首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acoustic communication is an important behavior in frog courtship. Male and female frogs of most species, except the concave-eared torrent frog Odorrana tormota, have largely similar audiograms. The large odorous frogs (Odorrana graminea) are sympatric with O. tormota, but have no ear canals. The difference in hearing between two sexes of the frog is unknown. We recorded auditory evoked near-field potentials and single-unit responses from the auditory midbrain (the torus semicircularis) to determine auditory frequency sensitivity and threshold. The results show that males have the upper frequency limit at 24 kHz and females have the upper limit at 16 kHz. The more sensitive frequency range is 3–15 kHz for males and 1–8 kHz for females. Males have the minimum threshold at 11 kHz (58 dB SPL), higher about 5 dB than that at 3 kHz for females. The best excitatory frequencies of single units are mostly between 3 and 5 kHz in females and at 7–8 kHz in males. The underlying mechanism of auditory sexual differences is discussed.  相似文献   

2.
The gut bacterial community from four species of feral locusts and grasshoppers was determined by denaturing gradient gel electrophoresis (DGGE) analysis of bacterial 16S rRNA gene fragments. The study revealed an effect of phase polymorphism on gut bacterial diversity in brown locusts from South Africa. A single bacterial phylotype, consistent with Citrobacter sp. dominated the gut microbiota of two sympatric populations of Moroccan and Italian locusts in Spain. There was evidence for Wollbachia sp. in the meadow grasshopper caught locally in the UK. Sequence analysis of DGGE products did not reveal evidence for unculturable bacteria and homologies suggested that bacterial species were principally Gammaproteobacteria from the family Enterobacteriaceae similar to those recorded previously in laboratory reared locusts.  相似文献   

3.
Gut microbiota compositional alteration may have an association with immune dysfunction in patients with Behcet’s disease (BD). We conducted a fecal metagenomic analysis of BD patients. We analyzed fecal microbiota obtained from 12 patients with BD and 12 normal individuals by sequencing of 16S ribosomal RNA gene. We compared the relative abundance of bacterial taxa. Direct comparison of the relative abundance of bacterial taxa demonstrated that the genera Bifidobacterium and Eggerthella increased significantly and the genera Megamonas and Prevotella decreased significantly in BD patients compared with normal individuals. A linear discriminant analysis of bacterial taxa showed that the phylum Actinobacteria, including Bifidobacterium, and the family Lactobacillaceae exhibited larger positive effect sizes than other bacteria in patients with BD. The phylum Firmicutes and the class Clostridia had large effect sizes in normal individuals. There was no significant difference in annotated species numbers (as numbers of operational taxonomic unit; OTU) and bacterial diversity of each sample (alpha diversity) between BD patients and normal individuals. We next assigned each sample to a position using three axes by principal coordinates analysis of the OTU table. The two groups had a significant distance as beta diversity in the 3-axis space. Fecal sIgA concentrations increased significantly in BD patients but did not correlate with any bacterial taxonomic abundance. These data suggest that the compositional changes of gut microbes may be one type of dysbiosis (unfavorable microbiota alteration) in patients with BD. The dysbiosis may have an association with the pathophysiology of BD.  相似文献   

4.
The investigation provides molecular analyses of the faecal microbiota in type 2 diabetic patients. In order to characterise the gut microbiota in diabetic patients and to assess whether there are changes in the diversity and similarity of gut microbiota in diabetic patients when compared with healthy individuals, bacterial DNAs from 16 type 2 diabetic patients and 12 healthy individuals were extracted from faecal samples and characterised by PCR-denaturing gradient gel electrophoresis (DGGE) with primers specifically targeting V3 region of the 16S rRNA gene, as well as been sequenced for excised gel bands. The counts of Bacteroides vulgatus, Clostridium leptum subgroup and Bifidobacterium genus were assessed using quantitative PCR. By comparing species diversity profiles of two groups, we observed that there were no significant differences between diabetic and healthy group, although a few diabetic individuals (D6, D8) exhibited a remarkable decrease in species profiles. As for the similarity index, it was lower in inter-group than that in intra-group, which showed that the composition of gut microbiota in diabetic group might be changed due to diabetes status. Sequencing results also revealed that bacterial composition of diabetic group was different from that of the healthy group. B. vulgatus and Bifidobacterium genus were low represented in the microbiota of diabetic group, and the significant decrease was observed for Bifidobacterium by real-time PCR. Taken together, in this work we observed the characterisation of gut microbiota in diabetic patients, which suggestes that the gut microbiota of diabetes patients have some changes associated with occurrence and development of diabetes.  相似文献   

