首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Hippo signaling pathway regulates cellular proliferation and survival, thus exerting profound effects on normal cell fate and tumorigenesis. We previously showed that the pivotal effector of this pathway, YAP, is amplified in tumors and promotes epithelial-to-mesenchymal transition (EMT) and malignant transformation. Here, we report that overexpression of TAZ, a paralog of YAP, in human mammary epithelial cells promotes EMT and, in particular, some invasive structures in 3D cultures. TAZ also leads to cell migration and anchorage-independent growth in soft agar. Furthermore, we identified amphiregulin (AREG), an epidermal growth factor receptor (EGFR) ligand, as a target of TAZ. We show that AREG functions in a non-cell-autonomous manner to mediate EGF-independent growth and malignant behavior of mammary epithelial cells. In addition, ablation of TEAD binding completely abolishes the TAZ-induced phenotype. Last, analysis of breast cancer patient samples reveals a positive correlation between TAZ and AREG in vivo. In summary, TAZ-dependent secretion of AREG indicates that activation of the EGFR signaling is an important non-cell-autonomous effector of the Hippo pathway, and TAZ as well as its targets may play significant roles in breast tumorigenesis and metastasis.  相似文献   

2.
The Hippo signaling pathway regulates cellular proliferation and survival, thus exerting profound effects on normal cell fate and tumorigenesis. We previously showed that the pivotal effector of this pathway, YAP, is amplified in tumors and promotes epithelial-to-mesenchymal transition (EMT) and malignant transformation. Here, we report that overexpression of TAZ, a paralog of YAP, in human mammary epithelial cells promotes EMT and, in particular, some invasive structures in 3D cultures. TAZ also leads to cell migration and anchorage-independent growth in soft agar. Furthermore, we identified amphiregulin (AREG), an epidermal growth factor receptor (EGFR) ligand, as a target of TAZ. We show that AREG functions in a non-cell-autonomous manner to mediate EGF-independent growth and malignant behavior of mammary epithelial cells. In addition, ablation of TEAD binding completely abolishes the TAZ-induced phenotype. Last, analysis of breast cancer patient samples reveals a positive correlation between TAZ and AREG in vivo. In summary, TAZ-dependent secretion of AREG indicates that activation of the EGFR signaling is an important non-cell-autonomous effector of the Hippo pathway, and TAZ as well as its targets may play significant roles in breast tumorigenesis and metastasis.  相似文献   

3.
4.
Tumor metastasis is the leading cause of death in cancer patients. Identifying metastatic biomarkers in tumor cells would help cancer diagnoses and the development of therapeutic targets. Yes-associated protein (YAP) plays an important role in organ development and has gained much attention in tumorigenesis. However, the role of YAP and the underlying mechanism in tumor metastasis of colorectal cancer (CRC) is still unclear. In this study, we generated metastatic 116-LM cells from the HCT116 CRC cell line. We found that the capacity for tumor aggressiveness was elevated in 116-LM cells and identified that YAP and its mRNA level were upregulated in 116-LM cells. Moreover, expression of YAP was found to correlate with epithelial-mesenchymal transition (EMT) marker expressions, whereas suppression of YAP decreased EMT marker expressions and impeded tumor migration and invasion. Additionally, upregulation of YAP was identified in colon cancer patients, and it was correlated with EMT gene expressions. Furthermore, we identified LBH589, a histone deacetylase inhibitor, that was capable of inhibiting tumor growth and aggressiveness in both HCT116 and 116-LM cells. LBH589 potentially inhibited YAP and its mRNA expression, accompanied by diminished expressions of YAP downstream genes and EMT markers. Together, YAP plays a crucial role in aggressiveness and metastasis of CRC, and YAP may be an attractive therapeutic target.  相似文献   

