首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption behavior of polydisperse polymers at interfaces is studied by the Monte Carlo simulation method based on a lattice model. Effects of temperature and adsorption energies on the polymer density profile, cluster distributions and adsorption layer thickness are evaluated in two different polydisperse systems. It is found that adsorption properties are greatly different in these two systems. In normal distribution polydisperse systems, polymers are more sensitive to the excluded volume effects while in average distribution polymers are more inclined to adsorb on adsorbing interfaces. As higher temperature and lower attraction constrain the polymer adsorption, more clusters are found under these conditions. When temperature approaches the critical temperature of monodisperse systems, stable and large clusters exist in these two polydisperse systems. These results suggest that micro phase transition may exist in polydisperse systems. Polydisperse systems take little change of phase transition temperatures but altered the clusters morphology to some extent. The adsorption layer thickness changes are more sensitive to both temperature and polymer–interface interactions in average distribution systems when the whole polymer concentration increases slightly. This work also suggests significant differences between the polydisperse and the monodisperse systems in adsorption behavior. Therefore, quantitative system errors may exist when the monodisperse system models are used in simulation to evaluate polymer adsorption properties.  相似文献   

2.
Plomp M  McPherson A  Malkin AJ 《Proteins》2003,50(3):486-495
The surface morphology of Bence-Jones protein (BJP) crystals was investigated during growth and dissolution by using in situ atomic force microscopy (AFM). It was shown that over a wide supersaturation range, impurities adsorb on the crystalline surface and ultimately form an impurity adsorption layer that prevents further growth of the crystal. At low undersaturations, this impurity adsorption layer prevents dissolution. At greater undersaturation, dissolution takes place around large particles incorporated into the crystal, leading to etch pits with impurity-free bottoms. On restoration of supersaturation conditions, two-dimensional nucleation takes place on the impurity-free bottoms of these etch pits. After new growth layers fill in the etch pits, they cover the impurity-poisoned top layer of the crystal face. This leads to the resumption of its growth. Formation of an impurity-adsorption layer can explain the termination of growth of macromolecular crystals that has been widely noted. Growth-dissolution-growth cycles could be used to produce larger crystals that otherwise would have stopped growing because of impurity poisoning.  相似文献   

3.
S Ohnishi  M Murata    M Hato 《Biophysical journal》1998,74(1):455-465
We have investigated the morphology and surface forces of protein A adsorbed on mica surface in the protein solutions of various concentrations. The force-distance curves, measured with a surface force apparatus (SFA), were interpreted in terms of two different regimens: a "large-distance" regimen in which an electrostatic double-layer force dominates, and an "adsorbed layer" regimen in which a force of steric origin dominates. To further clarify the forces of steric origin, the surface morphology of the adsorbed protein layer was investigated with an atomic force microscope (AFM) because the steric repulsive forces are strongly affected by the adsorption mode of protein A molecules on mica. At lower protein concentrations (2 ppm, 10 ppm), protein A molecules were adsorbed "side-on" parallel to the mica surfaces, forming a monolayer of approximately 2.5 nm. AFM images at higher concentrations (30 ppm, 100 ppm) showed protruding structures over the monolayer, which revealed that the adsorbed protein A molecules had one end oriented into the solution, with the remainder of each molecule adsorbed side-on to the mica surface. These extending ends of protein A overlapped each other and formed a "quasi-double layer" over the mica surface. These AFM images proved the existence of a monolayer of protein A molecules at low concentrations and a "quasi-double layer" with occasional protrusions at high concentrations, which were consistent with the adsorption mode observed in the force-distance curves.  相似文献   

4.
Films formed from saliva on surfaces are important for the maintenance of oral health and integrity by protection against chemical and/or biological agents. The aim of the present study was to investigate adsorbed amounts, thickness, and structure of films formed from human whole saliva on alumina surfaces by means of in situ ellipsometry, neutron reflectivity, and atomic force microscopy. Alumina (Al2O3, synthetic sapphire) is a relevant and interesting substrate for saliva adsorption studies as it has an isoelectric point close to that of tooth enamel. The results showed that saliva adsorbs rapidly on alumina. The film could be modeled in two layers: an inner and dense thin region that forms a uniform layer and an outer, more diffuse and thicker region that protrudes toward the bulk of the solution. The film morphology described a uniformly covering dense layer and a second outer layer containing polydisperse adsorbed macromolecules or aggregates.  相似文献   