5.
Adaptive radiations provide unique opportunities to test whether and how recent ecological and evolutionary diversification of host species structures the composition of entire bacterial communities. We used 16S rRNA gene sequencing of faecal samples to test for differences in the gut microbiota of six species of Puerto Rican Anolis lizards characterized by the evolution of distinct ‘ecomorphs’ related to differences in habitat use. We found substantial variation in the composition of the microbiota within each species and ecomorph (trunk‐crown, trunk‐ground, grass‐bush), but no differences in bacterial alpha diversity among species or ecomorphs. Beta diversity analyses revealed subtle but significant differences in bacterial composition related to host phylogeny and species, but these differences were not consistently associated with Anolis ecomorph. Comparison of a trunk‐ground species from this clade (A. cristatellus) with a distantly related member of the same ecomorph class (A. sagrei) where the two species have been introduced and are now sympatric in Florida revealed pronounced differences in the alpha diversity and beta diversity of their microbiota despite their ecological similarity. Comparisons of these populations with allopatric conspecifics also revealed geographic differences in bacterial alpha diversity and beta diversity within each species. Finally, we observed high intraindividual variation over time and strong effects of a simplified laboratory diet on the microbiota of A. sagrei. Collectively, our results indicate that bacterial communities are only weakly shaped by the diversification of their lizard hosts due to the strikingly high levels of bacterial diversity and variation observed within Anolis species.  相似文献   

6.
The invertebrate microbiome contributes to multiple aspects of host physiology, including nutrient supplementation and immune maturation processes. We identified and compared gut microbial abundance and diversity in natural tsetse flies from Uganda using five genetically distinct populations of Glossina fuscipes fuscipes and multiple tsetse species (Glossina morsitans morsitans, G. f. fuscipes, and Glossina pallidipes) that occur in sympatry in one location. We used multiple approaches, including deep sequencing of the V4 hypervariable region of the 16S rRNA gene, 16S rRNA gene clone libraries, and bacterium-specific quantitative PCR (qPCR), to investigate the levels and patterns of gut microbial diversity from a total of 151 individuals. Our results show extremely limited diversity in field flies of different tsetse species. The obligate endosymbiont Wigglesworthia dominated all samples (>99%), but we also observed wide prevalence of low-density Sodalis (tsetse''s commensal endosymbiont) infections (<0.05%). There were also several individuals (22%) with high Sodalis density, which also carried coinfections with Serratia. Albeit in low density, we noted differences in microbiota composition among the genetically distinct G. f. fuscipes flies and between different sympatric species. Interestingly, Wigglesworthia density varied in different species (104 to 106 normalized genomes), with G. f. fuscipes having the highest levels. We describe the factors that may be responsible for the reduced diversity of tsetse''s gut microbiota compared to those of other insects. Additionally, we discuss the implications of Wigglesworthia and Sodalis density variations as they relate to trypanosome transmission dynamics and vector competence variations associated with different tsetse species.  相似文献   

