首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative DNA damage processing in nuclear and mitochondrial DNA   总被引:5,自引:0,他引:5  
Bohr VA  Dianov GL 《Biochimie》1999,81(1-2):155-160
Living organisms are constantly exposed to oxidative stress from environmental agents and from endogenous metabolic processes. The resulting oxidative modifications occur in proteins, lipids and DNA. Since proteins and lipids are readily degraded and resynthesized, the most significant consequence of the oxidative stress is thought to be the DNA modifications, which can become permanent via the formation of mutations and other types of genomic instability. Many different DNA base changes have been seen following some form of oxidative stress, and these lesions are widely considered as instigators for the development of cancer and are also implicated in the process of aging. Several studies have documented that oxidative DNA lesions accumulate with aging, and it appears that the major site of this accumulation is mitochondrial DNA rather than nuclear DNA. The DNA repair mechanisms involved in the removal of oxidative DNA lesions are much more complex than previously considered. They involve base excision repair (BER) pathways and nucleotide excision repair (NER) pathways, and there is currently a great deal of interest in clarification of the pathways and their interactions. We have used a number of different approaches to explore the mechanism of the repair processes, to examine the repair of different types of oxidative lesions and to measure different steps of the repair processes. Furthermore, we can measure the DNA damage processing in the nuclear DNA and separately, in the mitochondrial DNA. Contrary to widely held notions, mitochondria have efficient DNA repair of oxidative DNA damage.  相似文献   

2.
3.
Oxidative damage to DNA in mammalian chromatin.   总被引:18,自引:0,他引:18  
M Dizdaroglu 《Mutation research》1992,275(3-6):331-342
Efforts have been made to characterize and measure DNA modifications produced in mammalian chromatin in vitro and in vivo by a variety of free radical-producing systems. Methodologies incorporating the technique of gas chromatography/mass spectrometry have been used for this purpose. A number of products from all four DNA bases and several DNA-protein cross-links in isolated chromatin have been identified and quantitated. Product formation has been shown to depend on the free radical-producing system and the presence or absence of oxygen. A similar pattern of DNA modifications has also been observed in chromatin of cultured mammalian cells treated with ionizing radiation or H2O2 and in chromatin of organs of animals treated with carcinogenic metal salts.  相似文献   

4.
Oxidative damage to 5-methylcytosine in DNA.   总被引:1,自引:3,他引:1       下载免费PDF全文
Exposure of pyrimidines of DNA to ionizing radiation under aerobic conditions or oxidizing agents results in attack on the 5,6 double bond of the pyrimidine ring or on the exocyclic 5-methyl group. The primary product of oxidation of the 5,6 double bond of thymine is thymine glycol, while oxidation of the 5-methyl group yields 5-hydroxymethyluracil. Oxidation of the 5,6 double bond of cytosine yields cytosine glycol, which decomposes to 5-hydroxycytosine, 5-hydroxyuracil and uracil glycol, all of which are repaired in DNA by Escherichia coli endonuclease III. We now describe the products of oxidation of 5-methylcytosine in DNA. Poly(dG-[3H]dmC) was gamma-irradiated or oxidized with hydrogen peroxide in the presence of Fe3+ and ascorbic acid. The oxidized co-polymer was incubated with endonuclease III or 5-hydroxymethyluracil-DNA glycosylase, to determine whether repairable products were formed, or digested to 2'-deoxyribonucleosides, to determine the total complement of oxidative products. Oxidative attack on 5-methylcytosine resulted primarily in formation of thymine glycol. The radiogenic yield of thymine glycol in poly(dG-dmC) was the same as that in poly(dA-dT), demonstrating that 5-methylcytosine residues in DNA were equally susceptible to radiation-induced oxidation as were thymine residues.  相似文献   

5.
Cytosine arabinoside (AraC) is a nucleoside analog that produces significant neurotoxicity in cancer patients. The mechanism by which AraC causes neuronal death is a matter of some debate because the conventional understanding of AraC toxicity requires incorporation into newly synthesized DNA. Here we demonstrate that AraC-induced apoptosis of cultured cerebral cortical neurons is mediated by oxidative stress. AraC-induced cell death was reduced by treatment with several different free-radical scavengers (N-acetyl-L-cysteine, dipyridamole, uric acid, and vitamin E) and was increased following depletion of cellular glutathione stores. AraC induced the formation of reactive oxygen species in neurons as measured by an increase in the fluorescence of the dye 5-(6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate. AraC produced DNA single-strand breaks as measured by single-cell gel electrophoresis and the level of DNA strand breakage was reduced by treatment with the free radical scavengers. These data support a model in which AraC induces neuronal apoptosis by provoking the generation of reactive oxygen species, causing oxidative DNA damage and initiating the p53-dependent apoptotic program. These observations suggest the use of antioxidant therapies to reduce neurotoxicity in AraC chemotherapeutic regimens.  相似文献   