5.
We have previously shown that SUM-149 human breast cancer cells require an amphiregulin (AREG) autocrine loop for cell proliferation. We also demonstrated that AREG can increase epidermal growth factor receptor (EGFR) stability and promote EGFR localization to the plasma membrane. In the present studies we successfully knocked-down AREG expression in SUM-149 cells by lentiviral infection of AREG shRNA. In the absence of AREG expression, SUM-149 cell growth was slowed, but not completely inhibited. Furthermore, cells infected with AREG shRNA constructs showed an increase in EGFR protein expression by Western blot. Immunofluorescence and confocal microscopy showed that following AREG knock-down, EGFR continued to localize to the cell surface. Soft agar assays demonstrated that AREG knock-down cells retain anchorage-independent growth capacity. Additionally mammosphere forming assays and Adefluor staining analysis showed that knock-down of AREG expression did not affect the expression of stem cell phenotypes. However, following AREG knock-down, SUM-149 cells demonstrated a dramatic decrease in their ability to invade a Matrigel matrix. Consistent with this observation, microarray analysis comparing cells infected with a non-silencing vector to the AREG knock-down cells, identified genes associated with the invasive phenotype such as RHOB and DKK1, and networks associated with cell motility such as integrin-linked kinase signaling, and focal adhesion kinase signaling. AREG was also found to modulate WNT and Notch signaling in these cells. Thus, AREG functions in regulating the invasive phenotype, and we propose that this regulation may be through altered signaling that occurs when AREG activates plasma membrane localized EGFR.  相似文献   

6.
Background

Cholangiocarcinoma is a malignant tumor originating from bile duct epithelial cells. Since tumor metastasis is associated with poor prognosis and short-term survival of patients, there is an urgent need for alternative therapeutic approaches for CCA. Because of that reason, we aimed to investigate effect of SAHA which is known as HDAC inhibitor on extrahepatic cholangiocarcinoma cell line (TFK-1).

Methods

Cell cycle was measured by Muse Cell Analyzer. YAP, TAZ, TGF-β protein levels were determined by western-blotting method. TEAD (1–3), TIMP2 and TIMP3 genes level were determined by real-time PCR analysis.

Results

We have seen the positive effects of SAHA on the TFK-1 cell line as it reduces cell viability and arresting cells in the G0/G1 phase. We also observed the negative effects of SAHA, as it increases the expression levels of YAP, TAZ, TGF-β protein and TEAD (1–3) gene. We also found that SAHA reduced the expression levels of TIMP2 and TIMP3 in TFK-1 cells, but was not statistically significant.

Conclusions

Although observing its antiproliferative effects, these negative effects may be related to the cells being resistant to the drug or the remaining cells having a more aggressive phenotype. Therefore, we think that caution should be exercised in the use of this drug for CCA treatment.

  相似文献   

7.
Anterior Gradient Homolog 2 (AGR2) is expressed by the normal intestine and by most human adenocarcinomas, including those derived from the esophagus, pancreas, lung, breast, ovary, and prostate. Xenografts of human adenocarcinoma cell lines in nude mice previously demonstrated that AGR2 supports tumor growth. In addition, AGR2 is able to induce in vitro a transformed phenotype in fibroblast and epithelial cell lines. The mechanism underlying the growth promoting effects of AGR2 is unknown. The present study shows that AGR2 induces expression of amphiregulin (AREG), a growth promoting EGFR ligand. Induced AREG expression in adenocarcinoma cells is able to rescue the transformed phenotype that is lost when AGR2 expression is reduced. Additional experiments demonstrate that AGR2 induction of AREG is mediated by activation of the Hippo signaling pathway co-activator, YAP1. Thus AGR2 promotes growth by regulating the Hippo and EGF receptor signaling pathways.  相似文献   

8.
Herein, we have identified cross-talk between the Hippo and fibroblast growth factor receptor (FGFR) oncogenic signaling pathways in cholangiocarcinoma (CCA). Yes-associated protein (YAP) nuclear localization and up-regulation of canonical target genes was observed in CCA cell lines and a patient-derived xenograft (PDX). Expression of FGFR1, -2, and -4 was identified in human CCA cell lines, driven, in part, by YAP coactivation of TBX5. In turn, FGFR signaling in a cell line with minimal basal YAP expression induced its cellular protein expression and nuclear localization. Treatment of YAP-positive CCA cell lines with BGJ398, a pan-FGFR inhibitor, resulted in a decrease in YAP activation. FGFR activation of YAP appears to be driven largely by FGF5 activation of FGFR2, as siRNA silencing of this ligand or receptor, respectively, inhibited YAP nuclear localization. BGJ398 treatment of YAP-expressing cells induced cell death due to Mcl-1 depletion. In a YAP-associated mouse model of CCA, expression of FGFR 1, 2, and 4 was also significantly increased. Accordingly, BGJ398 treatment was tumor-suppressive in this model and in a YAP-positive PDX model. These preclinical data suggest not only that the YAP and Hippo signaling pathways culminate in an Mcl-1-regulated tumor survival pathway but also that nuclear YAP expression may be a biomarker to employ in FGFR-directed therapy.  相似文献   