7.
Altered Gut Microbiota Composition Associated with Eczema in Infants   总被引:1,自引:0,他引:1  
Eczema is frequently the first manifestation of an atopic diathesis and alteration in the diversity of gut microbiota has been reported in infants with eczema. To identify specific bacterial communities associated with eczema, we conducted a case-control study of 50 infants with eczema (cases) and 51 healthy infants (controls). We performed high-throughput sequencing for V3–V4 hypervariable regions of the 16S rRNA genes from the gut fecal material. A total of 12,386 OTUs (operational taxonomic units) at a 97% similarity level were obtained from the two groups, and we observed a difference in taxa abundance, but not the taxonomic composition, of gut microbiota between the two groups. We identified four genera enriched in healthy infants: Bifidobacterium, Megasphaera, Haemophilus and Streptococcus; and five genera enriched in infants with eczema: Escherichia/Shigella, Veillonella, Faecalibacterium, Lachnospiraceae incertae sedis and Clostridium XlVa. Several species, such as Faecalibacterium prausnitzii and Ruminococcus gnavus, that are known to be associated with atopy or inflammation, were found to be significantly enriched in infants with eczema. Higher abundance of Akkermansia muciniphila in eczematous infants might reduce the integrity of intestinal barrier function and therefore increase the risk of developing eczema. On the other hand, Bacteroides fragilis and Streptococcus salivarius, which are known for their anti-inflammatory properties, were less abundant in infants with eczema. The observed differences in genera and species between cases and controls in this study may provide insight into the link between the microbiome and eczema risk.  相似文献   

8.
Microbial communities in animal guts are composed of diverse, specialized bacterial species, but little is known about how gut bacteria diversify to produce genetically and ecologically distinct entities. The gut microbiota of the honey bee, Apis mellifera, presents a useful model, because it consists of a small number of characteristic bacterial species, each showing signs of diversification. Here, we used single-cell genomics to study the variation within two species of the bee gut microbiota: Gilliamella apicola and Snodgrassella alvi. For both species, our analyses revealed extensive variation in intraspecific divergence of protein-coding genes but uniformly high levels of 16S rRNA similarity. In both species, the divergence of 16S rRNA loci appears to have been curtailed by frequent recombination within populations, while other genomic regions have continuously diverged. Furthermore, gene repertoires differ markedly among strains in both species, implying distinct metabolic capabilities. Our results show that, despite minimal divergence at 16S rRNA genes, in situ diversification occurs within gut communities and generates bacterial lineages with distinct ecological niches. Therefore, important dimensions of microbial diversity are not evident from analyses of 16S rRNA, and single cell genomics has potential to elucidate processes of bacterial diversification.  相似文献   

9.
Effects of BmCPV Infection on Silkworm Bombyx mori Intestinal Bacteria   总被引:1,自引:0,他引:1  
The gut microbiota has a crucial role in the growth, development and environmental adaptation in the host insect. The objective of our work was to investigate the microbiota of the healthy silkworm Bombyx mori gut and changes after the infection of B. mori cypovirus (BmCPV). Intestinal contents of the infected and healthy larvae of B. mori of fifth instar were collected at 24, 72 and 144 h post infection with BmCPV. The gut bacteria were analyzed by pyrosequencing of the 16S rRNA gene. 147(135) and 113(103) genera were found in the gut content of the healthy control female (male) larvae and BmCPV-infected female (male) larvae, respectively. In general, the microbial communities in the gut content of healthy larvae were dominated by Enterococcus, Delftia, Pelomonas, Ralstonia and Staphylococcus, however the abundance change of each genus was depended on the developmental stage and gender. Microbial diversity reached minimum at 144 h of fifth instar larvae. The abundance of Enterococcus in the females was substantially lower and the abundance of Delftia, Aurantimonas and Staphylococcus was substantially higher compared to the males. Bacterial diversity in the intestinal contents decreased after post infection with BmCPV, whereas the abundance of both Enterococcus and Staphylococcus which belongs to Gram-positive were increased. Therefore, our findings suggested that observed changes in relative abundance was related to the immune response of silkworm to BmCPV infection. Relevance analysis of plenty of the predominant genera showed the abundance of the Enterococcus genus was in negative correlation with the abundance of the most predominant genera. These results provided insight into the relationship between the gut microbiota and development of the BmCPV-infected silkworm.  相似文献   