6.
Mitochondria contain their own genome, the integrity of which is required for normal cellular energy metabolism. Reactive oxygen species (ROS) produced by normal mitochondrial respiration can damage cellular macromolecules, including mitochondrial DNA (mtDNA), and have been implicated in degenerative diseases, cancer, and aging. We developed strategies to elevate mitochondrial oxidative stress by exposure to antimycin and H(2)O(2) or utilizing mutants lacking mitochondrial superoxide dismutase (sod2Delta). Experiments were conducted with strains compromised in mitochondrial base excision repair (ntg1Delta) and oxidative damage resistance (pif1Delta) in order to delineate the relationship between these pathways. We observed enhanced ROS production, resulting in a direct increase in oxidative mtDNA damage and mutagenesis. Repair-deficient mutants exposed to oxidative stress conditions exhibited profound genomic instability. Elimination of Ntg1p and Pif1p resulted in a synergistic corruption of respiratory competency upon exposure to antimycin and H(2)O(2). Mitochondrial genomic integrity was substantially compromised in ntg1Delta pif1Delta sod2Delta strains, since these cells exhibit a total loss of mtDNA. A stable respiration-defective strain, possessing a normal complement of mtDNA damage resistance pathways, exhibited a complete loss of mtDNA upon exposure to antimycin and H(2)O(2). This loss was preventable by Sod2p overexpression. These results provide direct evidence that oxidative mtDNA damage can be a major contributor to mitochondrial genomic instability and demonstrate cooperation of Ntg1p and Pif1p to resist the introduction of lesions into the mitochondrial genome.  相似文献   

7.
Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging   总被引:4,自引:0,他引:4  
A wide spectrum of alterations in mitochondria and mitochondrial DNA (mtDNA) with aging has been observed in animals and humans. These include (i) decline in mitochondrial respiratory function; (ii) increase in mitochondrial production of reactive oxygen species (ROS) and the extent of oxidative damage to DNA, proteins, and lipids; (iii) accumulation of point mutations and large-scale deletions of mtDNA; and (iv) enhanced apoptosis. Recent studies have provided abundant evidence to substantiate the importance of mitochondrial production of ROS in aging. On the other hand, somatic mtDNA mutations can cause premature aging without increasing ROS production. In this review, we focus on the roles that ROS play in the aging-associated decline of mitochondrial respiratory function, accumulation of mtDNA mutations, apoptosis, and alteration of gene expression profiles. Taking these findings together, we suggest that mitochondrial dysfunction, enhanced oxidative stress, subsequent accumulation of mtDNA mutations, altered expression of a few clusters of genes, and apoptosis are important contributors to human aging.  相似文献   

8.
Atrial fibrillation (AF) is the most common cause of arrhythmia and is an aging-related disease encountered in clinical practice. The electrophysiological remolding with Ca(2+) overloading and cellular structure changes were found in cardiomyocytes of AF patients. In previous studies, increased oxidative stress and oxidative damage was found in cardiomyocytes during the ischemia/reperfusion injury. Besides, mitochondrial DNA (mtDNA) deletion and mtDNA proliferation occur frequently in affected tissues of patients with certain degenerative diseases and during aging of the human. However, it remains unclear whether high oxidative stress and alteration of mtDNA play a role in the pathophysiology of AF. In this study, we first screened for large-scale deletions of mtDNA in the atrial muscle of AF patients by long-range polymerase chain reaction (PCR). The results showed that large-scale deletions between nucleotide positions 7900 and 16500 of mtDNA occurred at a high frequency. Among them, the 4977 bp deletion was the most frequent and abundant one, and the mean proportion of mtDNA with the 4977 bp deletion in the atrial muscle of the patients with AF was 3.75-fold higher than that of the patients without AF (p <.005). Furthermore, quantitative PCR was performed to evaluate lesions in mtDNA caused by oxidative damage. We found that the degree of mtDNA damage in the patients with AF was greater than that of the patients without AF (3.29 vs.1.60 per 10 kb, p <.0005). The 8-OHdG, which is one of the most common products of oxidative damage to DNA, was also found at a higher frequency in mtDNA of patients with AF as compared with those without AF. In addition, the mtDNA content was found to increase significantly in the patients with AF (p =.0051). The level of mtDNA lesion and the mtDNA content was positively correlated (r = 0.44). These results suggest that oxidative injury and deletion of mtDNA in cardiac muscle are increased in the patients with AF, which may contribute to the impairment of bioenergetic function of mitochondria and induction of the oxidative vicious cycle involved in the pathogenesis of atrial myopathy in AF.  相似文献   

