首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Onchocerca volvulus and Mansonella ozzardi are two human filarial parasites present in South and Central America. In the Brazilian Amazonia they are found in sympatry, and the lack of clear morphological diagnostic characters in the microfilariae hinders their identification. The major sperm protein (MSP) gene of both species has been sequenced and characterised to determine its potential as a molecular diagnostic character. The length of the MSP gene is different in each species, and this could be used to detect and differentiate them by running the polymerase chain reaction (PCR) product in an agarose gel. Two major gene groups were identified in O. volvulus with a genetic distance of 6% between them. In M. ozzardi only one major group of genes was observed. The high similarity between the protein amino acid sequence of both filarial species confirms that the MSP has been highly conserved through nematode evolution.  相似文献   

2.
Three genes in the major sperm protein (MSP) gene family from the potato cyst nematode Globodera rostochiensis were cloned and sequenced. In contrast to the absence of introns in Caenorhabditis elegans MSP genes, these genes in G. rostochiensis contained a 57 nucleotide intron, with normal exon-intron boundaries, in the same relative location as the intron in Onchocerca volvulus. The MSP genes of G. rostochiensis had putative CAAT, TATA, and polyadenylation signals. The predicted G. rostochiensis MSP gene product is 126 amino acids long, one residue shorter than the products in the other species. The comparison of MSP amino acid sequences from four diverse nematode species suggests that O. volvulus, Ascaris suum, and C. elegans may be more closely related to each other than they are to G. rostochiensis.  相似文献   

3.
Anaplasma marginale, an ehrlichial pathogen of cattle and wild ruminants, is transmitted biologically by ticks. A developmental cycle of A. marginale occurs in a tick that begins in gut cells followed by infection of salivary glands, which are the site of transmission to cattle. Geographic isolates of A. marginale vary in their ability to be transmitted by ticks. In these experiments we studied transmission of two recent field isolates of A. marginale, an Oklahoma isolate from Wetumka, OK, and a Florida isolate from Okeechobee, FL, by two populations of Dermacentor variabilis males obtained from the same regions. The Florida and Oklahoma tick populations transmitted the Oklahoma isolate, while both tick populations failed to transmit the Florida isolate. Gut and salivary gland infections of A. marginale, as determined by quantitative PCR and microscopy, were detected in ticks exposed to the Oklahoma isolate, while these tissues were not infected in ticks exposed to the Florida isolate. An adhesion-recovery assay was used to study adhesion of the A. marginale major surface protein (MSP) 1a to gut cells from both tick populations and cultured tick cells. We demonstrated that recombinant Escherichia coli expressing Oklahoma MSP1a adhered to cultured and native D. variabilis gut cells, while recombinant E. coli expressing the Florida MSP1a were not adherent to either tick cell population. The MSP1a of the Florida isolate of A. marginale, therefore, was unable to mediate attachment to tick gut cells, thus inhibiting salivary gland infection and transmission to cattle. This is the first report of MSP1a being responsible for effecting infection and transmission of A. marginale by Dermacentor spp. ticks. The mechanism of tick infection and transmission of A. marginale is important in formulating control strategies and development of improved vaccines for anaplasmosis.  相似文献   

4.
Wolbachia pipientis is possibly the most widespread endosymbiont of arthropods and nematodes. While all Wolbachia strains have historically been defined as a single species, 16 monophyletic clusters of diversity (called supergroups) have been described. Different supergroups have distinct host ranges and symbiotic relationships, ranging from mutualism to reproductive manipulation. In filarial nematodes, which include parasites responsible for major diseases of humans (such as Onchocerca volvulus, agent of river blindness) and companion animals (Dirofilaria immitis, the dog heartworm), Wolbachia has an obligate mutualist role and is the target of new treatment regimens. Here, we compare the genomes of eight Wolbachia strains, spanning the diversity of the major supergroups (A–F), analysing synteny, transposable element content, GC skew and gene loss or gain. We detected genomic features that differ between Wolbachia supergroups, most notably in the C and D clades from filarial nematodes. In particular, strains from supergroup C (symbionts of O. volvulus and D. immitis) present a pattern of GC skew, conserved synteny and lack of transposable elements, unique in the Wolbachia genus. These features could be the consequence of a distinct symbiotic relationship between C Wolbachia strains and their hosts, highlighting underappreciated differences between the mutualistic supergroups found within filarial nematodes.  相似文献   

