首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emerging roles for neogenin and its ligands in CNS development   总被引:1,自引:0,他引:1  
It is now well established that the netrin guidance cues and their receptors comprise a major molecular guidance system driving axon pathfinding during nervous system development. One netrin receptor, neogenin, is now emerging as a key regulator of many developmental processes throughout the embryo. Unexpectedly, a new family of neogenin ligands, the repulsive guidance molecule (RGM) family, has recently been identified. The functional outcome of neogenin activation is dictated by both the nature of the ligand as well as the developmental context. Netrin-1–neogenin interactions mediate chemoattractive axon guidance, while RGMa–neogenin interactions repel axons. Neogenin is required for the establishment of the pseudostratified epithelium of the neural tube, probably by promoting cell adhesion. In addition, a role for RGMa and neogenin in neuronal differentiation has been demonstrated. While neogenin signaling cascades are poorly understood, the opposing responses of neogenin to RGMa and netrin-1 in the context of axon guidance indicates that neogenin signaling is complex and subject to tight spatiotemporal regulation. In summary, neogenin is a multifunctional receptor regulating diverse developmental processes. Thus, its contribution to neural development is proving to be considerably more extensive than originally predicted.  相似文献   

2.
Repulsive guidance molecule (RGM) a is a glycosylphosphatidylinositol (GPI)-anchored plasma membrane protein that has been implicated in chemorepulsive axon guidance. Although RGMa binds the transmembrane receptor Neogenin, the developmental events controlled by the RGMa-Neogenin interactions in vivo remain largely unknown. We have cloned full-length RGMa from Xenopus borealis for the first time and identified two homologous genes referred to as RGMa1 and RGMa2. Here we show RGMa1 overexpression at 2-cell-stage resulted in cell death, which lead to an early embryonic lethal phenotype of the embryos. Time-lapse photomicroscopy revealed that embryos began to show initial morphological defects from ∼5 h post-fertilization (hpf) which was then followed by extensive blastomere cell death at ∼11 hpf. This phenotype was rescued by simultaneous knock down of RGMa using translation blocking anti-sense morpholinos. Knock down of the RGMa1 receptor Neogenin in RGMa1 overexpressing embryos was also able to rescue the phenotype. Together these results indicated that RGMa1 was signalling through Neogenin to induce cell death in the early embryo. While previous studies have suggested that Neogenin is a dependence receptor that induces cell death in the absence of RGM, we have instead shown that Neogenin-RGM interactions induce cell death in the early embryo. The roles of RGMa1 and Neogenin appear to be context specific so that their co-ordinated and regulated expressions are essential for normal development of the vertebrate embryo.  相似文献   

3.
Neogenin has been implicated in a variety of developmental processes such as neurogenesis, neuronal differentiation, apoptosis, migration and axon guidance. Binding of repulsive guidance molecules (RGMs) to Neogenin inhibits axon outgrowth of different neuronal populations. This effect requires Neogenin to interact with co-receptors of the uncoordinated locomotion-5 (Unc5) family to activate downstream Rho signaling. Although previous studies have reported RGM, Neogenin, and/or Unc5 expression, a systematic comparison of RGM and Neogenin expression in the developing nervous system is lacking, especially at later developmental stages. Furthermore, information on RGM and Neogenin expression at the protein level is limited. To fill this void and to gain further insight into the role of RGM-Neogenin signaling during mouse neural development, we studied the expression of RGMa, RGMb, Neogenin and Unc5A-D using in situ hybridization, immunohistochemistry and RGMa section binding. Expression patterns in the primary olfactory system, cortex, hippocampus, habenula, and cerebellum were studied in more detail. Characteristic cell layer-specific expression patterns were detected for RGMa, RGMb, Neogenin and Unc5A-D. Furthermore, strong expression of RGMa, RGMb and Neogenin protein was found on several major axon tracts such as the primary olfactory projections, anterior commissure and fasciculus retroflexus. These data not only hint at a role for RGM-Neogenin signaling during the development of different neuronal systems, but also suggest that Neogenin partners with different Unc5 family members in different systems. Overall, the results presented here will serve as a framework for further dissection of the role of RGM-Neogenin signaling during neural development.  相似文献   