9.
Objectives: Radiotherapy has played a limited role in the treatment of non-small cell lung cancer (NSCLC) due to the risk of tumour radioresistance. We previously established the radioresistant non-small cell lung cancer (NSCLC) cell line H460R. In this study, we identified differentially expressed genes between these radioresistant H460R cells and their radiosensitive parent line. We further evaluated the role of a differentially expressed gene, ITGB1, in NSCLC cell radioresistance and as a potential target for improving radiosensitivity.Materials and Methods: The radiosensitivity of NSCLC cells was evaluated by flow cytometry, colony formation assays, immunofluorescence, and Western blotting. Bioinformatics assay was used to identify the effect of ITGB1 and YAP1 expression in NSCLC tissues.Results: ITGB1 mRNA and protein expression levels were higher in H460R than in the parental H460 cells. We observed lower clonogenic survival and cell viability and a higher rate of apoptosis of ITGB1-knockdown A549 and H460R cells than of wild type cells post-irradiation. Transfection with an ITGB1 short hairpin (sh) RNA enhanced radiation-induced DNA damage and G2/M phase arrest. Moreover, ITGB1 induced epithelial-mesenchymal transition (EMT) of NSCLC cells. Silencing ITGB1 suppressed the expression and intracellular translocation of Yes-associated protein 1 (YAP1), a downstream effector of ITGB1.Conclusions: ITGB1 may induce radioresistance via affecting DNA repair and YAP1-induced EMT. Taken together, our data suggest that ITGB1 is an attractive therapeutic target to overcome NSCLC cell radioresistance.  相似文献   

10.
11.
12.
Zhu J  Pan X  Zhang Z  Gao J  Zhang L  Chen J 《Cellular signalling》2012,24(6):1323-1332
Integrin-linked kinase (ILK) is a multifunctional serine/threonine kinase in cytoplasm. Recent studies showed that cancer patients with increased ILK expression had low survival, poor prognosis and increased metastasis. Although the causes of ILK overexpression remain to be fully elucidated, accumulating evidence suggests that its oncogenic capacity derives from its regulation of several downstream targets that provide cells with signals that promote proliferation, survival and migration. However, the mechanisms underlying tumor metastasis by ILK is still not fully understood. Epithelial–mesenchymal transition (EMT) is a critical event of cancer cells that triggers invasion and metastasis. We recently reported that knockdown of ILK inhibited the growth and induced apoptosis in human bladder cancer cells. Therefore, we postulate that ILK might involve in EMT. Here we further investigate the function of ILK with RNA interference in bladder cancer cells. Knockdown of ILK impeded an EMT with low Vimentin, Snail, Slug and Twist as well as high E-cadherin expression in vivo and vitro. In addition, we found that knockdown of ILK inhibited cell proliferation, migration and invasion as well as changed cell morphology, adhesion and rearranged cytoskeleton in vitro. We also demonstrated that ILK siRNA inhibited phosphorylation of downstream signaling targets Akt and GSK3β, increased expression of nm23-H1, as well as reduced expression of MMP-2 and MMP-9 in vivo and vitro. Furthermore, downregulation of ILK could increase expression of Ribonuclease inhibitor (RI), an important acidic cytoplasmic protein with many functions. Finally, the effects of ILK siRNA on bladder cancer cell phenotype and invasiveness translate into suppression for tumorigenesis and metastasis in vivo. Taken together, our findings highlight that ILK signaling pathway plays a novel role in the development of bladder cancer through regulating EMT. ILK could be a promising diagnostic marker and therapeutic target for bladder cancer.  相似文献   

