首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge about the 3D organization of the genome will offer great insights into how cells retrieve and process the genetic information. Knowing the spatial probability distributions of individual genes will provide insights into gene regulatory and replication processes, and fill in the missing links between epigenomics, functional genomics, and structural biology. We will discuss an approach to determine 3D genome structures and structure–function maps of genomes by integrating divers types of data. To address the challenge of modeling highly variable genome structures, we discuss a population-based modeling approach, where we construct a large population of 3D genome structures that together are entirely consistent with all available experimental data including data from genome-wide chromosome conformation capture and imaging experiments. We interpret the result in terms of probabilities of a sample drawn from a population of heterogeneous structures. We will discuss results on the 3D spatial organization of genomes in human lymphoblastoid cells and budding yeast.  相似文献   

2.
Understanding why genes evolve at different rates is fundamental to evolutionary thinking. In species of the budding yeast, the rate at which genes diverge in expression correlates with the organization of their promoter nucleosomes: genes lacking a nucleosome-free region (denoted OPN for "Occupied Proximal Nucleosomes") vary widely between the species, while the expression of those containing NFR (denoted DPN for "Depleted Proximal Nucleosomes") remains largely conserved. To examine if early evolutionary dynamics contributes to this difference in divergence, we artificially selected for high expression of GFP-fused proteins. Surprisingly, selection was equally successful for OPN and DPN genes, with -80% of genes in each group stably increasing in expression by a similar amount. Notably, the two groups adapted by distinct mechanisms: DPN-selected strains duplicated large genomic regions, while OPN-selected strains favored trans mutations not involving duplications. When selection was removed, DPN (but not OPN) genes reverted rapidly to wild-type expression levels, consistent with their lower diversity between species. Our results suggest that promoter organization constrains the early evolutionary dynamics and in this way biases the path of long-term evolution.  相似文献   

3.
The discovery that the machinery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 bacterial immune system can be re-purposed to easily create deletions, insertions and replacements in the mammalian genome has revolutionized the field of genome engineering and re-invigorated the field of gene therapy. Many parallels have been drawn between the newly discovered CRISPR-Cas9 system and the RNA interference (RNAi) pathway in terms of their utility for understanding and interrogating gene function in mammalian cells. Given this similarity, the CRISPR-Cas9 field stands to benefit immensely from lessons learned during the development of RNAi technology. We examine how the history of RNAi can inform today''s challenges in CRISPR-Cas9 genome engineering such as efficiency, specificity, high-throughput screening and delivery for in vivo and therapeutic applications.  相似文献   

4.
5.
6.
The abundance of 1,25-dihydroxyvitamin D3 receptors (VDR) in cultured cells has been shown to vary in direct relation to the rate of cell proliferation. This study examines the question of whether the growth-factor mediated up-regulation of VDR is due to direct modulation of VDR gene expression or is secondary to the stimulation of cell cycle events. Mitogenic agents, such as basic fibroblast growth factor and phorbol esters, were found to cause significant decreases in VDR abundance, while substantially stimulating proliferation of NIH-3T3 cells. Potent phorbol esters, such as phorbol myristate acetate (PMA) and phorbol-12,13-dibutyrate, whose biological actions have been shown to be mediated through the activation of protein kinase-C, down-regulated VDR in a time- and dose-dependent manner. An inactive phorbol ester, 4 alpha-phorbol-12,13-didecanoate, which does not activate protein kinase-C, did not alter VDR levels. Desensitization of protein kinase-C by prolonged exposure of cells to phorbol esters eliminated the PMA-mediated down-regulation of VDR. Staurosporine, an inhibitor of protein kinase-C, blocked the actions of PMA. Oleoyl acetyl glycerol, a synthetic diacyl glycerol, and A23187, a calcium ionophore, were both able to suppress VDR abundance alone and were additive in combination. The results suggest that activation of the protein kinase-C pathway and elevation of intracellular Ca2+ lead to significant down-regulation of VDR. The inhibitory effect of PMA appears to be exerted at the level of VDR mRNA expression. Northern blot analysis revealed significant decreases in steady state levels of VDR mRNA species that qualitatively corresponded to the decrease in VDR protein concentration seen on a Western blot.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.

BACKGROUND:

The vitamin D receptor (VDR) gene serves as a good candidate gene for susceptibility to several diseases. The gene has a critical role in regulating the renin-angiotensin system (RAS) influencing the regulation of blood pressure. Hence determining the association of VDR polymorphisms with essential hypertension is expected to help in the evaluation of risk for the condition.

AIM:

The aim of this study was to evaluate association between VDRFok I polymorphism and genetic susceptibility to essential hypertension.

MATERIALS AND METHODS:

Two hundred and eighty clinically diagnosed hypertensive patients and 200 normotensive healthy controls were analyzed for Fok I (T/C) [rs2228570] polymorphism by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) analysis. Genotype distribution and allele frequencies in patients and controls, and odds ratios (ORs) were calculated to predict the risk for developing hypertension by the individuals of different genotypes.