4.
Neogenin is a multifunctional transmembrane receptor belonging to the immunoglobulin superfamily. It displays identical secondary structure to deleted in colorectal cancer (DCC), a netrin receptor that is involved in axon guidance and cell survival. Like DCC, neogenin is able to transduce signals elicited by netrin. These neogenin-netrin interactions have been implicated in tissue morphogenesis, angiogenesis, myoblast differentiation and most recently in axon guidance. Neogenin is also a receptor for repulsive guidance molecule, a glycosylphosphatidylinositol-linked protein involved in neuronal differentiation, apoptosis and repulsive axon guidance. Numerous studies have been started to elucidate the in vivo functions of neogenin, and its role in multiple aspects of development and homeostasis.  相似文献   

5.
In the embryonic forebrain, pioneer axons establish a simple topography of dorsoventral and longitudinal tracts. The cues used by these axons during the initial formation of the axon scaffold remain largely unknown. We have investigated the axon guidance role of Neogenin, a member of the immunoglobulin (Ig) superfamily that binds to the chemoattractive ligand Netrin-1, as well as to the chemorepulsive ligand repulsive guidance molecule (RGMa). Here, we show strong expression of Neogenin and both of its putative ligands in the developing Xenopus forebrain. Neogenin loss-of-function mutants revealed that this receptor was essential for axon guidance in an early forming dorsoventral brain pathway. Similar mutant phenotypes were also observed following loss of either RGMa or Netrin-1. Simultaneous partial knock downs of these molecules revealed dosage-sensitive interactions and confirmed that these receptors and ligands were acting in the same pathway. The results provide the first evidence that Neogenin acts as an axon guidance molecule in vivo and support a model whereby Neogenin-expressing axons respond to a combination of attractive and repulsive cues as they navigate their ventral trajectory.  相似文献   

6.
Repulsive guidance molecule (RGM) is an axon guidance protein that repels retinal axons upon activation of the neogenin receptor. To understand the functions of RGM-neogenin complexes in vivo, we used gene transfer technology to perturb their expression in the developing neural tube of chick embryos. Surprisingly, neogenin over-expression or RGM down-expression in the neural tube induces apoptosis. Neogenin pro-apoptotic activity in immortalized neuronal cells and in the neural tube is associated with the cleavage of its cytoplasmic domain by caspases. Thus neogenin is a dependence receptor inducing cell death in the absence of RGM, whereas the presence of RGM inhibits this effect.  相似文献   

7.
The Netrin receptor Deleted in colon cancer (Dcc) has been shown to play a pivotal role in the guidance of nascent axons towards the ventral midline in the developing nervous systems of both vertebrates and invertebrates. In contrast, the function during embryogenesis of a second Dcc-like Netrin receptor Neogenin has not yet been defined. We used antisense morpholino oligonucleotides to knockdown Neogenin activity in zebrafish embryos and demonstrate that Neogenin plays an important role in neural tube formation and somitogenesis. In Neogenin knockdown embryos, cavitation within the neural rod failed to occur, producing a neural tube lacking a lumen. Somite formation was also defective, implicating Neogenin in the migration events underlying convergent extension during gastrulation. These observations suggest a role for Neogenin in determining cell polarity or migrational directionality of both neuroectodermal and mesodermal cells during early embryonic development.  相似文献   

8.
9.
How axons in the developing nervous system successfully navigate to their correct targets is a fundamental problem in neurobiology. Understanding the mechanisms that mediate axon guidance will give important insight into how the nervous system is correctly wired during development and may have implications for therapeutic approaches to developmental brain disorders and nerve regeneration. Achieving this understanding will require unraveling the molecular logic that ensures the proper expression and localization of axon guidance cues and receptors, and elucidating the signaling events that regulate the growth cone cytoskeleton in response to guidance receptor activation. Studies of axon guidance at the midline of many experimental systems, from the ventral midline of Drosophila to the vertebrate spinal cord, have led to important mechanistic insights into the complex problem of wiring the nervous system. Here we review recent advances in understanding the regulation of midline axon guidance, with a particular emphasis on the contributions made from molecular genetic studies of invertebrate model systems.  相似文献   

