首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.

Background

Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli are important causes of morbidity and mortality worldwide. These enteric pathogens contain a type III secretion system (T3SS) responsible for the attaching and effacing (A/E) lesion phenotype. The T3SS is encoded by the locus of enterocyte effacement (LEE) pathogenicity island. The H-NS-mediated repression of LEE expression is counteracted by Ler, the major activator of virulence gene expression in A/E pathogens. A regulator present in EPEC, H-NST, positively affects expression of H-NS regulon members in E. coli K-12, although the effect of H-NST on LEE expression and virulence of A/E pathogens has yet-to-be determined.

Results

We examine the effect of H-NST on LEE expression and A/E lesion formation on intestinal epithelial cells. We find that H-NST positively affects the levels of LEE-encoded proteins independently of ler and induces A/E lesion formation. We demonstrate H-NST binding to regulatory regions of LEE1 and LEE3, the first report of DNA-binding by H-NST. We characterize H-NST mutants substituted at conserved residues including Ala16 and residues Arg60 and Arg63, which are part of a potential DNA-binding domain. The single mutants A16V, A16L, R60Q and the double mutant R60Q/R63Q exhibit a decreased effect on LEE expression and A/E lesion formation. DNA mobility shift assays reveal that these residues are important for H-NST to bind regulatory LEE DNA targets. H-NST positively affects Ler binding to LEE DNA in the presence of H-NS, and thereby potentially helps Ler displace H-NS bound to DNA.

Conclusions

H-NST induces LEE expression and A/E lesion formation likely by counteracting H-NS-mediated repression. We demonstrate that H-NST binds to DNA and identify arginine residues that are functionally important for DNA-binding. Our study suggests that H-NST provides an additional means for A/E pathogens to alleviate repression of virulence gene expression by H-NS to promote virulence capabilities.  相似文献   

4.
Vibrio parahaemolyticus, a Gram-negative marine bacterial pathogen, is emerging as a major cause of food-borne illnesses worldwide due to the consumption of raw seafood leading to diseases including gastroenteritis, wound infection, and septicemia. The bacteria utilize toxins and type III secretion system (T3SS) to trigger virulence. T3SS is a multi-subunit needle-like apparatus used to deliver bacterial proteins, termed effectors, into the host cytoplasm which then target various eukaryotic signaling pathways. V. parahaemolyticus carries two T3SSs in each of its two chromosomes, named T3SS1 and T3SS2, both of which play crucial yet distinct roles during infection: T3SS1 causes cytotoxicity whereas T3SS2 is mainly associated with enterotoxicity. Each T3SS secretes a unique set of effectors that contribute to virulence by acting on different host targets and serving different functions. Emerging studies on T3SS2 of V. parahaemolyticus, reveal its regulation, translocation, discovery, characterization of its effectors, and development of animal models to understand the enterotoxicity. This review on recent findings for T3SS2 of V. parahaemolyticus highlights a novel mechanism of invasion that appears to be conserved by other marine bacteria.  相似文献   

5.
Zheng J  Ho B  Mekalanos JJ 《PloS one》2011,6(8):e23876
A type VI secretion system (T6SS) was recently shown to be required for full virulence of Vibrio cholerae O37 serogroup strain V52. In this study, we systematically mutagenized each individual gene in T6SS locus and characterized their functions based on expression and secretion of the hemolysin co-regulated protein (Hcp), virulence towards amoebae of Dictyostelium discoideum and killing of Escherichia coli bacterial cells. We group the 17 proteins characterized in the T6SS locus into four categories: twelve (VipA, VipB, VCA0109-VCA0115, ClpV, VCA0119, and VasK) are essential for Hcp secretion and bacterial virulence, and thus likely function as structural components of the apparatus; two (VasH and VCA0122) are regulators that are required for T6SS gene expression and virulence; another two, VCA0121 and valine-glycine repeat protein G 3 (VgrG-3), are not essential for Hcp expression, secretion or bacterial virulence, and their functions are unknown; the last group is represented by VCA0118, which is not required for Hcp expression or secretion but still plays a role in both amoebae and bacterial killing and may therefore be an effector protein. We also showed that the clpV gene product is required for Dictyostelium virulence but is less important for killing E. coli. In addition, one vgrG gene (vgrG-2) outside of the T6SS gene cluster was required for bacterial killing but another (vgrG-1) was not. However, a bacterial killing defect was observed when vgrG-1 and vgrG-3 were both deleted. Several genes encoded in the same putative operon as vgrG-1 and vgrG-2 also contribute to virulence toward Dictyostelium but have a smaller effect on bacterial killing. Our results provide new insights into the functional requirements of V. cholerae's T6SS in the context of secretion as well as killing of bacterial and eukaryotic phagocytic cells.  相似文献   

