共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Developmental cell》2022,57(11):1400-1420.e7
3.
4.
More than a decade of genome-wide association studies (GWASs) have identified genetic risk variants that are significantly associated with complex traits. Emerging evidence suggests that the function of trait-associated variants likely acts in a tissue- or cell-type-specific fashion. Yet, it remains challenging to prioritize trait-relevant tissues or cell types to elucidate disease etiology. Here, we present EPIC (cEll tyPe enrIChment), a statistical framework that relates large-scale GWAS summary statistics to cell-type-specific gene expression measurements from single-cell RNA sequencing (scRNA-seq). We derive powerful gene-level test statistics for common and rare variants, separately and jointly, and adopt generalized least squares to prioritize trait-relevant cell types while accounting for the correlation structures both within and between genes. Using enrichment of loci associated with four lipid traits in the liver and enrichment of loci associated with three neurological disorders in the brain as ground truths, we show that EPIC outperforms existing methods. We apply our framework to multiple scRNA-seq datasets from different platforms and identify cell types underlying type 2 diabetes and schizophrenia. The enrichment is replicated using independent GWAS and scRNA-seq datasets and further validated using PubMed search and existing bulk case-control testing results. 相似文献
5.
Mary Qu Yang Sherman M. Weissman William Yang Jialing Zhang Allon Canaann Renchu Guan 《BMC systems biology》2018,12(7):114
Background
Single-cell RNA sequencing (scRNA-seq) technology provides an effective way to study cell heterogeneity. However, due to the low capture efficiency and stochastic gene expression, scRNA-seq data often contains a high percentage of missing values. It has been showed that the missing rate can reach approximately 30% even after noise reduction. To accurately recover missing values in scRNA-seq data, we need to know where the missing data is; how much data is missing; and what are the values of these data.Methods
To solve these three problems, we propose a novel model with a hybrid machine learning method, namely, missing imputation for single-cell RNA-seq (MISC). To solve the first problem, we transformed it to a binary classification problem on the RNA-seq expression matrix. Then, for the second problem, we searched for the intersection of the classification results, zero-inflated model and false negative model results. Finally, we used the regression model to recover the data in the missing elements.Results
We compared the raw data without imputation, the mean-smooth neighbor cell trajectory, MISC on chronic myeloid leukemia data (CML), the primary somatosensory cortex and the hippocampal CA1 region of mouse brain cells. On the CML data, MISC discovered a trajectory branch from the CP-CML to the BC-CML, which provides direct evidence of evolution from CP to BC stem cells. On the mouse brain data, MISC clearly divides the pyramidal CA1 into different branches, and it is direct evidence of pyramidal CA1 in the subpopulations. In the meantime, with MISC, the oligodendrocyte cells became an independent group with an apparent boundary.Conclusions
Our results showed that the MISC model improved the cell type classification and could be instrumental to study cellular heterogeneity. Overall, MISC is a robust missing data imputation model for single-cell RNA-seq data.6.
7.
8.
9.
单细胞RNA测序(single-cell RNA sequencing, scRNA-seq)技术已经成为不同领域中研究细胞异质性的有效工具。在病毒研究领域中,利用该技术分析病毒和细胞的转录组,可以在单细胞水平上检测病毒感染的动态变化,了解病毒与细胞间复杂的相互作用。本文简述了scRNA-seq技术,着重介绍病毒感染宿主细胞后scRNA-seq研究的最新进展,同时也描述了细胞周期、基因表达、细胞状态等细胞异质性对病毒感染过程的影响,以及病毒变异对其本身感染过程的影响。此外,本文还分析了scRNA-seq在研究病毒–宿主互作动态变化方面具有的独特优势,及其在病毒研究领域中广阔的应用前景,为揭示病毒的感染与致病机制、抗病毒靶标的开发等提供参考。 相似文献
10.
11.
12.
13.
14.
15.
16.
《Developmental cell》2021,56(17):2516-2535.e8
17.
Optically decodable beads link the identity of a sample to a measurement through an optical barcode, enabling libraries of biomolecules to be captured on beads in solution and decoded by fluorescence. This approach has been foundational to microarray, sequencing, and flow-based expression profiling technologies. We combine microfluidics with optically decodable beads and show that phenotypic analysis of living cells can be linked to single-cell sequencing. As a proof-of-concept, we demonstrate the accuracy and scalability of our tool called Single Cell Optical Phenotyping and Expression sequencing (SCOPE-Seq) to combine live cell imaging with single-cell RNA sequencing. 相似文献
18.
Recently, lineage tracing technology using CRISPR/Cas9 genome editing has enabled simultaneous readouts of gene expressions and lineage barcodes, which allows for the reconstruction of the cell division tree and makes it possible to reconstruct ancestral cell types and trace the origin of each cell type. Meanwhile, trajectory inference methods are widely used to infer cell trajectories and pseudotime in a dynamic process using gene expression data of present-day cells. Here, we present TedSim (single-cell temporal dynamics simulator), which simulates the cell division events from the root cell to present-day cells, simultaneously generating two data modalities for each single cell: the lineage barcode and gene expression data. TedSim is a framework that connects the two problems: lineage tracing and trajectory inference. Using TedSim, we conducted analysis to show that (i) TedSim generates realistic gene expression and barcode data, as well as realistic relationships between these two data modalities; (ii) trajectory inference methods can recover the underlying cell state transition mechanism with balanced cell type compositions; and (iii) integrating gene expression and barcode data can provide more insights into the temporal dynamics in cell differentiation compared to using only one type of data, but better integration methods need to be developed. 相似文献
19.
20.
Although single-cell sequencing has provided a powerful tool to deconvolute cellular heterogeneity of diseases like cancer, extrapolating clinical significance or identifying clinically-relevant cells remains challenging. Here, we propose a novel computational method scAB, which integrates single-cell genomics data with clinically annotated bulk sequencing data via a knowledge- and graph-guided matrix factorization model. Once combined, scAB provides a coarse- and fine-grain multiresolution perspective of phenotype-associated cell states and prognostic signatures previously not visible by single-cell genomics. We use scAB to enhance live cancer single-cell RNA-seq data, identifying clinically-relevant previously unrecognized cancer and stromal cell subsets whose signatures show a stronger poor-survival association. The identified fine-grain cell subsets are associated with distinct cancer hallmarks and prognosis power. Furthermore, scAB demonstrates its utility as a biomarker identification tool, with the ability to predict immunotherapy, drug responses and survival when applied to melanoma single-cell RNA-seq datasets and glioma single-cell ATAC-seq datasets. Across multiple single-cell and bulk datasets from different cancer types, we also demonstrate the superior performance of scAB in generating prognosis signatures and survival predictions over existing models. Overall, scAB provides an efficient tool for prioritizing clinically-relevant cell subsets and predictive signatures, utilizing large publicly available databases to improve prognosis and treatments. 相似文献