13.
Our objective was to investigate the effects of in vitro culture (IVC) medium supplemented with amphiregulin (AREG) on the preimplantation embryonic development of porcine (Genus: Sus domestica, Species: Landrace) embryos derived from in vitro fertilization (IVF) and parthenogenetic activation (PA). In vitro fertilization and PA embryos at the 1-cell stage were cultured in IVC medium supplemented with 0, 0.5, 5, or 50 ng/mL AREG for 7 d. There were significantly greater total numbers of cells in blastocysts of IVF and PA embryos cultured with 50 ng/mL AREG compared with that of controls. In vitro fertilization and PA embryos were then cultured in NCSU-23 medium supplemented with 50 ng/mL AREG on Days 1 through 7, Days 1 through 3 (early stage), or Days 4 through 7 (late stage), or without AREG. There were significantly greater numbers of trophoblast cells in the late-stage and full-term groups of IVF and PA embryos than in the early-stage and control groups. The presence of AREG protein in IVF-derived blastocysts was detected using a polyclonal AREG antibody and indirect immunofluorescence. Amphiregulin protein was localized in both the cytoplasm and nucleus. Using real-time polymerase chain reaction, we detected the expression of AREG mRNA in all developmental stages of IVF and PA embryos; however, the expression level varied according to stage. Thus, the incubation of porcine IVF and PA embryos in AREG-supplemented culture medium mainly at the late preimplantation stage increases the numbers of trophoblast cells.  相似文献   

14.
《Biophysical journal》2022,121(10):1940-1948
In epithelial-mesenchymal transition (EMT), cells organized into sheets break away and become motile mesenchymal cells. EMT plays a crucial role in wound healing, embryonic development, and cancer metastasis. Intracellular signaling in response to mechanical, topographic, or chemical stimuli can promote EMT. We present a multiscale model for EMT downstream of the protein YAP, which suppresses the cell-cell adhesion protein E-cadherin and activates the GTPase Rac1 that enhances cell migration. We first propose an ordinary differential equation (ODE) model for intracellular YAP/Rac1/E-cadherin interactions. The ODE model dynamics are bistable, accounting for both motile loose cells and adherent slower cells. We incorporate this model into a cellular Potts model simulation of two-dimensional wound healing using the open-source platform Morpheus. We show that, under suitable stimuli representing topographic cues, the sheet exhibits finger-like projections and EMT. Morphological differences and quantitative differences in YAP levels as well as variations in cell speed across the sheet are consistent with previous experimental observations of epithelial sheets grown on topographic features in vitro. The simulation is also consistent with experiments that knock down or overexpress YAP, inhibit Rac1, or block E-cadherin.  相似文献   

15.
上皮-间充质转化(epithelial-mesenchymal transition,EMT)是上皮来源细胞在各种理化因素作用下经历表型转化获得间充质样细胞表型的过程.研究表明,有多种信号分子参与EMT的发生,并在胚胎发育、器官损伤修复和肿瘤的发生发展过程中起着关键作用.Yes相关蛋白(yes-associated protein,YAP)作为Hippo信号通路的下游效应分子,被广泛报道参与EMT的进程,调控多种基因的表达,起到调节细胞增殖、凋亡、器官发育和修复等作用.最新研究表明,YAP活性的变化直接介导肿瘤细胞的迁移和侵袭等能力的变化,而这些变化都伴随着EMT的发生.因此,YAP蛋白跟EMT的发生密切相关.本文就近年来关于YAP调控组织发育、器官纤维化及在肿瘤发生发展中的作用,以及相关分子机制的研究进行综述,并将阐明其与EMT之间的相互关系,以期为EMT的研究提供新的视角,进而为相关疾病的治疗提供新的分子靶点和诊断治疗策略.  相似文献   

16.
Chronic myelogenous leukaemia (CML) is a clonal myeloproliferative disorder. Recent evidence indicates that altered crosstalk between CML and mesenchymal stromal cells may affect leukaemia survival; moreover, vesicles released by both tumour and non‐tumour cells into the microenvironment provide a suitable niche for cancer cell growth and survival. We previously demonstrated that leukaemic and stromal cells establish an exosome‐mediated bidirectional crosstalk leading to the production of IL8 in stromal cells, thus sustaining the survival of CML cells. Human cell lines used are LAMA84 (CML cells), HS5 (stromal cells) and bone marrow primary stromal cells; gene expression and protein analysis were performed by real‐time PCR and Western blot. IL8 and MMP9 secretions were evaluated by ELISA. Exosomes were isolated from CML cells and blood samples of CML patients. Here, we show that LAMA84 and CML patients’ exosomes contain amphiregulin (AREG), thus activating epidermal growth factor receptor (EGFR) signalling in stromal cells. EGFR signalling increases the expression of SNAIL and its targets, MMP9 and IL8. We also demonstrated that pre‐treatment of HS5 with LAMA84 exosomes increases the expression of annexin A2 that promotes the adhesion of leukaemic cells to the stromal monolayer, finally supporting the growth and invasiveness of leukaemic cells. Leukaemic and stromal cells establish a bidirectional crosstalk: exosomes promote proliferation and survival of leukaemic cells, both in vitro and in vivo, by inducing IL8 secretion from stromal cells. We propose that this mechanism is activated by a ligand–receptor interaction between AREG, found in CML exosomes, and EGFR in bone marrow stromal cells.  相似文献   

