首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A framework genetic map based on genomic DNA-derived SSR, EST-derived SSR, EST-STS and EST-RFLP markers was developed using 181 genotypes generated from D8909-15 (female) × F8909-17 (male), the ‘9621’ population. Both parents are half siblings with a common female parent, Vitis rupestris ‘A. de Serres’, and different male parents (forms of V. arizonica). A total of 542 markers were tested, and 237 of them were polymorphic for the female and male parents. The female map was developed with 159 mapped markers covering 865.0 cM with an average marker distance of 5.4 cM in 18 linkage groups. The male map was constructed with 158 mapped molecular markers covering 1055.0 cM with an average distance of 6.7 cM in 19 linkage groups. The consensus ‘9621’ map covered 1154.0 cM with 210 mapped molecular markers in 19 linkage groups, with average distance of 5.5 cM. Ninety-four of the 210 markers on the consensus map were new. The ‘Sex’ expression locus segregated as single major gene was mapped to linkage group 2 on the consensus and the male map. PdR1, a major gene for resistance to Pierce’s disease, caused by the bacterium Xylella fastidiosa, was mapped to the linkage group 14 between markers VMCNg3h8 and VVIN64, located 4.3 and 2.7 cM away from PdR1, respectively. Differences in segregation distortion of markers were also compared between parents, and three clusters of skewed markers were observed on linkage groups 6, 7 and 14.  相似文献   

2.
A limited genetic mapping strategy based on simple sequence repeat (SSR) marker data was used with five grape populations segregating for powdery mildew (Erysiphe necator) resistance in an effort to develop genetic markers from multiple sources and enable the pyramiding of resistance loci. Three populations derived their resistance from Muscadinia rotundifolia ‘Magnolia’. The first population (06708) had 97 progeny and was screened with 137 SSR markers from seven chromosomes (4, 7, 9, 12, 13, 15, and 18) that have been reported to be associated with powdery or downy mildew resistance. A genetic map was constructed using the pseudo-testcross strategy and QTL analysis was carried out. Only markers from chromosome 13 and 18 were mapped in the second (04327) and third (06712) populations, which had 47 and 80 progeny, respectively. Significant QTLs for powdery mildew resistance with overlapping genomic regions were identified for different tissue types (leaf, stem, rachis, and berry) on chromosome 18, which distinguishes the resistance in ‘Magnolia’ from that present in other accessions of M. rotundifolia and controlled by the Run1 gene on chromosome 12. The ‘Magnolia’ resistance locus was termed as Run2.1. Powdery mildew resistance was also mapped in a fourth population (08391), which had 255 progeny and resistance from M. rotundifolia ‘Trayshed’. A locus accounting for 50% of the phenotypic variation mapped to chromosome 18 and was named Run2.2. This locus overlapped the region found in the ‘Magnolia’-based populations, but the allele sizes of the flanking markers were different. ‘Trayshed’ and ‘Magnolia’ shared at least one allele for 68% of the tested markers, but alleles of the other 32% of the markers were not shared indicating that the two M. rotundifolia selections were very different. The last population, 08306 with 42 progeny, derived its resistance from a selection Vitis romanetii C166-043. Genetic mapping discovered a major powdery mildew resistance locus termed Ren4 on chromosome 18, which explained 70% of the phenotypic variation in the same region of chromosome 18 found in the two M. rotundifolia resistant accessions. The mapping results indicate that powdery mildew resistance genes from different backgrounds reside on chromosome 18, and that genetic markers can be used as a powerful tool to pyramid these loci and other powdery mildew resistance loci into a single line.  相似文献   

