共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
受生物启发特殊浸润表面的设计和制备 总被引:2,自引:0,他引:2
浸润性是固体表面的重要特征之一,超亲水、超疏水、超亲油、超疏油是固体表面四个独特的浸润性质。自然界中一些生物体具有的特殊微米/纳米结构赋予了其特殊的表面性能,如荷叶的自清洁性、壁虎脚的高黏附性等。从自然出发,由自然获得启示,模仿生物的结构和功能,我们设计和制备了一系列具有特殊浸润性的表面;并通过动态调控表面的化学组成和几何结构,制备了浸润性在外场刺激下可发生可逆转变的智能表面。将表面自由能或形貌在外界刺激(如光、电、热)下可发生可逆改变的刺激响应性材料接枝到粗糙表面上,实现了表面浸润性在超亲水和超疏水之间的可逆转变。 相似文献
3.
Controlling accumulations of unwanted biofilms requires an understanding of the mechanisms that organisms use to interact with submerged substrata. While the substratum properties influencing biofilm formation are well studied, those that may lead to cellular or biofilm detachment are not. Surface-grafted stimuli-responsive polymers, such as poly (N-isopropylacrylamide) (PNIPAAm) release attached cells upon induction of environmentally-triggered phase changes. Altering the physicochemical characteristics of such polymeric systems for systematically studying release, however, can alter the phase transition. The physico-chemical changes of thin films of PNIPAAm grafted from initiator-modified self-assembled monolayers (SAMs) of ω-substituted alkanethiolates on gold can be altered by changing the composition of the underlying SAM, without affecting the overlying polymer. This work demonstrates that the ability to tune such changes in substratum physico-chemistry allows systematic study of attachment and release of bacteria over a large range of water contact angles. Such surfaces show great promise for studying a variety of interactions at the biointerface. Understanding of the source of this tunability will require further studies into the heterogeneity of such films and further investigation of interactions beyond those of water wettability. 相似文献
4.
The effect of humidity on the film stability of Bovine Lipid Extract Surfactant (BLES) is studied using the captive bubble method. It is found that adsorbed BLES films show distinctly different stability patterns at two extreme relative humidities (RHs), i.e., bubbles formed by ambient air and by air prehumidified to 100% RH at 37 °C. The differences are illustrated by the ability to maintain low surface tensions at various compression ratios, the behavior of bubble clicks, and film compressibility. These results suggest that 100% RH at 37 °C tends to destabilize the BLES films. In turn, the experimental results indicate that the rapidly adsorbed BLES film on a captive bubble presents a barrier to water transport that retards full humidification of the bubble when ambient air is used for bubble formation. These findings necessitate careful evaluation and maintenance of environmental humidity for all in vitro assessment of lung surfactants. It is also found that the stability of adsorbed bovine natural lung surfactant (NLS) films is not as sensitive as BLES films to high humidity. This may indicate a physiological function of SP-A and/or cholesterol, which are absent in BLES, in maintaining the extraordinary film stability in vivo. 相似文献
5.
Zuo YY Acosta E Policova Z Cox PN Hair ML Neumann AW 《Biochimica et biophysica acta》2006,1758(10):1609-1620
The effect of humidity on the film stability of Bovine Lipid Extract Surfactant (BLES) is studied using the captive bubble method. It is found that adsorbed BLES films show distinctly different stability patterns at two extreme relative humidities (RHs), i.e., bubbles formed by ambient air and by air prehumidified to 100% RH at 37 degrees C. The differences are illustrated by the ability to maintain low surface tensions at various compression ratios, the behavior of bubble clicks, and film compressibility. These results suggest that 100% RH at 37 degrees C tends to destabilize the BLES films. In turn, the experimental results indicate that the rapidly adsorbed BLES film on a captive bubble presents a barrier to water transport that retards full humidification of the bubble when ambient air is used for bubble formation. These findings necessitate careful evaluation and maintenance of environmental humidity for all in vitro assessment of lung surfactants. It is also found that the stability of adsorbed bovine natural lung surfactant (NLS) films is not as sensitive as BLES films to high humidity. This may indicate a physiological function of SP-A and/or cholesterol, which are absent in BLES, in maintaining the extraordinary film stability in vivo. 相似文献
6.