5.
Mansonella ozzardi infections are common in the riverside communities along the Solimões, Negro and Purus Rivers in the state of Amazonas (AM). However, little is known about the presence of this parasite in communities located in regions bordering AM and the state of Acre. The prevalence rate of M. ozzardi infections was determined in blood samples from volunteers according to the Knott method. A total of 355 volunteers from six riverine communities were enrolled in the study and 65 (18.3%) were found to be infected with M. ozzardi. As expected, most of the infections (25%) occurred in individuals involved in agriculture, cattle rearing and fishing and an age/sex group analysis revealed that the prevalence increased beginning in the 40-50-years-of-age group and reached 33% in both sexes in individuals over 50 years of age. Based on the described symptomatology, articular pain and headache were found to be significantly higher among infected individuals (56 and 65% prevalence, respectively, p < 0.05). Sera from volunteers were subjected to ELISA using a cocktail of recombinant proteins from Onchocerca volvulus to evaluate the specificity of the test in an endemic M. ozzardi region. No cross-reactions between M. ozzardi-infected individuals and recombinant O. volvulus proteins were detected, thus providing information on the secure use of this particular cocktail in areas where these parasites are sympatric.  相似文献   

6.
细胞运动、细胞迁移与细胞骨架研究进展   总被引:1,自引:0,他引:1  
苗龙 《生物物理学报》2007,23(4):281-289
细胞定向运动与细胞骨架的动态循环密切相关。运动细胞在其伪足前沿依靠细胞骨架的不断聚合推动细胞膜的前进,在基部靠近细胞体部位通过细胞骨架的不断解聚收缩拖拉细胞体向前运动,细胞骨架的聚合与解聚通过伪足与支撑表面的吸附与解吸附而偶连。肌动蛋白组成的微丝骨架是大多数运动细胞的主要成分。外界刺激引起微丝细胞骨架动态变化的信号通路已逐步明了。线虫精子细胞的运动行为与阿米巴变形运动相似,但是在线虫精子细胞中没有肌动蛋白,而是以精子主要蛋白为基础形成细胞骨架驱动精子细胞的运动。与肌动蛋白不同,精子主要蛋白没有分子极性、ATP结合位点和马达蛋白。通过比较研究以上两种运动体系将有助于在分子水平上进一步阐明细胞运动的机理。  相似文献   

7.
The elimination of river blindness (onchocerciasis) in West Africa has been one of the most successful public health and economic development programs yet conducted. Control was based on aerial application of insecticides to control the aquatic, larval stages of black flies in the Simulium damnosum complex and distribution of ivermectin-based drugs to reduce incidence of the filarial worm, Onchocerca volvulus, that may ultimately result in blindness. Control efforts were long-term (1974–2003), extensive (with as many as 50,000 km of river miles being treated weekly for 12 years or longer), and far-reaching (distribution of drugs to almost 7 million people in 11 West African countries). The challenges and success of the program were strongly related to biodiversity: the vector S. damnosum is actually a complex of several species and subspecies, which vary in their competence in disease transmission; the filarial worm O. volvulus has different forms that vary in their virulence and incidence of producing blindness in humans; maintenance of the biodiversity of the non-target riverine fauna was a prime concern of both the control program and the donor countries that supported it; the main insecticide used to control the black fly vector was derived from a bacterium Bacillus thuringensis israelensis; and the drug used in controlling the filarial worm was derived from a soil-dwelling Streptomyces fungus. Long-term biomonitoring studies indicate that environmental damage (e.g., loss of sensitive taxa) incurred was reversed when insecticide applications ceased.  相似文献   

8.
The ribosomal deoxyribonucleic acid (DNA) internal transcribed spacer region (ITS1) of two filarial nematodes, Loa loa and Mansonella perstans, was amplified and further sequenced to develop an species-specific polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) protocol for the differentiation of both species from Wuchereria bancrofti, three filarial nematodes with blood circulating microfilariae. The ITS1–PCR product digested with the restriction endonuclease Ase I generated an specific diagnostic pattern for each of the three species. Moreover, three new specific nested-PCRs, targeting the ITS1 region, for differential detection of L. loa, M. perstans and W. bancrofti were developed and used when the ITS1–PCR products were insufficient for the Ase I enzymatic digestion. These filarial species-specific molecular protocols were evaluated in forty blood samples from African adult immigrants attending in the Hospital Insular of Gran Canaria, Canarias, Spain.  相似文献   