6.
7.
The Type VI secretion system (T6SS) is a macromolecular complex widespread in Gram-negative bacteria. Although several T6SS are required for virulence towards host models, most are necessary to eliminate competitor bacteria. Other functions, such as resistance to amoeba predation, biofilm formation or adaptation to environmental conditions have also been reported. This multitude of functions is reflected by the large repertoire of regulatory mechanisms shown to control T6SS expression, production or activation. Here, we demonstrate that one T6SS gene cluster encoded within the Yersinia pseudotuberculosis genome, T6SS-4, is regulated by OmpR, the response regulator of the two-component system EnvZ-OmpR. We first identified OmpR in a transposon mutagenesis screen. OmpR does not control the expression of the four other Y. pseudotuberculosis T6SS gene clusters and of an isolated vgrG gene, and responds to osmotic stresses to bind to and activate the T6SS-4 promoter. Finally, we show that T6SS-4 promotes Y. pseudotuberculosis survival in high osmolarity conditions and resistance to deoxycholate.  相似文献   

8.
9.
李梦石  邹清华 《微生物学通报》2020,47(12):4269-4277
细菌的VI型分泌系统(type VI secretion system,T6SS)是一种新发现的分泌系统,在病原菌对宿主黏附、侵入及杀伤等方面均发挥了重要作用。目前的研究主要集中在T6SS在细菌致病、细菌间竞争等作用方面。然而对于其调控因素的研究尚处于初级阶段。对于大多数细菌而言,T6SS的表达并不是恒定的。现已发现温度、渗透压、抗生素、离子等环境因素均可调节T6SS。此外,在分子层面,H-NS蛋白、RpoN转录因子、c-di-GMP等也可发挥对T6SS的调节作用。在这些调控因素的调节下,细菌可以适时地开启或关闭其T6SS的表达,从而更好地感知并适应环境。对T6SS调控因素的研究对于充分认识细菌致病性并进行有效控制至关重要。本文将对调节T6SS的环境因素与调节因子做一综述。  相似文献   

10.
11.
The causative agent of cholera, Vibrio cholerae, regulates its diverse virulence factors to thrive in the human small intestine and environmental reservoirs. Among this pathogen’s arsenal of virulence factors is the tightly regulated type VI secretion system (T6SS). This system acts as an inverted bacteriophage to inject toxins into competing bacteria and eukaryotic phagocytes. V. cholerae strains responsible for the current 7th pandemic activate their T6SS within the host. We established that T6SS-mediated competition occurs upon T6SS activation in the infant mouse, and that this system is functional under anaerobic conditions. When investigating the intestinal host factors mucins (a glycoprotein component of mucus) and bile for potential regulatory roles in controlling the T6SS, we discovered that once mucins activate the T6SS, bile acids can further modulate T6SS activity. Microbiota modify bile acids to inhibit T6SS-mediated killing of commensal bacteria. This interplay is a novel interaction between commensal bacteria, host factors, and the V. cholerae T6SS, showing an active host role in infection.  相似文献   

12.
Whether they live in the soil, drift in the ocean, survive in the lungs of human hosts or reside on the surfaces of leaves, all bacteria must cope with an array of environmental stressors. Bacteria have evolved an impressive suite of protein secretion systems that enable their survival in hostile environments and facilitate colonization of eukaryotic hosts. Collectively, gram-negative bacteria produce six distinct secretion systems that deliver proteins to the extracellular milieu or directly into the cytosol of host cells. The type VI secretion system (T6SS) was discovered recently and is encoded in at least one fourth of all sequenced gram-negative bacterial genomes. T6SS proteins are evolutionarily and structurally related to phage proteins, and it is likely that the T6SS apparatus is reminiscent of phage injection machinery. Most studies of T6SS function have been conducted in the context of host-pathogen interactions. However, the totality of data suggests that the T6SS is a versatile tool with roles in virulence, symbiosis, interbacterial interactions, and antipathogenesis. This review gives a brief history of T6SS discovery and an overview of the pathway's predicted structure and function. Special attention is paid to research addressing the T6SS of plant-associated bacteria, including pathogens, symbionts and plant growth-promoting rhizobacteria.  相似文献   

13.
14.
15.
In the environment, bacteria show close association, such as interspecies interaction, with other bacteria as well as host organisms. The type VI secretion system (T6SS) in gram-negative bacteria is involved in bacterial competition or virulence. The plant pathogen Burkholderia glumae BGR1, causing bacterial panicle blight in rice, has four T6SS gene clusters. The presence of at least one T6SS gene cluster in an organism indicates its distinct role, like in the bacterial and eukaryotic cell targeting system. In this study, deletion mutants targeting four tssD genes, which encode the main component of T6SS needle formation, were constructed to functionally dissect the four T6SSs in B. glumae BGR1. We found that both T6SS group_4 and group_5, belonging to the eukaryotic targeting system, act independently as bacterial virulence factors toward host plants. In contrast, T6SS group_1 is involved in bacterial competition by exerting antibacterial effects. The ΔtssD1 mutant lost the antibacterial effect of T6SS group_1. The ΔtssD1 mutant showed similar virulence as the wild-type BGR1 in rice because the ΔtssD1 mutant, like the wild-type BGR1, still has key virulence factors such as toxin production towards rice. However, metagenomic analysis showed different bacterial communities in rice infected with the ΔtssD1 mutant compared to wild-type BGR1. In particular, the T6SS group_1 controls endophytic plant-associated bacteria such as Luteibacter and Dyella in rice plants and may have an advantage in competing with endophytic plant-associated bacteria for settlement inside rice plants in the environment. Thus, B. glumae BGR1 causes disease using T6SSs with functionally distinct roles.  相似文献   