Structure and reactivity of adsorbed fibronectin films on mica 总被引:1,自引:0,他引:1
Understanding the interactions of adsorbed fibronectin (Fn) with other biomolecules is important for many biomedical applications. Fn is found in almost all body fluids, in the extracellular matrix, and plays a fundamental role in many biological processes. This study found that the structure (conformation, orientation) and reactivity of Fn adsorbed onto mica is dependent on the Fn surface concentration. Atomic force microscopy and x-ray photoelectron spectroscopy were used to determine the surface coverage of adsorbed Fn from isolated molecules at low surface coverage to full monolayers at high surface coverage. Both methods showed that the thickness of Fn film continued to increase after the mica surface was completely covered, consistent with Fn adsorbed in a more upright conformation at the highest surface-Fn concentrations. Time-of-flight secondary ion mass spectrometry showed that relative intensities of both sulfur-containing (cystine, methionine) and hydrophobic (glycine, leucine/isoleucine) amino acids varied with changing Fn surface coverage, indicating that the conformation of adsorbed Fn depended on surface coverage. Single-molecule force spectroscopy with collagen-related peptides immobilized onto the atomic force microscope tip showed that the specific interaction force between the peptide and Fn increases with increasing Fn surface coverage. 相似文献
7.
Stachurska A Kowalczyńska HM 《Folia histochemica et cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society》2011,49(4):706-718
The ability of cancer cells to invade neighboring tissues is crucial for cell dissemination and tumor metastasis. It is generally assumed that cell adhesion to extracellular matrix proteins is an important stage of cancer progression. Hence, adhesion of cancer cells under in vitro conditions to proteins adsorbed on a substratum surface has been studied to provide a better understanding of cell-protein interaction mechanisms. A protein, adsorbed in an appropriate conformation on a substratum surface, creates a biologically active layer that regulates such cell functions as adhesion, spreading, proliferation and migration. In our study, we examined the interaction of PC-3 cells under in vitro conditions with fibronectin adsorbed on sulfonated polystyrene surfaces of a defined chemical composition and topography. We investigated cell adhesion to fibronectin and cell spreading. Using automatic, sequential microscopic image registration, we are the first to present observations of the dynamics of PC-3 cell spreading and the cell shape during this process. Our results show that cell adhesion and the shape of spreading cells strongly depend on the time interaction with fibronectin. The analysis of images of cytoskeletal protein distribution in the cell region near the cell-substratum interface revealed that induction of a signal cascade took place, which led to the reorganization of the cytoskeletal proteins and the activation of focal adhesion kinase (FAK). 相似文献
8.
Two-dimensional close packing of purified bovine rhodopsin, made by the Langmuir-Blodgett technique, was characterized by small angle x-ray scattering and nanogravimetric measurements. The area occupied by a molecule of rhodopsin in the film was approximately 1100 Angstrum2 and the periodicity of the layers resulted in 59 Angstrum. The circular dichroism measurements showed that bleached rhodopsin in Langmuir-Blodgett film had high thermal stability, in fact, reaching a temperature of 150 degrees C without a loss of the secondary structure. Moreover, when the film was made up in the dark, rhodopsin maintained its stability up to at least 200 degrees C and its characteristic absorbance peak at 500 nm up to about 90 degrees C. 相似文献
9.