RESULTS:

The genotype distribution and allele frequencies of Fok I (T/C) [rs2228570] VDR polymorphism differed significantly between patients and controls (χ2 of 18.0; 2 degrees of freedom; P = 0.000). FF genotype and allele F were at significantly greater risk for developing hypertension and the risk was elevated for both the sexes, cases with positive family history and habit of smoking.

CONCLUSIONS:

Our data suggest that VDR gene Fok I polymorphism is associated with the risk of developing essential hypertension  相似文献   

9.
10.
11.
12.
1,25-Dihydroxyvitamin D3 [1,25D] deficiency and vitamin D receptor [VDR] genotypes are risk factors for several diseases and disorders including heart diseases. Extracellular matrix (ECM) remodeling mediated by matrix metalloproteinases [MMPs] contributes to progressive left ventricular remodeling, dilation, and heart failure. In the present study, we used high-density oligonucleotide microarray to examine gene expression profile in wild type [WT] and vitamin D receptor knockout mice (VDR KO) which was further validated by RT-PCR. Microarray analysis revealed tissue inhibitors of metalloproteinases [TIMP-1 and TIMP-3] were significantly under expressed in VDR KO mice as compared to WT mice which was further validated by RT-PCR. Zymography and RT-PCR showed that MMP-2 and MMP-9 were up regulated in VDR KO mice. In addition, cross-sectional diameter and longitudinal width of the VDR KO heart myofibrils showed highly significant cellular hypertrophy. Trichrome staining showed marked increase in fibrotic lesions in the VDR KO mice. Heart weight to body weight ratio showed 41% increase in VDR KO mice when compared to WT mice. This data supports a role for 1,25D in heart ECM metabolism and suggests that MMPs and TIMPs expression may be modulated by vitamin D.  相似文献   

13.
14.
15.
16.
Vitamin D has been shown to have anti-proliferative effects in a wide variety of cancers including lung cancer. The anticancer effects of vitamin D are mediated primarily by its active metabolite, 1,25-dihydroxyvitamin D (calcitriol), through vitamin D receptor (VDR) signaling. However, thus far there have been no studies evaluating the association between VDR expression and survival outcome in lung cancer. Using immunohistochemical analysis, we evaluated VDR expression, separately in the nucleus and cytoplasm, in lung cancer samples from 73 non-small cell lung carcinoma (NSCLC) patients with no prior therapy, and investigated the association between VDR expression and overall survival (OS). Cox proportional hazard models were used for our primary analyses. There were 44 deaths during a median follow-up of 51 months (range 13-93 months). High nuclear VDR expression was associated with improved OS after adjusting for age, gender, stage, smoking status, and histology (adjusted hazard ratio, 0.36; 95% confidence interval, 0.17-0.79). There was no association between cytoplasmic VDR expression and OS. Our results suggest that nuclear VDR status may be a prognostic marker in NSCLC. Future large studies to replicate our findings and to assess the impact of VDR gene polymorphisms on VDR expression are required as therapies targeting the vitamin D signaling pathway may be influenced by VDR status in the target lung cancer tissue.  相似文献   

17.
18.
Cystic fibrosis (CF) is one of the most common monogenic diseases affecting Caucasians and has an incidence of approximately 1:3,300 births. Currently recommended screening panels for mutations in the responsible gene (CF transmembrane regulator gene, CFTR) do not detect all disease-associated mutations. Our laboratory offers extensive sequencing of the CFTR (ABCC7) gene (including the promoter, all exons and splice junction sites, and regions of selected introns) as a clinical test to detect mutations which are not found with conventional screening. The objective of this report is to summarize the findings of extensive CFTR sequencing from our first 157 consecutive patient samples. In most patients with classic CF symptoms (18/24, 75%), extensive CFTR sequencing confirmed the diagnosis by finding two disease-associated mutations. In contrast, only 5 of 75 (7%) patients with atypical CF had been identified with two CFTR mutations. A diagnosis of CF was confirmed in 10 of 17 (58%) newborns with either positive sweat chloride readings or positive immunoreactive trypsinogen (IRT) screen results. We ascertained ten novel sequence variants that are potentially disease-associated: two deletions (c.1641AG>T, c.2949_2853delTACTC), seven missense mutations (p.S158T, p.G451V, p.K481E, p.C491S, p.H949L, p.T1036N, p.F1099L), and one complex allele ([p.356_A357del; p.358I]). We ascertained three other apparently novel complex alleles. Finally, several patients were found to carry partial CFTR gene deletions. In summary, extensive CFTR gene sequencing can detect rare mutations which are not found with other screening and diagnostic tests, and can thus establish a definitive diagnosis in symptomatic patients with previously negative results. This enables carrier detection and prenatal diagnosis in additional family members.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号