3.
Linkage maps of the sweet cherry cultivar ‘Emperor Francis’ (EF) and the wild forest cherry ‘New York 54’ (NY) were constructed using primarily simple sequence repeat (SSR) markers and gene-derived markers with known positions on the Prunus reference map. The success rate for identifying SSR markers that could be placed on either the EF or NY maps was only 26% due to two factors: a reduced transferability of other Prunus-species-derived markers and a low level of polymorphism in the mapping parents. To increase marker density, we developed four cleaved amplified polymorphic sequence markers (CAPS), 19 derived CAPS markers, and four insertion–deletion markers for cherry based on 101 Prunus expressed sequence tags. In addition, four gene-derived markers representing orthologs of a tomato vacuolar invertase and fruit size gene and two sour cherry sorbitol transporters were developed. To complete the linkage analysis, 61 amplified fragment length polymorphism and seven sequence-related amplified polymorphism markers were also used for map construction. This analysis resulted in the expected eight linkage groups for both parents. The EF and NY maps were 711.1 cM and 565.8 cM, respectively, with the average distance between markers of 4.94 cM and 6.22 cM. A total of 82 shared markers between the EF and NY maps and the Prunus reference map showed that the majority of the marker orders were the same with the Prunus reference map suggesting that the cherry genome is colinear with that of the other diploid Prunus species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Powdery mildew caused by Podosphaera xanthii has become a major problem in melon since it occurs all year round irrespective of the growing system. The TGR-1551 melon genotype was found to be resistant to several melon diseases, among them powdery mildew. However, the corresponding resistance genes have been never mapped. We constructed an integrated genetic linkage map using an F2 population derived from a cross between the multi-resistant genotype TGR-1551 and the susceptible Spanish cultivar ‘Bola de Oro’. The map spans 1,284.9 cM, with an average distance of 3.6 cM among markers, and consists of 354 loci (188 AFLP, 39 RAPD, 111 SSR, 14 SCAR/CAPS/dCAPS, and two phenotypic traits) distributed in 14 linkage groups. QTL analysis identified one major QTL (Pm-R) on LG V for resistance to races 1, 2, and 5 of powdery mildew. The PM4-CAPS marker is closely linked to the Pm-R QTL at a genetic distance of 1.9 cM, and the PM3-CAPS marker is located within the support interval of this QTL. These codominant markers, together with the map information reported here, could be used for melon breeding, and particularly for genotyping selection of resistance to powdery mildew in this vegetable crop species.  相似文献   

5.
One hundred and sixty microsatellite (simple sequence repeat (SSR)) and six gene-specific markers revealing 174 loci were scored in 94 seedlings from the inter-specific cross of Prunus avium ‘Napoleon’ × Prunus nipponica accession F1292. The co-segregation data from these markers were used to construct a linkage map for cherry which spanned 680 cM over eight linkage groups with an average marker spacing of 3.9 cM per marker and just six gaps longer than 15 cM. Markers previously mapped in Prunus dulcis ‘Texas’ × Prunus persica ‘Earlygold’ allowed the cherry map to be anchored to the peach × almond map and showed the high level of synteny between the species. Eighty-four loci segregated in P. avium ‘Napoleon’ versus 159 in P. nipponica. The segregations of 32 isoenzyme loci in a subset of 47 seedlings from the progeny were scored, using polyacrylamide gel electrophoresis and/or isoelectric focusing separation followed by activity staining, and the co-segregation data were analysed along with those for 39 isoenzymes reported previously and for the 174 sequence-tagged site loci plus an additional two SSR loci. The second map incorporates 233 loci and spans 736 cM over eight linkage groups with an average marker spacing of 3.2 cM per marker and just two gaps greater than 15 cM. The microsatellite map will provide a useful tool for cherry breeding and marker-assisted selection and for synteny studies within Prunus; the gene-specific markers and isoenzymes will be useful for comparisons with maps of other rosaceous fruit crops. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Simple sequence repeat (SSR) markers developed from Malus, as well as Prunus, Pyrus and Sorbus, and some other sequence-tagged site (STS) loci were analysed in an interspecific F1 apple progeny from the cross ‘Fiesta’ × ‘Totem’ that segregated for several agronomic characters. A linkage map was constructed using 259 STS loci (247 SSRs, four SCARs and eight known-function genes) and five genes for agronomic traits—scab resistance (Vf), mildew resistance (Pl-2), columnar growth habit (Co), red tissues (Rt) and green flesh background colour (Gfc). Ninety SSR loci and three genes (ETR1, Rt and Gfc) were mapped for the first time in apple. The transferability of markers from other Maloideae to Malus was found to be around 44%. The loci are spread across 17 linkage groups, corresponding to the basic chromosome number of Malus and cover 1,208 cM, approximately 85% of the estimated length of the apple genome. Interestingly, we have extended the top of LG15 with eight markers covering 25 cM. The average map density is 4.7 cM per marker; however, marker density varies greatly between linkage groups, from 2.5 in LG14 to 8.9 in LG7, with some areas of the genome still in need of further STS markers for saturation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

7.
Powdery mildew caused by Podosphaera xanthii is an important foliar disease in melon. To find molecular markers for marker-assisted selection, we constructed a genetic linkage map of melon based on a population of 93 recombinant inbred lines derived from crosses between highly resistant AR 5 and susceptible ‘Earl’s Favourite (Harukei 3)’. The map spans 877 cM and consists of 167 markers, comprising 157 simple sequence repeats (SSRs), 7 sequence characterized amplified region/cleavage amplified polymorphic sequence markers and 3 phenotypic markers segregating into 20 linkage groups. Among them, 37 SSRs and 6 other markers were common to previous maps. Quantitative trait locus (QTL) analysis identified two loci for resistance to powdery mildew. The effects of these QTLs varied depending on strain and plant stage. The percentage of phenotypic variance explained for resistance to the pxA strain was similar between QTLs (R 2 = 22–28%). For resistance to pxB strain, the QTL on linkage group (LG) XII was responsible for much more of the variance (41–46%) than that on LG IIA (12–13%). The QTL on LG IIA was located between two SSR markers. Using an independent population, we demonstrated the effectiveness of these markers. This is the first report of universal and effective markers linked to a gene for powdery mildew resistance in melon.  相似文献   