10.
Termites inhabit tropical and subtropical areas where they contribute to structure and composition of soils by efficiently degrading biomass with aid of resident gut microbiota. In this study, culture-independent molecular analysis was performed based on bacterial and archaeal 16S rRNA clone libraries to describe the gut microbial communities within Cornitermes cumulans, a South American litter-feeding termite. Our data reveal extensive bacterial diversity, mainly composed of organisms from the phyla Spirochaetes, Bacteroidetes, Firmicutes, Actinobacteria, and Fibrobacteres. In contrast, a low diversity of archaeal 16S rRNA sequences was found, comprising mainly members of the Crenarchaeota phylum. The diversity of archaeal methanogens was further analyzed by sequencing clones from a library for the mcrA gene, which encodes the enzyme methyl coenzyme reductase, responsible for catalyzing the last step in methane production, methane being an important greenhouse gas. The mcrA sequences were diverse and divided phylogenetically into three clades related to uncultured environmental archaea and methanogens found in different termite species. C. cumulans is a litter-feeding, mound-building termite considered a keystone species in natural ecosystems and also a pest in agriculture. Here, we describe the archaeal and bacterial communities within this termite, revealing for the first time its intriguing microbiota.  相似文献   

11.
Microorganisms in insect guts have been recognized as having a great impact on their hosts' nutrition, health, and behavior. Spiders are important natural enemies of pests, and the composition of the gut microbiota of spiders remains unclear. Will the bacterial taxa in spiders be same as the bacterial taxa in insects, and what are the potential functions of the gut bacteria in spiders? To gain insight into the composition of the gut bacteria in spiders and their potential function, we collected three spider species, Pardosa laura, Pardosa astrigera, and Nurscia albofasciata, in the field, and high‐throughput sequencing of the 16S rRNA V3 and V4 regions was used to investigate the diversity of gut microbiota across the three spider species. A total of 23 phyla and 150 families were identified in these three spider species. The dominant bacterial phylum across all samples was Proteobacteria. Burkholderia, Ralstonia, Ochrobactrum, Providencia, Acinetobacter, Proteus, and Rhodoplanes were the dominant genera in the guts of the three spider species. The relative abundances of Wolbachia and Rickettsiella detected in Nalbofasciata were significantly higher than those in the other two spider species. The relative abundance of Thermus, Amycolatopsis, Lactococcus, Acinetobacter Microbacterium, and Koribacter detected in spider gut was different among the three spider species. Biomolecular interaction networks indicated that the microbiota in the guts had complex interactions. The results of this study also suggested that at the genus level, some of the gut bacteria taxa in the three spider species were the same as the bacteria in insect guts.  相似文献   

12.
《Journal of Asia》2020,23(2):430-438
The bacterial community living in the insect gut may play an important role in nutrition, immunity and protection, detoxification of toxins, and inter- and intra-specific communication. Rice leaffolder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Crambidae) is a notorious pest in rice, and the diversity of the gut bacteria of C. medinalis across life stages are not well understood. Here, the diversity and abundance of the gut bacterial community in C. medinalis through life stages were investigated using Illumina Miseq technology. A total of 22 bacterial phyla, 42 classes, 100 orders, 179 families, 350 genera and 395 species were identified across the different life stages of C. medinalis. Proteobacteria and Firmicutes phyla were the dominant bacterial taxa. Members of the genera Enterococcus, unclassified Enterobacteriaceae, Wolbachia, Acinetobacter, Stenotrophomonas, Microbacterium, Bacillus, Corynebacterium, Lampropedia, and Sphingobacterium were found at all life stages. Enterococcus and unclassified Enterobacteriaceae occupied higher relative abundance among bacteria community in the 2nd to 5th instar larvae, pupae and adults. The structure of bacterial community differed across the life stages of C. medinalis. Our findings will enrich the understanding of gut bacteria in C. medinalis, and will provide foundation and assistance for the development of novel pest management strategies through utilization of microbiota.  相似文献   