9.
DNA damage and apoptosis.   总被引:1,自引:0,他引:1  
  相似文献   

10.
11.
In this study we investigated the level of 8-oxo-2'-deoxyguanosine (8-oxodG) in DNA of Cardamine pratensis plants subjected to different growth conditions trying to answer the question whether factors like light and water accessibility or low temperature may have an impact on the total DNA oxidative damage. The level of this modified nucleoside was determined using HPLC coupled to UV absorbance and electrochemical detection (HPLC-UV-EC). We did not observe any statistically significant differences in 8-oxodG level between DNA of etiolated and light exposed plants as well as between DNA of regularly watered and drought-subjected plants. In contrast, we have shown that chilling (1 degree C for 28 h) brings about the increase of 8-oxodG level in DNA.  相似文献   

12.
G Barja  A Herrero 《FASEB journal》2000,14(2):312-318
DNA damage is considered of paramount importance in aging. Among causes of this damage, free radical attack, particularly from mitochondrial origin, is receiving special attention. If oxidative damage to DNA is involved in aging, long-lived animals (which age slowly) should show lower levels of markers of this kind of damage than short-lived ones. However, this possibility has not heretofore been investigated. In this study, steady-state levels of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG) referred to deoxyguanosine (dG) were measured by high performance liquid chromatography (HPLC) in the mitochondrial (mtDNA) and nuclear (nDNA) DNA from the heart of eight and the brain of six mammalian species ranging in maximum life span (MLSP) from 3.5 to 46 years. Exactly the same digestion of DNA to deoxynucleosides and HPLC protocols was used for mtDNA and nDNA. Significantly higher (three- to ninefold) 8-oxodG/dG values were found in mtDNA than in nDNA in all the species studied in both tissues. 8-oxodG/dG in nDNA did not correlate with MLSP across species either in the heart (r=-0.68; P<0.06) or brain (r = 0.53; P<0.27). However, 8-oxodG/dG in mtDNA was inversely correlated with MLSP both in heart (r=-0.92; P<0.001) and brain (r=-0.88; P<0.016) tissues following the power function y = a(.)x(b), where y is 8-oxodG/dG and x is the MLSP. This agrees with the consistent observation that mitochondrial free radical generation is also lower in long-lived than in short-lived species. The results obtained agree with the notion that oxygen radicals of mitochondrial origin oxidatively damage mtDNA in a way related to the aging rate of each species.-Barja, G., Herrero, A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals.  相似文献   

13.
To test the hypothesis that asbestos-mediated cell injury is mediated through an oxidant-dependent mitochondrial pathway, isolated mesothelial cells were examined for mitochondrial DNA damage as determined by quantitative PCR. Mitochondrial DNA damage occurred at fourfold lower concentrations of crocidolite asbestos compared with concentrations required for nuclear DNA damage. DNA damage by asbestos was preceded by oxidant stress as shown by confocal scanning laser microscopy using MitoTracker Green FM and the oxidant probe Redox Sensor Red CC-1. These events were associated with dose-related decreases in steady-state mRNA levels of cytochrome c oxidase, subunit 3 (COIII), and NADH dehydrogenase 5. Subsequently, dose-dependent decreases in formazan production, an indication of mitochondrial dysfunction, increased mRNA expression of pro- and antiapoptotic genes, and increased numbers of apoptotic cells were observed in asbestos-exposed mesothelial cells. The possible contribution of mitochondrial-derived pathways to asbestos-induced apoptosis was confirmed by its significant reduction after pretreatment of cells with a caspase-9 inhibitor. Apoptosis was decreased in the presence of catalase. Last, use of HeLa cells transfected with a mitochondrial transport sequence targeting the human DNA repair enzyme 8-oxoguanine DNA glycosylase to mitochondria demonstrated that asbestos-induced apoptosis was ameliorated with increased cell survival. Studies collectively indicate that mitochondria are initial targets of asbestos-induced DNA damage and apoptosis via an oxidant-related mechanism.  相似文献   

