (Gly)n and cyclic diglycine (cGG) and analyze the data according to experimental protocol. The solvation free energies of (Gly)n are linear in n, suggesting group additivity. However, the slope interpreted as the free energy of a peptide unit differs from that for cGG scaled by a factor of half, emphasizing the context dependence of solvation. However, the water-to-osmolyte transfer free energies of the peptide unit are relatively independent of the peptide model, as observed experimentally. To understand these observations, a way to assess the contribution to the solvation free energy of solvent-mediated correlation between distinct groups is developed. We show that linearity of solvation free energy with n is a consequence of uniformity of the correlation contributions, with apparent group-additive behavior in the water-to-osmolyte transfer arising due to their cancellation. Implications for inferring molecular mechanisms of solvent effects on protein stability on the basis of the group-additive transfer model are suggested.  相似文献   

17.
The group-additive decomposition of the unfolding free energy of a protein in an osmolyte solution relative to that in water poses a fundamental paradox: whereas the decomposition describes the experimental results rather well, theory suggests that a group-additive decomposition of free energies is, in general, not valid. In a step toward resolving this paradox, here we study the peptide-group transfer free energy. We calculate the vacuum-to-solvent (solvation) free energies of (Gly)n and cyclic diglycine (cGG) and analyze the data according to experimental protocol. The solvation free energies of (Gly)n are linear in n, suggesting group additivity. However, the slope interpreted as the free energy of a peptide unit differs from that for cGG scaled by a factor of half, emphasizing the context dependence of solvation. However, the water-to-osmolyte transfer free energies of the peptide unit are relatively independent of the peptide model, as observed experimentally. To understand these observations, a way to assess the contribution to the solvation free energy of solvent-mediated correlation between distinct groups is developed. We show that linearity of solvation free energy with n is a consequence of uniformity of the correlation contributions, with apparent group-additive behavior in the water-to-osmolyte transfer arising due to their cancellation. Implications for inferring molecular mechanisms of solvent effects on protein stability on the basis of the group-additive transfer model are suggested.  相似文献   

18.
19.
The Thr29 residue in the hydrophobic core of goat alpha-lactalbumin (alpha-LA) was substituted with Val (Thr29Val) and Ile (Thr29Ile) to investigate the contribution of Thr29 to the thermodynamic stability of the protein. We carried out protein stability measurements, X-ray crystallographic analyses, and free energy calculations based on molecular dynamics simulation. The equilibrium unfolding transitions induced by guanidine hydrochloride demonstrated that the Thr29Val and Thr29Ile mutants were, respectively, 1.9 and 3.2 kcal/mol more stable than the wild-type protein (WT). The overall structures of the mutants were almost identical to that of WT, in spite of the disruption of the hydrogen bonding between the side-chain O-H group of Thr29 and the main-chain C=O group of Glu25. To analyze the stabilization mechanism of the mutants, we performed free energy calculations. The calculated free energy differences were in good agreement with the experimental values. The stabilization of the mutants was mainly caused by solvation loss in the denatured state. Furthermore, the O-H group of Thr29 favorably interacts with the C=O group of Glu25 to form hydrogen bonds and, simultaneously, unfavorably interacts electrostatically with the main-chain C=O group of Thr29. The difference in the free energy profile of the unfolding path between WT and the Thr29Ile mutant is discussed in light of our experimental and theoretical results.  相似文献   

20.
Auton M  Bolen DW  Rösgen J 《Proteins》2008,73(4):802-813
Protein stability and solubility depend strongly on the presence of osmolytes, because of the protein preference to be solvated by either water or osmolyte. It has traditionally been assumed that only this relative preference can be measured, and that the individual solvation contributions of water and osmolyte are inaccessible. However, it is possible to determine hydration and osmolyte solvation (osmolation) separately using Kirkwood-Buff theory, and this fact has recently been utilized by several researchers. Here, we provide a thermodynamic assessment of how each surface group on proteins contributes to the overall hydration and osmolation. Our analysis is based on transfer free energy measurements with model-compounds that were previously demonstrated to allow for a very successful prediction of osmolyte-dependent protein stability. When combined with Kirkwood-Buff theory, the Transfer Model provides a space-resolved solvation pattern of the peptide unit, amino acids, and the folding/unfolding equilibrium of proteins in the presence of osmolytes. We find that the major solvation effects on protein side-chains originate from the osmolytes, and that the hydration mostly depends on the size of the side-chain. The peptide backbone unit displays a much more variable hydration in the different osmolyte solutions. Interestingly, the presence of sucrose leads to simultaneous accumulation of both the sugar and water in the vicinity of peptide groups, resulting from a saccharide accumulation that is less than the accumulation of water, a net preferential exclusion. Only the denaturing osmolyte, urea, obeys the classical solvent exchange mechanism in which the preferential interaction with the peptide unit excludes water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号