5.
Neutron reflectometry was used to investigate effects of calcium ions on the interfacial behavior of beta-casein at the silicon oxide-aqueous solution interface. The structural characteristics of the adsorbed layer were determined from reflectivity curves fitted to three- and two-layer optical models. The results showed that the presence of divalent calcium ions decreased the specific electrostatic adsorption affinity of the protein to silica compared with the calcium-free buffer system studied in an earlier work. In addition, it speeded up the adsorption suggesting that the slow kinetics seen in the calcium-free system are related to conformational adjustments of the beta-casein structure driven by the maximization of the number of positive charges on the polypeptide interacting with negative surface charges. In the calcium-free system, a dense inner layer resulted from this process, with cationic segments firmly bound to the negative surface, whereas in the presence of calcium, a less dense inner layer was formed. The difference in binding is also mirrored by the effects on the interfacial layer of a specific proteolytic enzyme, i.e., endoproteinase Asp-N. In the calcium-free case, an inner dense layer remained at the surface after the proteolytic cleavage of the polypeptide, whereas virtually nothing was left after enzymatic action in the presence of calcium ions.  相似文献   

6.
A novel activated nylon-based membrane was prepared and applied as an adsorbent for the removal of Cu2+ from aqueous solutions. It involved three stages: (i) deposition of a chitosan layer that functionalized the nylon membrane, (ii) cross-linking with epichlorohydrin to stabilize the polymer layer and enabling grafting, and (iii) iminodiacetic acid grafting. SEM and EDX techniques were used to characterize the composition of the membranes. Dynamic adsorption experiments on membranes were carried out at various pH values, contact times, adsorption dosages and initial metal concentrations to determine optimum membrane adsorption properties. The adsorption isotherm relating to Cu2+ fitted the Langmuir equation and an adsorption equilibrium constant and adsorption capacity of 2.345x10(-3)mg/ml and 10.794mg/g were determined, respectively. The experimental data was analyzed using two adsorption kinetic models, pseudo-first-order and pseudo-second-order with the latter system providing the best fit. Finally complete regeneration of the activated nylon membrane was possible using 100mmol/l Na2EDTA.  相似文献   

7.
Heterogeneous biocatalysts of starch saccharification based on glucoamylase and carbon-containing carriers were obtained, and their biocatalytic properties in the enzymatic hydrolysis of corn dextrins were studied. It was shown that the morphology of the surface carbon layer of carriers markedly affected the properties of biocatalysts. Glucoamylase immobilized by adsorption on the surface of carriers covered with a layer of catalytic filamentous or pyrolytic carbon had the maximum enzymatic activity and stability, whereas biocatalysts prepared on the basis of carriers that had no carbon layer or were covered with graphite-like surface carbon had a low activity and stability.  相似文献   

8.
Substrate-supported lipid bilayers have been prepared from bis-diene functionalized phosphorylcholine (PC) lipids and polymerized by UV irradiation. The overall bilayer structure is largely preserved upon removal from water, although significant loss of material occurs from the upper leaflet of the bilayer, likely due to desorption at the air/water interface. The morphology and surface structure of the bilayer, as observed by AFM, indicate a substantially different arrangement of the lipids in the hydrated and dehydrated states, presumably due to the loss of water from the near surface region. These changes have been correlated with infrared spectral shifts sensitive to the conformation of the hydrocarbon chains. Protein adsorption studies show that rehydrated, polymerized bilayers retain a degree of resistance to BSA adsorption intermediate between model hydrophobic and fluid PC lipid bilayer surfaces. The degree of protein adsorption is correlated with desorption of material from the upper leaflet of the bilayer upon drying, which produces voids at which hydrophobically driven protein adsorption occurs.  相似文献   

