共查询到20条相似文献,搜索用时 15 毫秒
1.
Rotavirus is a nonenveloped virus with a three-layered capsid. The inner layer, made of VP2, encloses the genomic RNA and two minor proteins, VP1 and VP3, with which it forms the viral core. Core assembly is coupled with RNA viral replication and takes place in definite cellular structures termed viroplasms. Replication and encapsidation mechanisms are still not fully understood, and little information is available about the intermolecular interactions that may exist among the viroplasmic proteins. NSP2 and NSP5 are two nonstructural viroplasmic proteins that have been shown to interact with each other. They have also been found to be associated with precore replication intermediates that are precursors of the viral core. In this study, we show that NSP5 interacts with VP2 in infected cells. This interaction was demonstrated with recombinant proteins expressed from baculovirus recombinants or in bacterial systems. NSP5-VP2 interaction also affects the stability of VP6 bound to VP2 assemblies. The data presented showed evidence, for the first time, of an interaction between VP2 and a nonstructural rotavirus protein. Published data and the interaction demonstrated here suggest a possible role for NSP5 as an adapter between NSP2 and the replication complex VP2-VP1-VP3 in core assembly and RNA encapsidation, modulating the role of NSP2 as a molecular motor involved in the packaging of viral mRNA. 相似文献
2.
3.
Minute virus of mice small nonstructural protein NS2 interacts and colocalizes with the Smn protein 下载免费PDF全文
The small nonstructural protein NS2 of the minute virus of mice (MVM) is required for efficient viral replication, although its mode of action is unclear. Here we demonstrate that NS2 and survival motor neuron protein (Smn) interact in vitro and in vivo. NS2 and Smn also colocalize in infected nuclei at late times following MVM infection. 相似文献
4.
Secreted complement regulatory protein clusterin interacts with dengue virus nonstructural protein 1
Kurosu T Chaichana P Yamate M Anantapreecha S Ikuta K 《Biochemical and biophysical research communications》2007,362(4):1051-1056
Vascular leakage and shock are the major causes of death in patients with dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). It has been suggested that patients with an elevated level of the free soluble form of dengue virus (DV) nonstructural protein 1 (sNS1) are at risk of developing DHF. To understand the role of sNS1 in blood, we searched for the host molecule with which NS1 interacts in human plasma by affinity purification using a GST-fused NS1. Complement inhibitory factor clusterin (Clu), which naturally inhibits the formation of terminal complement complex (TCC), was identified by mass spectrometry. A recombinant sNS1 produced from 293T cells and sNS1 from DV-infected Vero cells interacted with human Clu. Since an activated complement system reportedly causes vascular leakage, the interaction between sNS1 and Clu may contribute to the progression of DHF. 相似文献
5.
Prion protein is a glycosyl-phosphatidyl-inositol anchored glycoprotein localized on the surface and within a variety of cells. Its conformation change is thought to be essential for the proliferation of prion neurodegenerative diseases. Using the yeast two-hybrid assay we identified an interaction between prion protein and clusterin, a chaperone glycoprotein. This interaction was confirmed in a mammalian system by in vivo co-immunoprecipitation and in vitro by circular dichroism analysis. Through deletion mapping analysis we demonstrated that the alpha subunit, but not the beta subunit, of clusterin binds to prion and that the C-terminal 62 amino acid segment of the putative alpha helix region of clusterin is essential for the binding interaction. The full prion protein as well as the N-terminal section (aa 23-95) and C-terminal (aa 96-231) were shown to interact with clusterin. These findings provide new insights into the molecular mechanisms of interaction between prion and clusterin protein and contribute to the understanding of prion protein's physiological function. 相似文献
6.
7.