9.
Nematode spermatozoa are amoeboid cells. In Caernorhabditis elegans and Ascaris suum, previous studies have reported that sperm motility does not involve actin, but, instead, requires a specific cytoskeletal protein, name y major-sperm-protein (MSP). In Heligmosomoides polygyrus, a species with large and elongate spermatids and spermatozoa, cell organelles are easily identified even with light microscopy. Electrophoresis of Heligmosomoides sperm proteins indicates that the main protein band has a molecular weight of about 15 kDa, as MSP in other nematodes, and is specifically labelled by an anti-MSP antibody raised against C. elegans MSP. A minor band at 43 kDa was specifically labelled by an anti-actin antibody. Reaction of anti-actin and anti-MSP antibodies is specific to, and restricted to, their respective targets. Actin and MSP localisation, studied by indirect immunofluorescence in male germ cells of Heligmosomoides polygyrus, are similar: spermatids show rows of dots, corresponding to the fibrous bodies, around an unlabelled central longitudinal core; spermatozoa are labelled strictly in an anterior crescent-shaped cap, at the opposite pole to the nucleus, which contains fibres of the MSP cytoskeleton. Phalloidin labelling shows that F-actin is present in spermatids, but absent in spermatozoa. Tropomyosin shows a distinct pattern in spermatids, but is located in the MSP and actin-containing cap in spermatozoa. It is hypothesized that actin plays a role in the shaping of the cell and in the arrangement of its organelles during nematode spermiogenesis, when MSP is present, in an inactive state, in the fibrous bodies. The concentration of actin and tropomyosin in the anterior cap is not compatible with previous theories about the MSP cytoskeleton which is supposed to act in the absence of actin. © 1996 Wiley-Liss, Inc.  相似文献   

10.
In a recent issue of Memórias do Instituto Oswaldo Cruz, published in Rio de Janeiro in February 2014 (109: 87-92), Adami et al. have published a survey reporting Mansonella parasite prevalence in the Amazon Region. This report makes a useful contribution to the existing knowledge of filarial parasite distribution within the Amazon area, parasite prevalence rates in relation to age and occupation and provides observations on the possible clinical impact of Mansonella ozzardi. Their publication also provides an account of what appears to be a novel ELISA that has recently been used in the Simuliidae and Onchocerciasis Laboratory of the Oswaldo Cruz Institute, Rio de Janeiro, Brazil. We are concerned that the publication of this ELISA may have created an excessively positive impression of the effectiveness of the onchocerciasis recrudescence serological surveillance tools that are presently available for use in the Amazonia onchocerciasis focus. In this letter we have, thus, sought to highlight some of the limitations of this ELISA and suggest how continuing insecurities concerning the detection of antibodies to Onchocerca volvulus within the Amazonia onchocerciasis focus might be minimised.  相似文献   

11.
The Aspergillusniger and Trichodermareesei genes encoding the functional homologues of the small GTP-binding protein SAR1p, which is involved in the secretion pathway in Saccharomyces cerevisiae, have been cloned and characterised. The A. niger gene (sarA) contains five introns, whereas the T. reesei gene (sar1) has only four. In both cases the first intron is at the same position as the single S. cerevisiae SAR1 intron. The encoded proteins show 70–80% identity to the SAR1 protein. Complementation of S. cerevisiaesar1 and sec12 mutants by expression vectors carrying the A. nigersarA and T. reesei sar1 cDNA clones confirmed that the cloned genes are functional homologues of the S. cerevisiae SAR1 gene. Three mutant alleles of the A. nigersarA gene (D29G, E109K, D29G/E109K), generated by site-directed mutagenesis, revealed a thermosensitive dominant-negative phenotype in the presence of the wild-type sarA allele. This result contrasts with the situation in S. cerevisiae, where similar mutations have a thermosensitive phenotype. Taken together, our results indicate that the sarA gene is involved in an essential function in A. niger. Received: 21 January 1997 / Accepted: 21 June 1997  相似文献   

12.

Background  

The tick-borne pathogenAnaplasma marginale, which is endemic worldwide, is the type species of the genusAnaplasma (Rickettsiales: Anaplasmataceae).Rhipicephalus (Boophilus)microplus is the most important tick vector ofA. marginale in tropical and subtropical regions of the world. Despite extensive characterization of the genetic diversity inA. marginale geographic strains using major surface protein sequences, little is known about the biogeography and evolution ofA. marginale and otherAnaplasma species. ForA. marginale, MSP1a was shown to be involved in vector-pathogen and host-pathogen interactions and to have evolved under positive selection pressure. The MSP1a ofA. marginale strains differs in molecular weight because of a variable number of tandem 23-31 amino acid repeats and has proven to be a stable marker of strain identity. While phylogenetic studies of MSP1a repeat sequences have shown evidence ofA. marginale-tick co-evolution, these studies have not provided phylogeographic information on a global scale because of the high level of MSP1a genetic diversity among geographic strains.  相似文献   