13.
BackgroundPrevious reports show altered gut bacterial profiles are associated with helminth infected individuals. Our recently published molecular survey of clinical helminthiases in Thailand border regions demonstrated a more comprehensive picture of infection prevalence when Kato Katz microscopy and copro-qPCR diagnostics were combined. We revealed that Opisthorchis viverrini, hookworm, Ascaris lumbricoides and Trichuris trichiura were the most predominant helminth infections in these regions. In the current study, we have profiled the faecal and saliva microbiota of a subset of these helminth infected participants, in order to determine if microbial changes are associated with parasite infection.MethodsA subset of 66 faecal samples from Adisakwattana et al., (2020) were characterised for bacterial diversity using 16S rRNA gene profiling. Of these samples a subset of 24 participant matched saliva samples were also profiled for microbiota diversity. Sequence data were compiled, OTUs assigned, and diversity and abundance analysed using the statistical software Calypso.ResultsThe data reported here indicate that helminth infections impact on both the host gut and oral microbiota. The profiles of faecal and saliva samples, irrespective of the infection status, were considerably different from each other, with more alpha diversity associated with saliva (p-value≤ 0.0015). Helminth infection influenced the faecal microbiota with respect to specific taxa, but not overall microbial alpha diversity. Conversely, helminth infection was associated with increased saliva microbiota alpha diversity (Chao 1 diversity indices) at both the genus (p-value = 0.042) and phylum (p-value = 0.026) taxa levels, compared to uninfected individuals. Elevated individual taxa in infected individuals saliva were noted at the genus and family levels. Since Opisthorchis viverrini infections as a prominent health concern to Thailand, this pathogen was examined separately to other helminths infections present. Individuals with an O. viverrini mono-infection displayed both increases and decreases in genera present in their faecal microbiota, while increases in three families and one order were also observed in these samples.DiscussionIn this study, helminth infections appear to alter the abundance of specific faecal bacterial taxa, but do not impact on overall bacterial alpha or beta diversity. In addition, the faecal microbiota of O. viverrini only infected individuals differed from that of other helminth single and dual infections. Saliva microbiota analyses of individuals harbouring active helminth infections presented increased levels of both bacterial alpha diversity and abundance of individual taxa. Our data demonstrate that microbial change is associated with helminthiases in endemic regions of Thailand, and that this is reflected in both faecal and saliva microbiota. To our knowledge, this is the first report of an altered saliva microbiota in helminth infected individuals. This work may provide new avenues for improved diagnostics; and an enhanced understanding of both helminth infection pathology and the interplay between helminths, bacteria and their host.  相似文献   

14.
The gut microbiota is emerging as a new factor in the development of obesity. Many studies have described changes in microbiota composition in response to obesity and high fat diet (HFD) at the phylum level. In this study we used 16s RNA high throughput sequencing on faecal samples from rats chronically fed HFD or control chow (n = 10 per group, 16 weeks) to investigate changes in gut microbiota composition at the species level. 53.17% dissimilarity between groups was observed at the species level. Lactobacillus intestinalis dominated the microbiota in rats under the chow diet. However this species was considerably less abundant in rats fed HFD (P<0.0001), this being compensated by an increase in abundance of propionate/acetate producing species. To further understand the influence of these species on the development of the obese phenotype, we correlated their abundance with metabolic parameters associated with obesity. Of the taxa contributing the most to dissimilarity between groups, 10 presented significant correlations with at least one of the tested parameters, three of them correlated positively with all metabolic parameters: Phascolarctobacterium, Proteus mirabilis and Veillonellaceae, all propionate/acetate producers. Lactobacillus intestinalis was the only species whose abundance was negatively correlated with change in body weight and fat mass. This species decreased drastically in response to HFD, favouring propionate/acetate producing bacterial species whose abundance was strongly correlated with adiposity and deterioration of metabolic factors. Our observations suggest that these species may play a key role in the development of obesity in response to a HFD.  相似文献   