Adenovirus protein VII functions throughout early phase and interacts with cellular proteins SET and pp32 下载免费PDF全文
Adenovirus protein VII is the major component of the viral nucleoprotein core. It is a highly basic nonspecific DNA-binding protein that condenses viral DNA inside the capsid. We have investigated the fate and function of protein VII during infection. "Input" protein VII persisted in the nucleus throughout early phase and the beginning of DNA replication. Chromatin immunoprecipitation revealed that input protein VII remained associated with viral DNA during this period. Two cellular proteins, SET and pp32, also associated with viral DNA during early phase. They are components of two multiprotein complexes, the SET and INHAT complexes, implicated in chromatin-related activities. Protein VII associated with SET and pp32 in vitro and distinct domains of protein VII were responsible for binding to the two proteins. Interestingly, protein VII was found in novel nuclear dot structures as visualized by immunofluorescence. The dots likely represent individual infectious genomes in association with protein VII. They appeared within 30 min after infection and localized in the nucleus with a peak of intensity between 4 and 10 h postinfection. After this, their intensity decreased and they disappeared between 16 and 24 h postinfection. Interestingly, disappearance of the dots required ongoing RNA synthesis but not DNA synthesis. Taken together these data indicate that protein VII has an ongoing role during early phase and the beginning of DNA replication. 相似文献
8.
Engeland CE Oberwinkler H Schümann M Krause E Müller GA Kräusslich HG 《Journal of virology》2011,85(24):13322-13332
Human immunodeficiency virus type 1 (HIV-1) Gag is the main structural protein driving assembly and release of virions from infected cells. Gag alone is capable of self-assembly in vitro, but host factors have been shown to play a role in efficient viral replication and particle morphogenesis within the living cell. In a series of affinity purification experiments, we identified the cellular protein Lyric to be an HIV-1 Gag-interacting protein. Lyric was previously described to be an HIV-inducible gene and is involved in various signaling pathways. Gag interacts with endogenous Lyric via its matrix (MA) and nucleocapsid (NC) domains. This interaction requires Gag multimerization and Lyric amino acids 101 to 289. Endogenous Lyric is incorporated into HIV-1 virions and is cleaved by the viral protease. Gag-Lyric interaction was also observed for murine leukemia virus and equine infectious anemia virus, suggesting that it represents a conserved feature among retroviruses. Expression of the Gag binding domain of Lyric increased Gag expression levels and viral infectivity, whereas expression of a Lyric mutant lacking the Gag binding site resulted in lower Gag expression and decreased viral infectivity. The results of the current study identify Lyric to be a cellular interaction partner of HIV-1 Gag and hint at a potential role in regulating infectivity. Further experiments are needed to elucidate the precise role of this interaction. 相似文献
9.
Hepatitis C virus core protein interacts with cellular putative RNA helicase 总被引:22,自引:0,他引:22 下载免费PDF全文
The nucleocapsid core protein of hepatitis C virus (HCV) has been shown to trans-act on several viral or cellular promoters. To get insight into the trans-action mechanism of HCV core protein, a yeast two-hybrid cloning system was used for identification of core protein-interacting cellular protein. One such cDNA clone encoding the DEAD box family of putative RNA helicase was obtained. This cellular putative RNA helicase, designated CAP-Rf, exhibits more than 95% amino acid sequence identity to other known RNA helicases including human DBX and DBY, mouse mDEAD3, and PL10, a family of proteins generally involved in translation, splicing, development, or cell growth. In vitro binding or in vivo coimmunoprecipitation studies demonstrated the direct interaction of the full-length/matured form and C-terminally truncated variants of HCV core protein with this targeted protein. Additionally, the protein's interaction domains were delineated at the N-terminal 40-amino-acid segment of the HCV core protein and the C-terminal tail of CAP-Rf, which encompassed its RNA-binding and ATP hydrolysis domains. Immunoblotting or indirect immunofluorescence analysis revealed that the endogenous CAP-Rf was mainly localized in the nucleus and to a lesser extent in the cytoplasm, and when fused with FLAG tag, it colocalized with the HCV core protein either in the cytoplasm or in the nucleus. Similar to other RNA helicases, this cellular RNA helicase has nucleoside triphosphatase-deoxynucleoside triphosphatase activity, but this activity is inhibited by various forms of homopolynucleotides and enhanced by the HCV core protein. Moreover, transient expression of HCV core protein in human hepatoma HuH-7 cells significantly potentiated the trans-activation effect of FLAG-tagged CAP-Rf or untagged CAP-Rf on the luciferase reporter plasmid activity. All together, our results indicate that CAP-Rf is involved in regulation of gene expression and that HCV core protein promotes the trans-activation ability of CAP-Rf, likely via the complex formation and the modulation of the ATPase-dATPase activity of CAP-Rf. These findings provide evidence that HCV may have evolved a distinct mechanism in alteration of host cellular gene expression regulation via the interaction of its nucleocapsid core protein and cellular putative RNA helicase known to participate in all aspects of cellular processes involving RNA metabolism. This feature of core protein may impart pleiotropic effects on host cells, which may partially account for its role in HCV pathogenesis. 相似文献
10.