14.
Exposure to chemical carcinogens provides a means for the enhancement of the frequency of gene amplification and for the facilitation of research into its mechanism(s). Using carcinogen-induced SV40 amplification as a model system it was shown that amplification of the viral sequences occurs via a replication-dependent mode. This process involves overactivation of the origin region and the generation of inverted repeats. Carcinogen-induced enhancement of gene amplification is triggered by cellular factors that could act in trans. An in vitro amplification system, based on extracts from carcinogen-treated cells and SV40 template sequences, was used to further characterize the amplification intermediates. The major products of overreplication in this system consist of sequences derived from the origin region. Our studies suggest that the ability to overreplicate the origin region in vitro derives from the combined action of carcinogen-induced factors that trigger overinitiation, with the inherent inability of Chinese hamster cell extracts to fully replicate large plasmid templates. The newly replicated sequences are not associated with the parental molecule and contain hairpin or stem and loop structures. Based on these findings we propose a novel replicative mechanism for DNA amplification that allows the de novo formation of hairpin structures. According to this model, an obstruction of the replication fork may cause an overturning of the DNA polymerase, followed by a template switch that leads to the use of the newly replicated strand as a template. This mode of replication results in the generation of hairpin structures which can function as precursors for the duplicated inverted repeats which are commonly observed in amplified genomes. This model is supported by our in vitro and in vivo studies. The relevance of this model for the amplification of cellular sequences is discussed.  相似文献   

15.
The SH compound glutathione (GSH) is involved in several fundamental functions in the cell, including protection against reactive oxygen species (ROS). Here, we studied the effect on oxidative DNA damage in cultured skin fibroblasts from patients with hereditary GSH synthetase deficiency. Our hypothesis was that GSH-deficient cells are more prone to DNA damage than control cells. Single cell gel electrophoresis (the comet assay) in combination with the formamidopyrimidine DNA glycosylase enzyme, which recognizes oxidative base modifications, was used on cultured fibroblasts from 11 patients with GSH synthetase deficiency and five control subjects. Contrary to this hypothesis, we found no significant difference in background levels of DNA damage between cells from patients and control subjects. To study the induction of oxidative DNA damage without simultaneous DNA repair, the cells were γ-irradiated on ice and DNA single-strand breaks measured. The patient and control cells were equally sensitive to induction of single strand breaks by γ-irradiation. Therefore, factors other than GSH protect DNA from oxidative damage. However, cells with a high background level of oxidative DNA damage were found to be more sensitive to ionizing radiation. This suggests that differences in background levels of oxidative DNA damage may depend on the cells' intrinsic protection against induction of oxidative damage.  相似文献   

16.
17.
Modification of cellular DNA upon exposure to reactive oxygen and nitrogen species is the likely initial event involved in the induction of the mutagenic and lethal effects of various oxidative stress agents. Evidence has been accumulated for the significant implication of singlet oxygen (1O(2)), generated as the result of UVA activation of endogenous photosensitizers as porphyrins and flavins. 7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-oxodGuo) has been shown to be the exclusive product of the reaction of 1O(2) with the guanine moiety of cellular DNA, in contrast to the hydroxyl radical, which reacts almost indifferently with all the nucleobases and the sugar moiety of DNA. Furthermore 8-oxodGuo is also produced by other oxidants and can be used as an ubiquitous biomarker of DNA oxidation but can not be a specific marker of any particular species. The role of DNA etheno adducts in mutagenic and carcinogenic processes triggered by known occupational and environmental carcinogens has also been studied. Much interest in etheno adducts resulted from the detection of increased levels of 1,N(6)-etheno-2'-deoxyadenosine and 3,N(4)-etheno-2'-deoxycytidine in DNA from human, rat and mouse tissues under pathophysiological conditions associated with oxidative stress. A method involving on-line HPLC with electrospray tandem mass spectrometry detection has been developed for the analysis of 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-epsilondGuo) in DNA. This methodology permits direct quantification of 20 fmol (7.4 adducts/10(8) dGuo) of the etheno adduct from approximately 350 microg of crude DNA hydrolysates. This method provides the first evidence of the occurrence of 1,N(2)-epsilondGuo as a basal endogenous lesion and may be utilized to better assess the biological consequences of etheno DNA damage under normal and pathological conditions. This work addresses the importance of isotope labeling associated with mass spectrometry technique for biomolecule damage studies.  相似文献   