8.
A population derived from a cross between grapevine breeding strain Gf.Ga-52-42 and cultivar ‘Solaris’ consisting of 265 F1-individuals was genetically mapped using SSR markers and screened for downy mildew resistance. Quantitative trait locus (QTL) analysis revealed two strong QTLs on linkage groups (LGs) 18 and 09. The locus on LG 18 was found to be identical with the previously described locus Rpv3 and is transmitted by Gf.Ga-52-42. ‘Solaris’ transmitted the resistance-related locus on LG 09 explaining up to 50% of the phenotypic variation in the population. This downy mildew resistance locus is named Rpv10 for resistance to Plasmopara viticola. Rpv10 was initially introgressed from Vitis amurensis, a wild species of the Asian Vitis gene pool. The one-LOD supported confidence interval of the QTL spans a section of 2.1 centi Morgan (cM) corresponding to 314 kb in the reference genome PN40024 (12x). Eight resistance gene analogues (RGAs) of the NBS–LRR type and additional resistance-linked genes are located in this region of PN40024. The F1 sub-population which contains the Rpv3 as well as the Rpv10 locus showed a significantly higher degree of resistance, indicating additive effects by pyramiding of resistance loci. Possibilities for using the resistance locus Rpv10 in a grapevine breeding programme are discussed. Furthermore, the marker data revealed ‘Severnyi’ × ‘Muscat Ottonel’ as the true parentage for the male parent of ‘Solaris’.  相似文献   

9.
10.
Two populations (Pop) segregating quantitatively for resistance to downy mildew (DM), caused by Plasmopara viticola, were used to construct genetic maps and to carry out quantitative trait locus (QTL) analysis. Pop1 comprised of 174 F1 individuals from a cross of ‘Moscato Bianco’, a susceptible Vitis vinifera cultivar, and a resistant individual of Vitis riparia. Pop2 consisted of 94 progeny from a cross of two interspecific hybrids, ‘VRH3082 1-42’ and ‘SK77 5/3’, with resistance traits inherited from Vitis rotundifolia and Vitis amurensis, respectively. Resistance of progeny was measured in field and greenhouse conditions by visual evaluation of disease symptoms on leaves. Linkage maps of 1037.2 and 651 cM were built essentially with simple sequence repeat markers and were enriched with gene-derived single-strand conformational polymorphism and single-nucleotide polymorphism markers. Simple interval mapping and Kruskall–Wallis analysis detected a stable QTL involved in field resistance to DM on linkage group (LG) 7 of the Pop1 integrated map co-localized with a putative Caffeoyl-CoA O-methyltransferase-derived marker. Additional QTLs were detected on LGs 8, 12 and 17. We were able to identify genetic factors correlated with resistance to P. viticola with lower statistical significance on LGs 1, 6 and 7 of the Pop2 map. Finally, no common QTLs were found between the two crosses analyzed. A search of the grapevine genome sequence revealed either homologues to non-host-, host- or defense-signalling genes within the QTL intervals. These positional candidate genes may provide new information about chromosomal regions hosting phenotypic loci.  相似文献   

11.
Rhizoctonia solani is a necrotrophic fungal pathogen that causes disease on many crop-plant species. Anastomosis group 1-IA is the causal agent of sheath blight of rice (Oryza sativa L.), one of the most important rice diseases worldwide. R. solani AG1-IA produces a necrosis-inducing phytotoxin and rice cultivar’s sensitivity to the toxin correlates with disease susceptibility. Unlike genetic analyses of sheath blight resistance where resistance loci have been reported as quantitative trait loci, phytotoxin sensitivity is inherited as a Mendelian trait that permits high-resolution mapping of the sensitivity genes. An F2 mapping population derived from parent cultivars ‘Cypress’ (toxin sensitive) and ‘Jasmine 85’ (toxin insensitive) was used to map Rsn1, the necrosis-inducing locus. Initial mapping based on 176 F2 progeny and 69 simple sequence repeat (SSR) markers located Rsn1 on the long arm of chromosome 7, with tight linkage to SSR marker RM418. A high-resolution genetic map of the region was subsequently developed using a total of 1,043 F2 progeny, and Rsn1 was mapped to a 0.7 cM interval flanked by markers NM590 and RM418. Analysis of the corresponding 29 Kb genomic sequences from reference cultivars ‘Nipponbare’ and ‘93-11’ revealed the presence of four putative genes within the interval. Two are expressed cytokinin-O-glucosyltransferases, which fit an apoptotic pathway model of toxin activity, and are individually being investigated further as potential candidates for Rsn1.  相似文献   