10.
How axons in the developing nervous system successfully navigate to their correct targets is a fundamental problem in neurobiology. Understanding the mechanisms that mediate axon guidance will give important insight into how the nervous system is correctly wired during development and may have implications for therapeutic approaches to developmental brain disorders and nerve regeneration. Achieving this understanding will require unraveling the molecular logic that ensures the proper expression and localization of axon guidance cues and receptors, and elucidating the signaling events that regulate the growth cone cytoskeleton in response to guidance receptor activation. Studies of axon guidance at the midline of many experimental systems, from the ventral midline of Drosophila to the vertebrate spinal cord, have led to important mechanistic insights into the complex problem of wiring the nervous system. Here we review recent advances in understanding the regulation of midline axon guidance, with a particular emphasis on the contributions made from molecular genetic studies of invertebrate model systems.  相似文献   

11.
Gao J  Zhang C  Yang B  Sun L  Zhang C  Westerfield M  Peng G 《PloS one》2012,7(5):e36516
The guidance receptor DCC (deleted in colorectal cancer) ortholog UNC-40 regulates neuronal asymmetry development in Caenorhabditis elegans, but it is not known whether DCC plays a role in the specification of neuronal polarity in vertebrates. To examine the roles of DCC in neuronal asymmetry regulation in vertebrates, we studied zebrafish anterior dorsal telencephalon (ADt) neuronal axons. We generated transgenic zebrafish animals expressing the photo-convertible fluorescent protein Kaede in ADt neurons and then photo-converted Kaede to label specifically the ADt neuron axons. We found that ADt axons normally project ventrally. Knock down of Dcc function by injecting antisense morpholino oligonucleotides caused the ADt neurons to project axons dorsally. To examine the axon projection pattern of individual ADt neurons, we labeled single ADt neurons using a forebrain-specific promoter to drive fluorescent protein expression. We found that individual ADt neurons projected axons dorsally or formed multiple processes after morpholino knock down of Dcc function. We further found that knock down of the Dcc ligand, Netrin1, also caused ADt neurons to project axons dorsally. Knockdown of Neogenin1, a guidance receptor closely related to Dcc, enhanced the formation of aberrant dorsal axons in embryos injected with Dcc morpholino. These experiments provide the first evidence that Dcc regulates polarized axon initiation and asymmetric outgrowth of forebrain neurons in vertebrates.  相似文献   

12.
Repulsive guidance molecule (RGM) is a membrane-bound protein that was originally identified as an axon guidance molecule in the visual system [T. Yamashita, B.K. Mueller, K. Hata, Neogenin and RGM signaling in the central nervous system, Curr. Opin. Neurobiol. 17 (2007) 29-34]. Functional studies in Xenopus and chick embryos have revealed the roles of RGM in axon guidance and laminar patterning, while those in mouse embryos have demonstrated its function in regulating the cephalic neural tube closure. Importantly, RGM inhibition enhanced the growth of injured axons and promoted functional recovery after spinal cord injury in rats. Here, we identified two RGMa-derived peptides that functioned as antagonists against RGMa. The peptides studied in vitro dose-dependently suppressed the neurite growth inhibition and growth cone collapse induced by RGMa. Thus, these peptides are promising reagents to treat injuries of the central nervous system.  相似文献   