13.
The full-length cDNA of a previously identified Solanum brevidens gene was isolated and characterised. DNA sequence analysis revealed an open reading frame that encodes a hybrid proline-rich cell wall protein of 407 amino acids. The putative protein was designated SbrPRP. The SbrPRP harbours three parts, an N-terminal signal peptide followed by a repetitive proline-rich domain and a cysteine-rich C-terminus resembling non-specific lipid-transfer proteins. The repetitive proline-rich domain contains two repeated motifs, PPHVKPPSTPK and PTPPIVSPP extended with TPKYP and TPKPPS motifs, respectively, at their N- or C-terminal. The SbrPRP gene of the non-tuberising Solanum species, Solanum brevidens, possesses highly homologous counterparts in the tuberising species, Solanum tuberosum (StPRP) and in the related species, Lycopersicum esculentum (TFM7). All three genes are present in single- or low copy number in the corresponding genome. Organ-specific expression of the genes, however, is different in the three solanaceous species.  相似文献   

14.
Summary The yolk proteins stored in Drosophila, oocytes for utilisation during embryogenesis are an ideal system for studying the regulation of gene expression during development. The 3 major polypeptides found in yolk in D. melanogaster are synthesised in the fat body and ovarian follicle cells and selectively accumulated by the oocyte during vitellogenesis. In order to understand more about their regulation and the mechanism of uptake, studies on other species are necessary.Three yolk polypeptides have previously been identified in the D. melanogaster sibling species (D. melanogaster, D. simulans, D. mauritiana, D. erecta, D. teissieri, D. orena and D. yakuba). In D. melanogaster three genes located on the X chromosome are known to code for these yolk polypeptides. in this study genomic Southern transfers and in situ hybridisation experiments were carried out on the sibling species. Using the three cloned yolk protein genes from D. melanogaster, homologous sequences could be detected in the sibling species. It is suggested that three yolk protein genes occur in each of these species, all being located on the X chromosome, and that two of the genes are very closely linked in these same species. Yolk protein gene-homologous DNA sequences have also been identified in two more distantly related species D. funebris and D. virilis.  相似文献   

15.
董莉娜  刘演 《广西植物》2019,39(1):16-39
秋海棠属(Begonia L.)隶属于葫芦目(Cucurbitales)秋海棠科(Begoniaceae),有1 800余种,是世界第六大属,主要分布于美洲、非洲和亚洲的热带和亚热带地区,具有极高的观赏价值,亦可作为药用、食用、饮料和饲料等。我国有秋海棠属植物近300种,主要分布于我国的云南和广西等长江以南地区,其中云南有秋海棠属植物100余种。近年来,随着广西地区秋海棠属植物野外调查的不断深入,陆续发现并发表了大量秋海棠属新类群,使得广西产秋海棠属植物数目已超出1991年《广西植物志》(第一卷)收录的19种,因此亟需对发表于不同期刊中的类群进行系统地整理和汇总。鉴于此,该文通过查阅文献资料和考证标本信息,整理并汇总了广西产秋海棠属植物共84种,包括2个变种、11个亚种和46个特有种,新增的65种为《广西植物志》(第一卷)中未收录的类群,并补充了这些类群的特征集要、凭证标本信息和属下分组概况,为今后开展秋海棠属植物的分类修订以及系统学、进化生物学和保护生物学等研究提供了参考依据。  相似文献   

16.
Summary A major obstacle to out understanding of the mechanisms governing the inheritance, recombination and segregation of chloroplast genes in Chlamydomonas is that the majority of antibiotic resistance mutations that have been used to gain insights into such mechanisms have not been physically localized on the chloroplast genome. We report here the physical mapping of two chloroplast antibiotic resistance mutations: one conferring cross-resistance to erythromycin and spiramycin in Chlamydomonas moewusii (er-nM1) and the other conferring resistance to streptomycin in the interfertile species C. eugametos (sr-2). The er-nM1 mutation results from a C to G transversion at a well-known site of macrolide resistance within the peptidyl transferase loop region of the large subunit rRNA gene. This locus, designated rib-2 in yeast mitochondrial DNA, corresponds to residue C-2611 in the 23 S rRNA of Escherichia coli. The sr-2 locus maps within the small subunit (SSU) rRNA gene at a site that has not been described previously. The mutation results from an A to C transversion at a position equivalent to residue A-523 in the E. coli 16 S rRNA. Although this region of the E. coli SSU rRNA has no binding affinity for streptomycin, it binds to ribosomal protein S4, a protein that has long been associated with the response of bacterial cells to this antibiotic. We propose that the sr-2 mutation indirectly affects the nearest streptomycin binding site through an altered interaction between a ribosomal protein and the SSU rRNA.  相似文献   