9.
Heterogeneous biocatalysts of starch conversion based on glucoamylase and carbon-containing carriers were obtained, and their biocatalytic properties in enzymatic hydrolysis of corn dextrins were studied. It was shown that the morphology of the surface carbon layer of carriers markedly affected the properties of biocatalysts. Glucoamylase that was immobilized by adsorption on the surface of carriers covered with a layer of catalytic fibrous or pyrolytic carbon had the maximum enzymatic activity and stability, whereas the biocatalysts prepared on the basis of carriers that had no carbon layer or were covered with graphite-like surface carbon had a low activity and stability.  相似文献   

10.
Abstract. The internal parenchyma of the leaf and rhizome in 36 species of Sansevieria is made of dead cells and living cells arranged in a regular pattern. Intercellular spaces are lacking. The walls of dead cells consist of an inner amorphous layer positive to the fluorescence test for callose, a middle suberin-like layer and an outer fibrillar layer. In about half of the species examined, the inner layer forms distinctive thickenings. Detached leaves of Sansevieria lose water very slowly, and are able to recover it quickly. The pattern of leaf dehydration appears to be related to leaf morphology, whereas no relation is evident between the pattern of leaf rehydration and leaf morphology. Neither leaf dehydration nor leaf rehydration pattern is affected by the presence of wall thickenings in the dead parenchyma cells. The fresh weight per unit volume of both turgid and droughted leaves is nearly 1, denoting that the dead cells are filled with water and do not undergo substantial cavitation during drought. The data indicate that the dead parenchyma cells of Sansevieria are a specialized water-storing system.  相似文献   

11.
The adsorption of proteins from human whole saliva (HWS) onto silica and hydroxyapatite surfaces (HA) was followed by quartz crystal microbalance with dissipation (QCM-D) and ellipsometry. The influence of different surface properties and adsorption media (water and PBS) on the adsorption from saliva was studied. The viscoelastic properties of the salivary films formed on the solid surfaces were estimated by the use of the Voigt-based viscoelastic film model. Furthermore, the efficiency of SDS and delmopinol to elute the adsorbed salivary film from the surfaces was investigated at different surfactant concentrations. A biphasic kinetic regime for the adsorption from saliva on the silica and HA surfaces was observed, indicating the formation of a rigidly coupled first layer corresponding to an initial adsorption of small proteins and a more loosely bound second layer. The results further showed a higher adsorption from HWS onto the HA surfaces compared to the silica surfaces in both adsorption media (PBS and water). The adsorption in PBS led to higher adsorbed amounts on both surfaces as compared to water. SDS was found to be more efficient in removing the salivary film from both surfaces than delmopinol. The salivary film was found to be less tightly bound onto the silica surfaces since more of the salivary film could be removed with both SDS and delmopinol compared to that from the HA surface. When adsorption took place from PBS the salivary layer formed at both surfaces seemed to have a similar structure, with a high energy dissipation implying that a softer salivary layer is built up in PBS as opposed to that in water. Furthermore, the salivary layers adsorbed from water solutions onto the HA were found to be softer than those on silica.  相似文献   

12.
In the present work, the adsorption kinetics of extended ligands on DNA duplexes at small fillings when molecules of DNA duplexes are on the underlayer within diffusion layer has been investigated. Both diffusion of ligands in solution (diffusion stage) and adsorption of ligands (kinetic stage) are taken into consideration at adsorption of ligands on DNA duplexes. Nonlinear system of differential equations describing adsorption of ligands where not only diffusion stage but also kinetic stage is taken into account, is obtained, moreover the equations allow localizing duplexes in arbitrary place within diffusion layer. Numeric solution of the equations makes possible to investigate the filling kinetics of DNA duplexes by ligands depending on parameters controlling adsorption process. It has been shown that depending on relation between adsorption parameters different kinetic regimes of adsorption – kinetic, complex, and diffusion regimes may be realized.  相似文献   