13.
The Netrin/RGMa receptor, Neogenin, has recently been identified on neuronal and gliogenic progenitors, including radial glia in the embryonic mouse cortex and ganglionic eminences, respectively [Fitzgerald, D.P., Cole, S.J., Hammond, A., Seaman, C., Cooper, H.M., 2006a. Characterization of Neogenin-expressing neural progenitor populations and migrating neuroblasts in the embryonic mouse forebrain. Neuroscience 142, 703-716]. Here we have undertaken a detailed analysis of Neogenin expression in the embryonic mouse central nervous system at key developmental time points. We demonstrate that Neogenin protein is present on actively dividing neurogenic precursors during peak phases of neurogenesis (embryonic days 12.5-14.5) in the forebrain, midbrain and hindbrain. Furthermore, we show that Neogenin protein is localized to the cell bodies and glial processes of neurogenic radial glial populations in all these regions. We have also observed Neogenin on gliogenic precursors within the subventricular zones of the forebrain late in development (embryonic day 17.5). Adult neural stem cells found in the subventricular zone of the lateral ventricle of the rodent forebrain are direct descendants of the embryonic striatal radial glial population. Here we show that Neogenin expression is maintained in the neural stem cell population of the adult mouse forebrain. In summary, this study demonstrates that Neogenin expression is a hallmark of many neural precursor populations (neurogenic and gliogenic) in both the embryonic and adult mammalian central nervous system.  相似文献   

14.
Members of the Wnt family and their receptors, the Frizzleds, are key regulators of pivotal developmental processes including embryonic patterning, specification of cell fate, and determination of cell polarity. The versatility and complexity of Wnt signaling has been further highlighted by the emergence of a novel family of Wnt receptors, the Ryk family. In mammals and flies, Ryk is a key chemorepulsive axon guidance receptor responsible for the establishment of important axon tracts during nervous system development. Although the function of Ryk is currently best understood with respect to this role, its widespread expression, both in developing tissues and in the adult, suggests that Ryk may regulate many essential biological processes. This hypothesis is supported by the multiple developmental phenotypes apparent in Ryk loss-of-function mice. These mice display a variety of embryonic abnormalities, including disruption of skeletal, craniofacial and cardiac development. Here we review Ryk structure and function focusing on its activity as an axon guidance receptor.  相似文献   

15.
D Orioli  M Henkemeyer  G Lemke  R Klein    T Pawson 《The EMBO journal》1996,15(22):6035-6049
Sek4 and Nuk are members of the Eph-related family of receptor protein-tyrosine kinases. These receptors interact with a set of cell surface ligands that have recently been implicated in axon guidance and fasciculation. We now demonstrate that the formation of the corpus callosum and anterior commissure, two major commissural axon tracts that connect the two cerebral hemispheres, is critically dependent on Sek4 and Nuk. While mice deficient in Nuk exhibit defects in pathfinding of anterior commissure axons, sek4 mutants have defects in corpus callosum formation. The phenotype in both axon tracts is markedly more severe in sek4/nuk1 double mutants, indicating that the two receptors act in a partially redundant fashion. sek4/nuk1 double mutants also exhibit specific guidance and fasciculation defects of diencephalic axon tracts. Moreover, while mice singly deficient in either Sek4 or Nuk are viable, most sek4/nuk1 double mutants die immediately after birth primarily due to a cleft palate. These results demonstrate essential and cooperative functions for Sek4 and Nuk in establishing axon pathways in the developing brain, and during the development of facial structures.  相似文献   

16.
Netrin 1 plays key roles in axon guidance and neuronal migration during central nervous system (CNS) development. Outside the CNS, Netrin 1 has been shown to be involved in epithelial morphogenesis of various organs. We have shown that Netrin 1 is essential for inner ear semicircular duct formation, but the involvement of Netrin 1 receptors in this process has remained unknown. Netrin 1 receptors include members of the Deleted in colorectal cancer (Dcc), Unc5-homologue and integrin families. Here we have analysed the expression of these receptor genes during inner ear development and verified the inner ear phenotypes of several receptor mutant mice. Special interest was directed to receptors that could cooperate with Netrin 1 during semicircular duct formation. We show that Neogenin (Neo1), Unc5c as well as integrin b1 (Itgb1) are expressed in periotic mesenchyme, while Dcc, Unc5b, Unc5c, Itga3, Itga6 and Itgb1 are expressed in different parts of the otic epithelium. In spite of the broad and strong expression of several receptors in ear region, none of the analysed receptor mutant embryos showed any defects in inner ear development.  相似文献   