17.
In this paper we describe how photosystem II (PSII) from higher plants, which have been depleted, of the extrinsic proteins can be reconstituted with a chimeric fusion protein comprising thioredoxin from Escherichia coli and the manganese stabilising protein from Thermosynechococcus elongatus. Surprisingly, even though E. coli thioredoxin is completely unrelated to PSII, the fusion protein restores higher rates of activity upon rebinding to PSII than either the native spinach MSP, or T. elongatus MSP. PSII reconstituted with the fusion protein also has a lower requirement for calcium than PSII with the small extrinsic proteins removed, or PSII reconstituted with spinach or T. elongatus MSP. The MSP portion of the fusion protein is less thermally stable compared to isolated MSP from T. elongatus, which could be the key to its superior activation capability through greater flexibility. This work reveals the importance of protein–protein interactions in the water splitting activity of PSII and suggests that conformational configurations, which increase flexibility in MSP, are essential to its function, even when these are induced by an unrelated protein.  相似文献   

18.
Wolbachia endosymbiotic bacteria are widespread in arthropods and are also present in filarial nematodes. Almost all filarial species so far examined have been found to harbor these endosymbionts. The sequences of only three genes have been published for nematode Wolbachia (i.e., the genes coding for the proteins FtsZ and catalase and for 16S rRNA). Here we present the sequences of the genes coding for the Wolbachia surface protein (WSP) from the endosymbionts of eight species of filaria. Complete gene sequences were obtained from the endosymbionts of two different species, Dirofilaria immitis and Brugia malayi. These sequences allowed us to design general primers for amplification of the wsp gene from the Wolbachia of all filarial species examined. For these species, partial WSP sequences (about 600 base pairs) were obtained with these primers. Phylogenetic analysis groups these nematode wsp sequences into a coherent cluster. Within the nematode cluster, wsp-based Wolbachia phylogeny matches a previous phylogeny obtained with ftsZ gene sequences, with a good consistency of the phylogeny of hosts (nematodes) and symbionts (Wolbachia). In addition, different individuals of the same host species (Dirofilaria immitis and Wuchereria bancrofti) show identical wsp gene sequences. Received: 10 January 2000 / Accepted: 22 February 2000  相似文献   

19.
针对NCBI上已登录的茶氨酸合成酶与谷氨酰胺合成酶基因序列进行克隆、原核表达与酶活性验证,利用多种生物信息学数据库和软件,对Cs TS与Cs GS基因进行结构、性质和功能预测,采用同源建模法对蛋白三维结构进行预测,比较并预测催化作用位点的差异;用系统进化树分析从裸子植物到高等被子植物的谷氨酰胺合成酶基因序列,推测其进化的演变过程;通过对原核表达的基因工程菌提取粗酶液进行酶活性测定。结果表明:尽管茶树TS与GS序列高度同源,但是原核表达后的融合蛋白仍然显示了不同的催化能力,蛋白一、二级结构分析显示Cs TS与Cs GS差异不大,但是通过同源建模形成的蛋白三级结构分析显示,Cs TS与Cs GS存在3个催化位点上的差异,这可能是导致其酶活性差异的关键。系统进化分析结果首次确定茶氨酸合成酶应为谷氨酰胺合成酶基因家族成员,按照其细胞定位预测应为胞质型GS,其亲缘关系与同为双子叶植物的葡萄、陆地棉、巴西橡胶树、拟南芥较接近。  相似文献   

20.
Summary A mutant of Escherichia coli K12 has been isolated which shows an alteration in the ribosomal protein S18. Genetic analyses have revealed that the mutation causing this alteration maps at 99.3 min of the E. coli genetic map, between dnaC and deo. This indicated that the mutation has occurred in a gene different from the structural gene for this protein which has been located at 94 min. From the N-terminal amino acid sequence analysis it is concluded that the mutation has resulted in loss of the N-terminal acetyl group of this protein. The gene which is affected in this mutant is termed rimI that most likely specifies an enzyme acetylating the N-terminal alanine of protein S18. The mutation does not affect the acetylation of two other ribosomal proteins, S5 and L12, both of which are known to be acetylated in wild-type E. coli K12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号