16.
细菌Ⅵ型分泌系统的调控与功能研究进展   总被引:1,自引:0,他引:1  
Ⅵ型分泌系统(Type Ⅵ Secretion System,T6SS)是近年来研究较多的一种细菌分泌系统,广泛存在于革兰氏阴性菌中,在细菌的毒力、定殖、扩散及竞争遗传中发挥着重要的作用.本文综述了细菌T6SS的结构、调控以及生物学功能的最新研究进展,以期为基于T6SS的抗菌药物研制及细菌感染的诊断与防控提供新思路.  相似文献   

17.
Protein secretion systems are critical to bacterial virulence and interactions with other organisms. The Type VI secretion system (T6SS) is found in many bacterial species and is used to target either eukaryotic cells or competitor bacteria. However, T6SS‐secreted proteins have proven surprisingly elusive. Here, we identified two secreted substrates of the antibacterial T6SS from the opportunistic human pathogen, Serratia marcescens. Ssp1 and Ssp2, both encoded within the T6SS gene cluster, were confirmed as antibacterial toxins delivered by the T6SS. Four related proteins encoded around the Ssp proteins (‘Rap’ proteins) included two specifically conferring self‐resistance (‘immunity’) against T6SS‐dependent Ssp1 or Ssp2 toxicity. Biochemical characterization revealed specific, tight binding between cognate Ssp–Rap pairs, forming complexes of 2:2 stoichiometry. The atomic structures of two Rap proteins were solved, revealing a novel helical fold, dependent on a structural disulphide bond, a structural feature consistent with their functional localization. Homologues of the Serratia Ssp and Rap proteins are found encoded together within other T6SS gene clusters, thus they represent founder members of new families of T6SS‐secreted and cognate immunity proteins. We suggest that Ssp proteins are the original substrates of the S. marcescens T6SS, before horizontal acquisition of other T6SS‐secreted toxins. Molecular insight has been provided into how pathogens utilize antibacterial T6SSs to overcome competitors and succeed in polymicrobial niches.  相似文献   

18.
Vibrio cholerae is a diverse species of Gram-negative bacteria, commonly found in the aquatic environment and the causative agent of the potentially deadly disease cholera. These bacteria employ a type VI secretion system (T6SS) when they encounter prokaryotic and eukaryotic competitors. This contractile puncturing device translocates a set of effector proteins into neighboring cells. Translocated effectors are toxic unless the targeted cell produces immunity proteins that bind and deactivate incoming effectors. Comparison of multiple V. cholerae strains indicates that effectors are encoded in T6SS effector modules on mobile genetic elements. We identified a diverse group of chimeric T6SS adaptor proteins required for the translocation of diverse effectors encoded in modules. An example for a T6SS effector that requires T6SS adaptor protein 1 (Tap-1) is TseL found in pandemic V. cholerae O1 serogroup strains and other clinical isolates. We propose a model in which Tap-1 is required for loading TseL onto the secretion apparatus. After T6SS-mediated TseL export is completed, Tap-1 is retained in the bacterial cell to load other T6SS machines.  相似文献   

19.
20.
Nucleoid Associated Proteins (NAPs) organize the bacterial chromosome within the nucleoid. The interaction of the NAP H-NS with DNA also represses specific host and xenogeneic genes. Previously, we showed that the bacteriophage T4 early protein MotB binds to DNA, co-purifies with H-NS/DNA, and improves phage fitness. Here we demonstrate using atomic force microscopy that MotB compacts the DNA with multiple MotB proteins at the center of the complex. These complexes differ from those observed with H-NS and other NAPs, but resemble those formed by the NAP-like proteins CbpA/Dps and yeast condensin. Fluorescent microscopy indicates that expression of motB in vivo, at levels like that during T4 infection, yields a significantly compacted nucleoid containing MotB and H-NS. motB overexpression dysregulates hundreds of host genes; ∼70% are within the hns regulon. In infected cells overexpressing motB, 33 T4 late genes are expressed early, and the T4 early gene repEB, involved in replication initiation, is up ∼5-fold. We postulate that MotB represents a phage-encoded NAP that aids infection in a previously unrecognized way. We speculate that MotB-induced compaction may generate more room for T4 replication/assembly and/or leads to beneficial global changes in host gene expression, including derepression of much of the hns regulon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号