17.
Slorach EM  Werb Z 《Current biology : CB》2003,13(12):R491-R493
Netrin and its receptor Neogenin are thought to be regulators of axonal guidance in the nervous system. A recent report suggests they also play a role in epithelial morphogenesis.  相似文献   

18.
The Eph family of receptor tyrosine kinases and their ‘ligands’, the ephrins, have been shown to play key roles in a number of different developmental processes such as cell migration, boundary formation, axon guidance, synapse formation and vasculogenesis. Here, we summarize recent findings derived from investigating the role of the EphA family during development of the retinotectal and vomeronasal projection uncovering a role of ephrin-A molecules as axon guidance receptors.  相似文献   

19.
The etiology of neuropsychiatric disorders, including schizophrenia and autism, has been linked to a failure to establish the intricate neural network comprising excitatory pyramidal and inhibitory interneurons during neocortex development. A large proportion of cortical inhibitory interneurons originate in the medial ganglionic eminence (MGE) of the ventral telencephalon and then migrate through the ventral subventricular zone, across the corticostriatal junction, into the embryonic cortex. Successful navigation of newborn interneurons through the complex environment of the ventral telencephalon is governed by spatiotemporally restricted deployment of both chemorepulsive and chemoattractive guidance cues which work in concert to create a migratory corridor. Despite the expanding list of interneuron guidance cues, cues responsible for preventing interneurons from re-entering the ventricular zone of the ganglionic eminences have not been well characterized. Here we provide evidence that the chemorepulsive axon guidance cue, RGMa (Repulsive Guidance Molecule a), may fulfill this function. The ventricular zone restricted expression of RGMa in the ganglionic eminences and the presence of its receptor, Neogenin, in the ventricular zone and on newborn and maturing MGE-derived interneurons implicates RGMa-Neogenin interactions in interneuron differentiation and migration. Using an in vitro approach, we show that RGMa promotes interneuron differentiation by potentiating neurite outgrowth. In addition, using in vitro explant and migration assays, we provide evidence that RGMa is a repulsive guidance cue for newborn interneurons migrating out of the ganglionic eminence ventricular zone. Intriguingly, the alternative Neogenin ligand, Netrin-1, had no effect on migration. However, we observed complete abrogation of RGMa-induced chemorepulsion when newborn interneurons were simultaneously exposed to RGMa and Netrin-1 gradients, suggesting a novel mechanism for the tight regulation of RGMa-guided interneuron migration. We propose that during peak neurogenesis, repulsive RGMa-Neogenin interactions drive interneurons into the migratory corridor and prevent re-entry into the ventricular zone of the ganglionic eminences.  相似文献   

20.
In olfactory systems, neuron-glia interactions have been implicated in the growth and guidance of olfactory receptor axons. In the moth Manduca sexta, developing olfactory receptor axons encounter several types of glia as they grow into the brain. Antennal nerve glia are born in the periphery and enwrap bundles of olfactory receptor axons in the antennal nerve. Although their peripheral origin and relationship with axon bundles suggest that they share features with mammalian olfactory ensheathing cells, the developmental roles of antennal nerve glia remain elusive. When cocultured with antennal nerve glial cells, olfactory receptor growth cones readily advance along glial processes without displaying prolonged changes in morphology. In turn, olfactory receptor axons induce antennal nerve glial cells to form multicellular arrays through proliferation and process extension. In contrast to antennal nerve glia, centrally derived glial cells from the axon sorting zone and antennal lobe never form arrays in vitro, and growth-cone glial-cell encounters with these cells halt axon elongation and cause permanent elaborations in growth cone morphology. We propose that antennal nerve glia play roles similar to olfactory ensheathing cells in supporting axon elongation, yet differ in their capacity to influence axon guidance, sorting, and targeting, roles that could be played by central olfactory glia in Manduca.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号