11.
12.
The Chediak-Higashi protein interacts with SNARE complex and signal transduction proteins 总被引:5,自引:0,他引:5
Tchernev VT Mansfield TA Giot L Kumar AM Nandabalan K Li Y Mishra VS Detter JC Rothberg JM Wallace MR Southwick FS Kingsmore SF 《Molecular medicine (Cambridge, Mass.)》2002,8(1):56-64
BACKGROUND:Chediak-Higashi syndrome (CHS) is an inherited immunodeficiency disease characterized by giant lysosomes and impaired leukocyte degranulation. CHS results from mutations in the lysosomal trafficking regulator (LYST) gene, which encodes a 425-kD cytoplasmic protein of unknown function. The goal of this study was to identify proteins that interact with LYST as a first step in understanding how LYST modulates lysosomal exocytosis. MATERIALS AND METHODS: Fourteen cDNA fragments, covering the entire coding domain of LYST, were used as baits to screen five human cDNA libraries by a yeast two-hybrid method, modified to allow screening in the activation and the binding domain, three selectable markers, and more stringent confirmation procedures. Five of the interactions were confirmed by an in vitro binding assay. RESULTS: Twenty-one proteins that interact with LYST were identified in yeast two-hybrid screens. Four interactions, confirmed directly, were with proteins important in vesicular transport and signal transduction (the SNARE-complex protein HRS, 14-3-3, and casein kinase II). CONCLUSIONS:On the basis of protein interactions, LYST appears to function as an adapter protein that may juxtapose proteins that mediate intracellular membrane fusion reactions. The pathologic manifestations observed in CHS patients and in mice with the homologous mutation beige suggest that understanding the role of LYST may be relevant to the treatment of not only CHS but also of diseases such as asthma, urticaria, and lupus, as well as to the molecular dissection of the CHS-associated cancer predisposition. 相似文献
13.
15.
PrP(C) is a glycosylphosphatidylinositol (GPI) anchored glycoprotein of unknown function. Misfolding of normal cellular PrP(C) to the pathogenic PrP(Sc) is the hallmark of prion diseases (transmissible spongiform encephalopathies). Prion diseases are characterized by extensive neurodegeneration and early death. Understanding how PrP(C) maintains its correct conformation is a major endeavor of current inquiry. Here we demonstrate a novel interaction between PrP(C) and the J protein family member, Rdj2 (DjA2; Dj3, Dnj3, Cpr3, and Hirip4). The importance of the J protein family in the cellular folding machinery has been recognized for many years. The PrP(C)/Rdj2 association was direct and concentration-dependent. Other J proteins such as CSPalpha and auxilin did not associate with PrP(C) in the absence of ATP, demonstrating the specificity of the PrP(C)/J protein interaction. These findings suggest that the J protein family serves as a 'folding catalyst' for PrP(C) and implicates Rdj2 as a factor in the protection against prion diseases. 相似文献
16.
Popescu CI Callens N Trinel D Roingeard P Moradpour D Descamps V Duverlie G Penin F Héliot L Rouillé Y Dubuisson J 《PLoS pathogens》2011,7(2):e1001278
Growing experimental evidence indicates that, in addition to the physical virion components, the non-structural proteins of hepatitis C virus (HCV) are intimately involved in orchestrating morphogenesis. Since it is dispensable for HCV RNA replication, the non-structural viral protein NS2 is suggested to play a central role in HCV particle assembly. However, despite genetic evidences, we have almost no understanding about NS2 protein-protein interactions and their role in the production of infectious particles. Here, we used co-immunoprecipitation and/or fluorescence resonance energy transfer with fluorescence lifetime imaging microscopy analyses to study the interactions between NS2 and the viroporin p7 and the HCV glycoprotein E2. In addition, we used alanine scanning insertion mutagenesis as well as other mutations in the context of an infectious virus to investigate the functional role of NS2 in HCV assembly. Finally, the subcellular localization of NS2 and several mutants was analyzed by confocal microscopy. Our data demonstrate molecular interactions between NS2 and p7 and E2. Furthermore, we show that, in the context of an infectious virus, NS2 accumulates over time in endoplasmic reticulum-derived dotted structures and colocalizes with both the envelope glycoproteins and components of the replication complex in close proximity to the HCV core protein and lipid droplets, a location that has been shown to be essential for virus assembly. We show that NS2 transmembrane region is crucial for both E2 interaction and subcellular localization. Moreover, specific mutations in core, envelope proteins, p7 and NS5A reported to abolish viral assembly changed the subcellular localization of NS2 protein. Together, these observations indicate that NS2 protein attracts the envelope proteins at the assembly site and it crosstalks with non-structural proteins for virus assembly. 相似文献
17.