15.
Despite a long-suspected role in the development of human colorectal cancer (CRC), the composition of gut microbiota in CRC patients has not been adequately described. In this study, fecal bacterial diversity in CRC patients (n=46) and healthy volunteers (n=56) were profiled by 454 pyrosequencing of the V3 region of the 16S ribosomal RNA gene. Both principal component analysis and UniFrac analysis showed structural segregation between the two populations. Forty-eight operational taxonomic units (OTUs) were identified by redundancy analysis as key variables significantly associated with the structural difference. One OTU closely related to Bacteroides fragilis was enriched in the gut microbiota of CRC patients, whereas three OTUs related to Bacteroides vulgatus and Bacteroides uniformis were enriched in that of healthy volunteers. A total of 11 OTUs belonging to the genera Enterococcus, Escherichia/Shigella, Klebsiella, Streptococcus and Peptostreptococcus were significantly more abundant in the gut microbiota of CRC patients, and 5 OTUs belonging to the genus Roseburia and other butyrate-producing bacteria of the family Lachnospiraceae were less abundant. Real-time quantitative PCR further validated the significant reduction of butyrate-producing bacteria in the gut microbiota of CRC patients by measuring the copy numbers of butyryl-coenzyme A CoA transferase genes (Mann–Whitney test, P<0.01). Reduction of butyrate producers and increase of opportunistic pathogens may constitute a major structural imbalance of gut microbiota in CRC patients.  相似文献   

16.
The impact of different diets on the gut microbiota of reared Nephrops norvegicus was investigated based on bacterial 16S rRNA gene diversity. Specimens were collected from Pagasitikos Gulf (Greece) and kept in experimental rearing tanks, under in situ conditions, for 6 months. Treatments included three diets: frozen natural (mussel) food (M), dry formulated pellet (P) and starvation (S). Gut samples were collected at the initiation of the experiment, and after 3 and 6 months. Tank water and diet samples were also analyzed for bacterial 16S rRNA gene diversity. Statistical analysis separated the two groups fed or starved (M and P vs. S samples). Most gut bacteria were not related to the water or diet bacteria, while bacterial diversity was higher in the starvation samples. M and P samples were dominated by Gammaproteobacteria, Epsilonproteobacteria and Tenericutes. Phylotypes clustering in Photobacterium leiognathi, Shewanella sp. and Entomoplasmatales had high frequencies in the M and P samples but low sequence frequencies in S samples. The study showed that feeding resulted in the selection of specific species, which also occurs in the natural population, and might be associated with the animal's nutrition.  相似文献   

17.
The gut microorganisms in some animals are reported to include a core microbiota of consistently associated bacteria that is ecologically distinctive and may have coevolved with the host. The core microbiota is promoted by positive interactions among bacteria, favoring shared persistence; its retention over evolutionary timescales is evident as congruence between host phylogeny and bacterial community composition. This study applied multiple analyses to investigate variation in the composition of gut microbiota in drosophilid flies. First, the prevalence of five previously described gut bacteria (Acetobacter and Lactobacillus species) in individual flies of 21 strains (10 Drosophila species) were determined. Most bacteria were not present in all individuals of most strains, and bacterial species pairs co-occurred in individual flies less frequently than predicted by chance, contrary to expectations of a core microbiota. A complementary pyrosequencing analysis of 16S rRNA gene amplicons from the gut microbiota of 11 Drosophila species identified 209 bacterial operational taxonomic units (OTUs), with near-saturating sampling of sequences, but none of the OTUs was common to all host species. Furthermore, in both of two independent sets of Drosophila species, the gut bacterial community composition was not congruent with host phylogeny. The final analysis identified no common OTUs across three wild and four laboratory samples of D. melanogaster. Our results yielded no consistent evidence for a core microbiota in Drosophila. We conclude that the taxonomic composition of gut microbiota varies widely within and among Drosophila populations and species. This is reminiscent of the patterns of bacterial composition in guts of some other animals, including humans.  相似文献   