13.
The root powder of long-root Eichhornia crassipes, as a new kind of biodegradable adsorbent, has been tested for aqueous adsorption of Pb, Zn, Cu, and Cd. From FT-IR, we found that the absorption peaks of phosphorous compounds, carbonyl, and nitrogenous compounds displayed obvious changes before and after adsorption which illustrated that plant characteristics may play a role in binding with metals. Surface properties and morphology of the root powders have been characterized by means of SEM and BET. Energy spectrum analysis showed that the metals were adsorbed on root powders after adsorption. Then, optimum quantity of powder, pH values, and metal ion concentrations in single-system and multi-system were detected to discuss the characteristics and mechanisms of metal adsorption. Freundlich model and the second-order kinetics equation could well describe the adsorption of heavy metals in single-metal system. The adsorption of Pb, Zn, and Cd in the multi-metal system decreased with the concentration increased. At last, competitive adsorption of every two metals on root powder proved that Cu and Pb had suppressed the adsorption performance of Cd and Zn.  相似文献   

14.
The problem of binding of microbial cells to an adsorbent matrix during in situ recovery of bioproducts from a fermentation broth has been addressed by shielding the adsorbent with a thin layer of a non-ionic polymer. Extractive bioconversion of lactic acid by integrating ion-exchange adsorption with the fermentation stage was studied. The effect of coating of the ion-exchanger with agarose on product recovery and cell adsorption was evaluated. Extractive fermentation with both uncoated and coated resin resulted in an increase in reactor productivity as compared to the normal fermentation. The free cell density in the system with agarose-coated beads was similar to that in control fermentation, but was significantly lower in the system with the uncoated ion-exchanger. Electron microscopic scanning of the bead surface after passage of the fermentation broth showed cells attached to the native adsorbent but not to the coated one.  相似文献   

15.
Organic matter plays an important role in methane adsorption in shale. Pore surface of organic matter is usually rough and uneven, which results in a large amount of groove space on the pore surface. Thus, the influence of groove space on the adsorption capacity of methane in shale cannot be neglected. Nanoscale pore structures of the organic-rich shale in the Longmaxi Formation were investigated by low-pressure nitrogen gas adsorption as a basis for constructing models. We simplified the internal groove space into triangular prisms with different angles. The grand canonical Monte Carlo simulation and molecular dynamics simulation were used to analyse the methane molecule adsorption behaviour in pores. The results showed that the pore morphology of organic-rich shale in the Longmaxi Formation was mainly slit-shaped pores. The excess adsorption isotherms showed good agreement between experiment and simulation, indicating that the model is suitable and reliable. Methane molecules can enter into the groove space with an opening size of 0.738 nm, while they fail to enter into groove spaces with an opening size less than 0.492 nm. This understanding has important significance for the study of the adsorption characteristics of organic pores which have undergone multiple evolutions in geological history.  相似文献   

16.
The effect of added ethanol and (NH(4))(2)SO(4) on the flux decline index (FDI) of bovine serum albumin (BSA) and a fatty acid-poor derivative (BSA/FAP) was examined. Ternary phase diagrams of the two protein species indicated that the concentration polarization (CP) layer on the surface of a nonadsorbing 10 000 MWCO regenerated cellulose membrane had principally a packed bed structure up to 33 wt % ethanol and 21 wt % (NH(4))(2)SO(4). Intrinsic viscosity and turbidity analysis were conducted to determine the degree of intra- and interprotein interactions within this packed bed morphology. With BSA/FAP, the effects of these two interactions tended to counterbalance each other, so the FDI of this protein was not strongly influenced by solute addition. In contrast, the adsorption of fatty acids to BSA caused the protein to expand, producing a less rigid CP layer with a higher FDI. However, the addition of ethanol led to protein compression, reducing this effect. The presence of fatty acids also produced a more associated BSA in salt solution, which increased flux resistance. The results obtained for both proteins indicate that an FDI minimum is observed when a noninteraction hard sphere structure is present in the CP layer.  相似文献   