18.
The possible neuroprotective effect of D-glucose against glutamate-mediated neurotoxicity was studied in rat cortical neurons in primary culture. Brief (5-min) exposure of neurons to glutamate (100 microM) increased delayed (24-h) necrosis and apoptosis by 3- and 1.8-fold, respectively. Glutamate-mediated neurotoxicity was accompanied by a D-(-)-2-amino-5-phosphonopentanoate (100 microM) and N(omega)-nitro-L-arginine methyl ester (1 mM)-inhibitable, time-dependent ATP depletion (55% at 24 h), confirming the involvement of NMDA receptor stimulation followed by nitric oxide synthesis in this process. Furthermore, the presence of D-glucose (20 mM), but not its inactive enantiomer, L-glucose, fully prevented glutamate-mediated delayed ATP depletion, necrosis, and apoptosis. Succinate- cytochrome c reductase activity, but not the activities of NADH-coenzyme Q(1) reductase or cytochrome c oxidase, was inhibited by 32% by glutamate treatment, an effect that was abolished by incubation with D-glucose. Lactate accumulation in the culture medium was unmodified by any of these treatments, ruling out the possible involvement of the glycolysis pathway in either glutamate neurotoxicity or D-glucose neuroprotection. In contrast, D-glucose, but not L-glucose, abolished glutamate-mediated glutathione oxidation and NADPH depletion. Our results suggest that NADPH production from D-glucose accounts for glutathione regeneration and protection from mitochondrial dysfunction. This supports the notion that the activity of the pentose phosphate pathway may be an important factor in protecting neurons against glutamate neurotoxicity.  相似文献   

19.
Du YC  Chang FR  Wu TY  Hsu YM  El-Shazly M  Chen CF  Sung PJ  Lin YY  Lin YH  Wu YC  Lu MC 《Phytomedicine》2012,19(8-9):788-796
Antrodia camphorata (AC) is a native Taiwanese mushroom which is used in Asian folk medicine as a chemopreventive agent. The triterpenoid-rich fraction (FEA) was obtained from the ethanolic extract of AC and characterized by high performance liquid chromatography (HPLC). FEA caused DNA damage in leukemia HL 60 cells which was characterized by phosphorylation of H2A.X and Chk2. It also exhibited apoptotic effect which was correlated to the enhancement of PARP cleavage and to the activation of caspase 3. Five major triterpenoids, antcin K (1), antcin C (2), zhankuic acid C (3), zhankuic acid A (4), and dehydroeburicoic acid (5) were isolated from FEA. The cytotoxicity of FEA major components (1-5) was investigated showing that dehydroeburicoic acid (DeEA) was the most potent cytotoxic component. DeEA activated DNA damage and apoptosis biomarkers similar to FEA and also inhibited topoisomerase II. In HL 60 cells xenograft animal model, DeEA treatment resulted in a marked decrease of tumor weight and size without any significant decrease in mice body weights. Taken together, our results provided the first evidence that pure AC component inhibited tumor growth in vivo model backing the traditional anticancer use of AC in Asian countries.  相似文献   

20.
Oxidant-induced death and dysfunction of pulmonary vascular cells play important roles in the evolution of acute lung injury. In pulmonary artery endothelial cells (PAECs), oxidant-mediated damage to mitochondrial DNA (mtDNA) seems to be critical in initiating cytotoxicity inasmuch as overexpression of the mitochondrially targeted human DNA repair enzyme, human Ogg1 (hOgg1), prevents both mtDNA damage and cell death (Dobson AW, Grishko V, LeDoux SP, Kelley MR, Wilson GL, and Gillespie MN. Am J Physiol Lung Cell Mol Physiol 283: L205-L210, 2002). The mechanism by which mtDNA damage leads to PAEC death is unknown, and the present study tested the specific hypothesis that enhanced mtDNA repair suppresses PAEC mitochondrial dysfunction and apoptosis evoked by xanthine oxidase (XO). PAECs transfected either with an adenoviral vector encoding hOgg1 linked to a mitochondrial targeting sequence or with empty vector were challenged with ascending doses of XO plus hypoxanthine. Quantitative Southern blot analyses revealed that, as expected, hOgg1 overexpression suppressed XO-induced mtDNA damage. Mitochondrial overexpression of hOgg1 also suppressed the XO-mediated loss of mitochondrial membrane potential. Importantly, hOgg1 overexpression attenuated XO-induced apoptosis as detected by suppression of caspase-3 activation, by reduced DNA fragmentation, and by a blunted appearance of condensed, fragmented nuclei. These observations suggest that mtDNA damage serves as a trigger for mitochondrial dysfunction and apoptosis in XO-treated PAECs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号