18.
Environmental temperature can alter the composition, diversity, and function of ectothermic vertebrate gut microbial communities, which may result in negative consequences for host physiology, or conversely, increase phenotypic plasticity and persistence in harsh conditions. The magnitude of either of these effects will depend on the length of time animals are exposed to extreme temperatures, and how quickly the composition and function of the gut microbiota can respond to temperature change. However, the temporal effects of temperature on gut microbiota are currently unknown. Here, we investigated the length of time required for increased temperature to alter the composition of gut bacterial communities in tadpoles of two frog species, the green frog, Lithobates clamitans, and its congener, the globally invasive American bullfrog, L. catesbeianus. We also explored the potential functional consequences of these changes by comparing predicted metagenomic profiles across temperature treatments at the last experimental time point. Bullfrog‐associated microbial communities were more plastic than those of the green frog. Specifically, bullfrog communities were altered by increased temperature within hours, while green frog communities took multiple days to exhibit significant changes. Further, over ten times more bullfrog bacterial functional pathways were temperature‐dependent compared to the green frog. These results support our hypothesis that bullfrog gut microbial communities would respond more rapidly to temperature change, potentially bolstering their ability to exploit novel environments. More broadly, we have revealed that even short‐term increases in environmental temperature, expected to occur frequently under global climate change, can alter the gut microbiota of ectothermic vertebrates.  相似文献   

19.
Research on gut microbiota of phytophagous insects has shown to be important for the physiological functions of insect hosts; however, little is known about the changes in gut microbiota when they are suffering from environmental stress or pathogen infections. During rearing of Phasmotaenia lanyuhensis (Phasmatodea: Phasmatidae), sluggish locomotion was usually followed by the death of the insect with a symptom of melanization in the front part of the abdomen. Therefore, the abnormal individuals were initially classified into moribund, light- and serious-symptom based on the level of abnormal physiological circumstances and melanization. The gut microbiota of these samples were further investigated by 16S metagenomic sequencing and the differences in bacterial abundance and structure of bacterial community were analyzed. A decrease in microbiota diversity was observed in the diseased P. lanyuhensis, with the abundance of phyla Proteobacteria and Firmicute relatively higher compared to those without symptom. Interestingly, principal component analysis based on the bacterial richness was correlated to the level of melanization symptom in the diseased P. lanyuhensis, suggested the change in bacterial microbiota involved in this abnormal circumstance. However, the factor that caused the initial alternation of microbiota remains to be identified. Additionally, the lack of bacterial diversity (i.e., absence of Meiothermus and Nubsella spp.) in P. lanyuhensis might reduce the fitness for surviving. This report provided the comprehensive microbiota analysis for P. lanyuhensis and concluded that either the relative abundance or the bacterial diversity of microbiota in the insect digestive system may influence the physiological functions of phytophagous insects.  相似文献   

20.
Intestinal parasitic infections, caused by helminths and protozoa, are globally distributed and major causes of worldwide morbidity. The gut microbiota may modulate parasite virulence and host response upon infection. The complex interplay between parasites and the gut microbiota is poorly understood, partly due to sampling difficulties in remote areas with high parasite burden. In a large study of children in Guinea-Bissau, we found high prevalence of intestinal parasites. By sequencing of the 16S rRNA genes of fecal samples stored on filter paper from a total of 1,204 children, we demonstrate that the bacterial microbiota is not significantly altered by helminth infections, whereas it is shaped by the presence of both pathogenic and nonpathogenic protozoa, including Entamoeba (E.) spp. and Giardia (G.) lamblia. Within-sample diversity remains largely unaffected, whereas overall community composition is significantly affected by infection with both nonpathogenic E. coli (R2 = 0.0131, P = 0.0001) and Endolimax nana (R2 = 0.00902, P = 0.0001), and by pathogenic E. histolytica (R2 = 0.0164, P = 0.0001) and G. lamblia (R2 = 0.00676, P = 0.0001). Infections with multiple parasite species induces more pronounced shifts in microbiota community than mild ones. A total of 31 bacterial genera across all four major bacterial phyla were differentially abundant in protozoan infection as compared to noninfected individuals, including increased abundance of Prevotella, Campylobacter and two Clostridium clades, and decreased abundance of Collinsella, Lactobacillus, Ruminococcus, Veillonella and one Clostridium clade. In the present study, we demonstrate that the fecal bacterial microbiota is shaped by intestinal parasitic infection, with most pronounced associations for protozoan species. Our results provide insights into the interplay between the microbiota and intestinal parasites, which are valuable to understand infection biology and design further studies aimed at optimizing treatment strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号