Kan Kato Koji Morita Isao Hirata Kazuya Doi Takayasu Kubo Koichi Kato Kazuhiro Tsuga 《In vitro cellular & developmental biology. Animal》2018,54(6):449-457
Inorganic polyphosphate has been expected to accelerate bone regeneration. However, there are limited evidences to prove that polyphosphate adsorbed on the surface of a hydroxyapatite plate enhances calcification of cultured osteoblasts. In this study, we examined the effect of polyphosphate adsorbed onto the surface of a hydroxyapatite plate on the attachment, proliferation, differentiation, and calcification of osteoblasts. After hydroxyapatite plates were soaked in solutions of polyphosphate, the plate surfaces were analyzed by scanning electron microscopy and toluidine blue staining to confirm adsorption of polyphosphate. The hydroxyapatite plates were further subjected to the measurements of surface roughness, water contact angle, and the binding capacity of calcium ions. Cell culture experiments were carried out using MC3T3-E1 pre-osteoblastic cells. It was found that soaking a hydroxyapatite plate in a polyphosphate solution gave rise to an increase in surface roughness and reduction in water contact angle in a concentration-dependent manner, suggesting the adsorption of polyphosphate onto the surface of a hydroxyapatite plate. It was further observed that surface-adsorbed polyphosphate exhibited an inhibitory effect on cell adhesion and proliferation. In contrast, cell differentiation was promoted on hydroxyapatite plates with adsorbed polyphosphate, when assessed from expression of differentiation marker genes including alkaline phosphatase, osteopontin, and osteocalcin. In addition, calcification of the culture was enhanced on hydroxyapatite plates with relatively low density of adsorbed polyphosphate. Our results as a whole provided an evidence to show that there is a narrow window with regard to the surface density of adsorbed polyphosphate for the enhancement of osteoblast calcification. 相似文献
10.
11.
The adsorption of proteins from human whole saliva (HWS) onto silica and hydroxyapatite surfaces (HA) was followed by quartz crystal microbalance with dissipation (QCM-D) and ellipsometry. The influence of different surface properties and adsorption media (water and PBS) on the adsorption from saliva was studied. The viscoelastic properties of the salivary films formed on the solid surfaces were estimated by the use of the Voigt-based viscoelastic film model. Furthermore, the efficiency of SDS and delmopinol to elute the adsorbed salivary film from the surfaces was investigated at different surfactant concentrations. A biphasic kinetic regime for the adsorption from saliva on the silica and HA surfaces was observed, indicating the formation of a rigidly coupled first layer corresponding to an initial adsorption of small proteins and a more loosely bound second layer. The results further showed a higher adsorption from HWS onto the HA surfaces compared to the silica surfaces in both adsorption media (PBS and water). The adsorption in PBS led to higher adsorbed amounts on both surfaces as compared to water. SDS was found to be more efficient in removing the salivary film from both surfaces than delmopinol. The salivary film was found to be less tightly bound onto the silica surfaces since more of the salivary film could be removed with both SDS and delmopinol compared to that from the HA surface. When adsorption took place from PBS the salivary layer formed at both surfaces seemed to have a similar structure, with a high energy dissipation implying that a softer salivary layer is built up in PBS as opposed to that in water. Furthermore, the salivary layers adsorbed from water solutions onto the HA were found to be softer than those on silica. 相似文献
12.
《Applied and environmental microbiology》1983,45(6):1963
[This corrects the article on p. 811 in vol. 45.]. 相似文献
13.
DNA films are promising materials for diverse applications, including sensing, diagnostics, and drug/gene delivery. However, the ability to tune the stability of DNA films remains a crucial aspect for such applications. Herein, we examine the role of oligonucleotide length on the formation, and salt and thermal stability, of DNA multilayer films using oligonucleotides of homopolymeric diblocks (polyAG and polyTC), with each block (A, G, T, or C) ranging from 5 to 30 bases (10-, 20-, 30-, 40-, and 60-mer). Using a combination of quartz crystal microgravimetry, dual polarization interferometry, and flow cytometry, we demonstrate that at least 10 bases per hybridizing block in the DNA diblocks (that is, 20-mer) are required for successful hybridization and, hence, DNA multilayer film formation. Films assembled using longer oligonucleotide blocks were more stable in low salt conditions, with the DNA multilayer films assembled from the 60-mer oligonucleotides remaining intact in solutions of about 25 mM NaCl. A systematic increase in film melting temperature ( T m) was observed for the DNA multilayer films (assembled on colloids) with increasing oligonucleotide length, ranging from 38.5 degrees C for the 20-mer films to 53 degrees C for the 60-mer films. Further, an alternating trend in T m of the DNA multilayer films was observed with layer number (AG or TC); DNA multilayer films terminated with an AG layer exhibited a higher T m (44-49 degrees C) than films with an outermost TC layer (ca. 38 degrees C), suggesting a rearrangement of the film structure upon hybridization of the outermost layer. This work shows that the stability of DNA multilayer films can be tuned by varying the length of the oligonucleotide building blocks, thus providing a versatile means to tailor the salt and thermal stability of DNA films, which is necessary for the application of such films. 相似文献
14.