The insect-borne Bluetongue virus (BTV) is considered the prototypic Orbivirus, a member of the Reovirus family. One of the hallmarks of Orbivirus infection is the production of large numbers of intracellular tubular structures of unknown function. For BTV these structures are formed as the polymerization product of a single 64-kDa nonstructural protein, NS1, encoded by the viral double-stranded RNA genome segment 6. Although the NS1 protein is the most abundant viral protein synthesized in infected cells, its function has yet to be determined. One possibility is that NS1 tubules may be involved in the translocation of newly formed viral particles to the plasma membrane, and NS1-specific monoclonal antibodies have been shown to react with viral particles leaving infected cells. In the present study we generated a mammalian cell line that expresses a recombinant single-chain antibody fragment (scFv) derived from an NS1-specific monoclonal antibody (10B1) and analyzed the effect that this intracellular antibody has on BTV replication. Normally, BTV infection of mammalian cells in culture results in a severe cytopathic effect within 24 to 48 h postinfection manifested by cell rounding, apoptosis, and lytic release of virions into the culture medium. However, infection of scFv-expressing cells results in a marked reduction in the stability of NS1 and formation of NS1 tubules, a decrease in cytopathic effect, an increased release of infectious virus into the culture medium, and budding of virions from the plasma membrane. These results suggest that NS1 tubules play a direct role in the cellular pathogenesis and morphogenesis of BTV. 相似文献
18.
You Fu Pan Ing-Marie Viklund Heng Hang Tsai Sven Pettersson Ichiro N. Maruyama 《International journal of biological sciences》2010,6(2):163-171
Ulcerative colitis (UC) is one of the major forms of inflammatory bowel disease with unknown cause. A molecular marker, WAFL, has recently been found to be up-regulated in the inflamed colonic mucosa of UC patients. Towards understanding biological function of WAFL, we analyzed proteins interacting with WAFL in HEK-293 cells by immunoprecipitation and mass spectrometry. Among four proteins found to specifically interact with WAFL, both KIAA0196 and KIAA1033 bind to α-appendage of the adaptor protein complex 2 (AP2), which acts as an interaction hub for accessory proteins in endocytosis mediated by clathrin-coated vesicle (CCV). The specific interaction between WAFL and KIAA0196 was also confirmed in human colorectal carcinoma HCT-116 cells by co-immunoprecipitation with specific antibodies. Meta-analyses of the databases of expressed genes suggest that the three genes are co-expressed in many tissues and cell types, and that their molecular function may be classified in the category of ''membrane traffic protein''. Therefore, these results suggest that WAFL may play an important role in endocytosis and subsequent membrane trafficking by interacting with AP2 through KIAA0196 and KIAA1033. 相似文献
19.
Histidine triad nucleotide-binding (HinT) proteins are dimeric proteins that bind to purines and are found in all three kingdoms: the eukarya, bacteria and archaea. In eukaryotes, HinT proteins have been detected intracellularly, but their function is unknown. Until now, knowledge about HinT proteins in prokaryotes was restricted to sequence similarities and nucleotide-binding studies. In this study, we provide evidence that, in the cell wall-less prokaryote, Mycoplasma hominis, the gene encoding the HinT protein forms an operon with two other genes. These genes encode the species-specific membrane proteins, P60 and P80, which are associated within the mycoplasma membrane. The finding that HinT interacts with this complex by binding to P80 provides novel insight into the organization of bacterial HinT proteins. 相似文献