17.
18.
The molecular bridges that link the LH surge with functional changes in cumulus cells that possess few LH receptors are being unraveled. Herein we document that epidermal growth factor (EGF)-like factors amphiregulin (Areg), epiregulin (Ereg), and betacellulin (Btc) are induced in cumulus oocyte complexes (COCs) by autocrine and paracrine mechanisms that involve the actions of prostaglandins (PGs) and progesterone receptor (PGR). Areg and Ereg mRNA and protein levels were reduced significantly in COCs and ovaries collected from prostaglandin synthase 2 (Ptgs2) null mice and Pgr null (PRKO) mice at 4 h and 8 h after human chorionic gonadotropin, respectively. In cultured COCs, FSH/forskolin induced Areg mRNA within 0.5 h that peaked at 4 h, a process blocked by inhibitors of p38MAPK (SB203580), MAPK kinase (MEK) 1 (PD98059), and PTGS2 (NS398) but not protein kinase A (PKA) (KT5720). Conversely, AREG but not FSH induced Ptsg2 mRNA at 0.5 h with peak expression of Ptgs2 and Areg mRNAs at 4 h, processes blocked by the EGF receptor tyrosine kinase inhibitor AG1478 (AG), PD98059, and NS398. PGE2 reversed the inhibitory effects of AG on AREG-induced expression of Areg but not Ptgs2, placing Ptgs2 downstream of EGF-R signaling. Phorbol 12-myristate 13-acetate (PMA) and adenovirally expressed PGRA synergistically induced Areg mRNA in granulosa cells. In COCs, AREG not only induced genes that impact matrix formation but also genes involved in steroidogenesis (StAR, Cyp11a1) and immune cell-like functions (Pdcd1, Runx1, Cd52). Collectively, FSH-mediated induction of Areg mRNA via p38MAPK precedes AREG induction of Ptgs2 mRNA via ERK1/2. PGs acting via PTGER2 in cumulus cells provide a secondary, autocrine pathway to regulate expression of Areg in COCs showing critical functional links between G protein-coupled receptor and growth factor receptor pathways in ovulating follicles.  相似文献   

19.
20.
Cholangiocarcinoma (CCA) is a mortal cancer with gradually increasing incidences all over the world, whereas effective diagnosis and treatment for this disease are still lacking. As a classical long noncoding RNA (lncRNA), maternally expressed gene 3 (MEG3) has been reported to exhibit pivotal regulatory roles in the occurrence and development of various digestive system tumors. Nevertheless, the clinical relevance and biological function of MEG3 in CCA remain largely unclear. In this study, MEG3 expression was significantly downregulated in both CCA tissues and cells in comparison with that in nontumor controls, respectively, and this downexpression was prominently associated with advanced TNM stage, lymph node invasion, and poor survival. Moreover, decreased MEG3 was an independent forecaster of poor prognosis for CCA patients. Functionally, MEG3 overexpression inhibited CCA growth in vitro and in vivo. Enhanced MEG3 also suppressed migration and invasion of CCLP-1 and QBC939 cells by reversing epithelial-mesenchymal transition (EMT) process. On the contrary, the proliferation, metastasis, and EMT were facilitated via knocking down MEG3. In addition, the expression of B lymphoma Mo-MLV insertion region 1 (Bmi1) and RING finger protein 2 was impacted by gain or loss of MEG3, furthermore, the malignant processes induced by MEG3 knockdown were rescued by means of silencing Bmi1. These data suggested that MEG3 caused tumor suppressive effects partly through mediating polycomb repressive complex 1. Our findings elucidate that MEG3 exerts critical functions in CCA development and likely acts as a promising tumor indicator or intervention target for CCA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号