Influence of substratum hydration and adsorbed macromolecules on bacterial attachment to surfaces 总被引:1,自引:0,他引:1
The attachment of Pseudomonas fluorescens and an Acinetobacter sp. to hydrogel and polystyrene surfaces was investigated to evaluate the influence of adsorbed water and macromolecules on adhesion. With both organisms, there was a decrease in attachment numbers with increasing water content of the hydrogels. There was also a decrease in attachment with a decrease in water contact angle on untreated, tissue culture and sulfonated polystyrene surfaces; however, the attachment numbers were higher than would be expected on the basis of the hydrogel data. With P. fluorescens, attachment to untreated and tissue culture polystyrene was inhibited by bovine serum albumin, Escherichia coli lipopolysaccharide, and the supernatant from spent medium, both when the conditioning substances were added to the suspension of attaching cells and when they were preadsorbed onto the surfaces. Dextran inhibited attachment only when added to the bacterial suspension. Supernatants from centrifuged natural freshwater samples had no effect. Thus, hydration of a surface and the adsorption of macromolecules can reduce bacterial attachment; however, additional factors relating to the chemical composition of the substratum and polymeric stabilization of suspended cells can affect the adhesion interaction and resultant numbers of attached cells. 相似文献
15.
James W. Mihm William C. Banta George I. Loeb 《Journal of experimental marine biology and ecology》1981,54(2):167-179
Marine primary fouling films, which consist of molecular organic and microbial components, have been reported to facilitate colonization of immersed surfaces by marine fouling organisms. Larvae of the cosmopolitan fouling bryozoan Bugula neritina (Linnaeus) were offered various substrata for attachment and metamorphosis. The materials were offered (a) after detergent washing, (b) after sorption of dissolved organic molecular films, and (c) after formation of primary films consisting of both microbial and adsorbed organic material. Wettability of the substrata by sea water was determined by contact angle measurements for each substratum. On washed substrata, attachment was favored with contact angles greater than ≈45° (cos contact angle <0.7). Adsorbed surface films had no effect on the low settlement of larvae on glass and high settlement on plastics. Microbial primary films, however, made glass attractive and plastics unattractive. These settlement preference changes did not correlate with the changes in wettability observed on these substrata. Dispersion of larvae over the settlement surface was random except on wettable surfaces coated with bacterial films, where settlement was strongly clustered (contagious). 相似文献
16.
17.
Influence of substrate wettability on the attachment of marine bacteria to various surfaces 总被引:23,自引:14,他引:9 下载免费PDF全文
The effect of the initial substrate surface condition, as indicated by the critical surface tension for wetting, on the rate of attachment of marine bacteria to a variety of solid surfaces has been measured. The techniques used to determine the number of bacteria attached per unit surface area were a lipopolysaccharide test utilizing Limulus lysate and direct examination of the surface by scanning electron microscopy. The results obtained by the two techniques are compared and their significance to the control of microbiological slime film formation (microfouling) is discussed. 相似文献
18.