17.
The kinetics of protein adsorption are studied using a generalized diffusion approach which shows that the time-determining step in the adsorption is the crossing of the kinetic barrier presented by the polymers and already adsorbed proteins. The potential of mean-force between the adsorbing protein and the polymer-protein surface changes as a function of time due to the deformation of the polymer layers as the proteins adsorb. Furthermore, the range and strength of the repulsive interaction felt by the approaching proteins increases with grafted polymer molecular weight and surface coverage. The effect of molecular weight on the kinetics is very complex and different than its role on the equilibrium adsorption isotherms. The very large kinetic barriers make the timescale for the adsorption process very long and the computational effort increases with time, thus, an approximate kinetic approach is developed. The kinetic theory is based on the knowledge that the time-determining step is crossing the potential-of-mean-force barrier. Kinetic equations for two states (adsorbed and bulk) are written where the kinetic coefficients are the product of the Boltzmann factor for the free energy of adsorption (desorption) multiplied by a preexponential factor determined from a Kramers-like theory. The predictions from the kinetic approach are in excellent quantitative agreement with the full diffusion equation solutions demonstrating that the two most important physical processes are the crossing of the barrier and the changes in the barrier with time due to the deformation of the polymer layer as the proteins adsorb/desorb. The kinetic coefficients can be calculated a priori allowing for systematic calculations over very long timescales. It is found that, in many cases where the equilibrium adsorption shows a finite value, the kinetics of the process is so slow that the experimental system will show no adsorption. This effect is particularly important at high grafted polymer surface coverage. The construction of guidelines for molecular weight/surface coverage necessary for kinetic prevention of protein adsorption in a desired timescale is shown. The time-dependent desorption is also studied by modeling how adsorbed proteins leave the surface when in contact with a pure water solution. It is found that the kinetics of desorption are very slow and depend in a nonmonotonic way in the polymer chain length. When the polymer layer thickness is shorter than the size of the protein, increasing polymer chain length, at fixed surface coverage, makes the desorption process faster. For polymer layers with thickness larger than the protein size, increases in molecular weight results in a longer time for desorption. This is due to the grafted polymers trapping the adsorbed proteins and slowing down the desorption process. These results offer a possible explanation to some experimental data on adsorption. Limitations and extension of the developed approaches for practical applications are discussed.  相似文献   

18.
The aim of this work was to study the problems connected with computer modeling and analysis of heterogeneous structures of microporous carbonaceous materials. The research was focused on the numerical properties of original mathematical models for heterogeneous multilayer adsorption on microporous carbonaceous materials presented in our earlier papers and their applicability to examination of real microporous materials. These models are aimed at drawing information on pore structure and capacity on the basis of adsorption isotherms of small molecule adsorbates. They easily fit typical adsorption data in wide relative pressure ranges. In the theory presented, adsorption of small nearly spherical molecules in irregular pores of molecular size has been considered and side adsorbate–adsorbate interactions are neglected. The molecules mentioned are located in pores by forming aggregates, the size of which is limited by the geometry of the pores. The set of adsorbate molecules, which were adsorbed mainly due to adhesive interactions with the adsorbent matter, is treated as the first layer adsorption. Joining further molecules is viewed as the second, third,... layer adsorption. The main idea of the approach to modeling microporous structure presented, consists of introducing of realistic relationships between geometrical properties of pores and adsorption energy. Special attention was focused on the analysis of the influence of the number of model parameters on identification reliability and evaluation errors of porous structure parameters. This paper gives more information on properties of the identification technique presented in our earlier papers. The five-parameter and six-parameter identification reliability is analyzed in more detail, for different values of the system parameters. In this context, the efficiency of simultaneous examination of two isotherms is also studied.  相似文献   

19.
20.
Constructed wetlands are being considered a sustainable and promising option whose performance, cost and resources utilization can complement or replace conventional water treatment. The literature reported the fact that an insufficient residence time of pollutants in soils induces an incomplete and unfinished biodegradation process. In this work, engineering solutions are proposed with the objective of significantly increasing the solute retention capacity in the horizontal flow constructed wetland (HFCW). Using several numerical tracers experiments with different operating scenarios, such as the HFCW physical configuration, the flow rate, the boundary conditions, the adsorption layer thickness, practical methods and a new empirical law are suggested in order to substantially increase the adsorption ability in the HFCW, and hence the pollutant removal. Furthermore, it appears that there is no impact of the adsorbent layer thickness on the solute mean residence time with high values of adsorption coefficient (kd). For smaller kd values, the deeper the adsorption layer thickness, the higher the retention time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号