Adsorption of globular proteins on locally planar surfaces: models for the effect of excluded surface area and aggregation of adsorbed protein on adsorption equilibria. 总被引:3,自引:2,他引:1 下载免费PDF全文
Equilibrium statistical-thermodynamic models are presented for the surface adsorption of proteins modeled as regular convex hard particles. The adsorbed phase is treated as a two-dimensional fluid, and the chemical potential of adsorbed protein is obtained from scaled particle theory. Adsorption isotherms are calculated for nonassociating and self-associating adsorbing proteins. Area exclusion broadens adsorption isotherms relative to the Langmuir isotherm (negative cooperativity), whereas self-association steepens them (positive cooperativity). The calculated isotherm for adsorption of hard spheres using scaled particle theory for hard discs agrees well with that calculated from the hard disc virial expansion. As the cross section of the adsorbing protein in the plane of the surface becomes less discoidal, the apparent negative cooperativity manifested in the isotherm becomes more pronounced. The model is extended to the case of simultaneous adsorption of a tracer protein at low saturation and a competitor protein with a different size and/or shape at arbitrary fractional saturation. Area exclusion by competitor for tracer (and vice versa) is shown to substantially enhance the displacement of tracer by competitor and to qualitatively invalidate the standard interpretation of ligand competition experiments, according to which the fractional displacement of tracer by competitor is equal to the fractional saturation by competitor. 相似文献
19.
《生物化学与生物物理学报:生物膜》2018,1860(12):2669-2680
Silicon semiconductors with a thin surface layer of silica were first modified with polyelectrolytes (polyethyleneimine, polystyrene sulfonate and poly(allylamine)) via a facile layer-by-layer deposition approach. Subsequently, lipid vesicles were added to the preformed polymeric cushion, resulting in the adsorption of intact vesicles or fusion and lipid bilayer formation. To study involved interactions we employed optical reflectometry, electrochemical impedance spectroscopy and fluorescent recovery after photobleaching. Three phospholipids with different charge of polar head groups, i.e. 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) were used to prepare vesicles with varying surface charge. We observed that only lipid vesicles composed from 1:1 (mole:mole) mixture of DOPC/DOPS have the ability to fuse onto an oppositely charged terminal layer of polyelectrolyte giving a lipid bilayer with a resistance of >100 kΩ. With optical reflectometry we found that the vesicle surface charge is directly related to the amount of mass adsorbed onto the surface. An interesting observation was that zwitterionic polar head groups of DOPC allow the adsorption on both positively and negatively charged surfaces. As found with fluorescent recovery after photobleaching, positively charged surface governed by the presence of poly(allylamine) as the terminal layer resulted in intact DOPC lipid vesicles adsorption whereas in the case of a negatively charged silica surface formation of lipid bilayers was observed, as expected from literature. 相似文献
20.
Influence of substratum hydration and adsorbed macromolecules on bacterial attachment to surfaces. 总被引:5,自引:3,他引:5 下载免费PDF全文
The attachment of Pseudomonas fluorescens and an Acinetobacter sp. to hydrogel and polystyrene surfaces was investigated to evaluate the influence of adsorbed water and macromolecules on adhesion. With both organisms, there was a decrease in attachment numbers with increasing water content of the hydrogels. There was also a decrease in attachment with a decrease in water contact angle on untreated, tissue culture and sulfonated polystyrene surfaces; however, the attachment numbers were higher than would be expected on the basis of the hydrogel data. With P. fluorescens, attachment to untreated and tissue culture polystyrene was inhibited by bovine serum albumin, Escherichia coli lipopolysaccharide, and the supernatant from spent medium, both when the conditioning substances were added to the suspension of attaching cells and when they were preadsorbed onto the surfaces. Dextran inhibited attachment only when added to the bacterial suspension. Supernatants from centrifuged natural freshwater samples had no effect. Thus, hydration of a surface and the adsorption of macromolecules can reduce bacterial attachment; however, additional factors relating to the chemical composition of the substratum and polymeric stabilization of suspended cells can affect the adhesion interaction and resultant numbers of attached cells. 相似文献