12.
Wheat powdery mildew is an economically important disease in cool and humid environments. Powdery mildew causes yield losses as high as 48% through a reduction in tiller survival, kernels per head, and kernel size. Race-specific host resistance is the most consistent, environmentally friendly and, economical method of control. The wheat (Triticum aestivum L.) germplasm line NC06BGTAG12 possesses genetic resistance to powdery mildew introgressed from the AAGG tetraploid genome Triticum timopheevii subsp. armeniacum. Phenotypic evaluation of F3 families derived from the cross NC06BGTAG12/‘Jagger’ and phenotypic evaluation of an F2 population from the cross NC06BGTAG12/‘Saluda’ indicated that resistance to the ‘Yuma’ isolate of powdery mildew was controlled by a single dominant gene in NC06BGTAG12. Bulk segregant analysis (BSA) revealed simple sequence repeat (SSR) markers specific for chromosome 7AL segregating with the resistance gene. The SSR markers Xwmc273 and Xwmc346 mapped 8.3 cM distal and 6.6 cM proximal, respectively, in NC06BGTAG12/Jagger. The multiallelic Pm1 locus maps to this region of chromosome 7AL. No susceptible phenotypes were observed in an evaluation of 967 F2 individuals in the cross NC06BGTAG12/‘Axminster’ (Pm1a) which indicated that the NC06BGTAG12 resistance gene was allelic or in close linkage with the Pm1 locus. A detached leaf test with ten differential powdery mildew isolates indicated the resistance in NC06BGTAG12 was different from all designated alleles at the Pm1 locus. Further linkage and allelism tests with five other temporarily designated genes in this very complex region will be required before giving a permanent designation to this gene. At this time the gene is given the temporary gene designation MlAG12.  相似文献   

13.
Loquat [Eriobotrya japonica (Thunb.) Lindl.] is a Rosaceae fruit species of growing interest as an alternative to the main fruit crops. However, only a few genetic studies have been carried out on this species. This paper reports the construction of the first genetic maps of two loquat cultivars based on AFLP and microsatellite markers from Malus, Eriobotrya, Pyrus and Prunus genera. An F1 population consisting of 81 individuals, derived from the cross between ‘Algerie’ and ‘Zaozhong-6’ cultivars, was used to construct both maps. A total of 111 scorable simple sequence repeat (SSR) loci resulted from the testing of 440 SSR primer pairs in the analyzed progeny and the SSR transferability to Eriobotrya was found to be 74% from apple, 58% from pear and 49% from Prunus spp. In addition, 183 AFLP polymorphic bands were produced using 42 primer combinations. The ‘Algerie’ map was organized in 17 linkage groups covering a distance of 900 cM and comprising 177 loci (83 SSRs and 94 AFLPs) with an average marker distance of 5.1 cM. Self-incompatibility trait was mapped at the distal part of the LG17 linkage group, as previously reported in Malus and Pyrus. The ‘Zaozhong-6’ map covered 870 cM comprising 146 loci (64 SSRs and 82 AFLPs) with an average marker distance of 5.9 cM. The 44 SSRs and the 48 AFLPs share in common by both maps were essentially collinear and, moreover, the order of the 75% of apple and pear SSRs mapped in Eriobotrya was shown to be consistent across the Maloideae subfamily. As a whole, these maps represent a useful tool to facilitate loquat breeding and an interesting framework for map comparison in the Rosaceae.  相似文献   

14.
We describe the construction of a reference genetic linkage map for the Brassica A genome, which will form the backbone for anchoring sequence contigs for the Multinational Brassica rapa Genome Sequencing Project. Seventy-eight doubled haploid lines derived from anther culture of the F1 of a cross between two diverse Chinese cabbage (B. rapa ssp. pekinensis) inbred lines, ‘Chiifu-401-42’ (C) and ‘Kenshin-402-43’ (K) were used to construct the map. The map comprises a total of 556 markers, including 278 AFLP, 235 SSR, 25 RAPD and 18 ESTP, STS and CAPS markers. Ten linkage groups were identified and designated as R1–R10 through alignment and orientation using SSR markers in common with existing B. napus reference linkage maps. The total length of the linkage map was 1,182 cM with an average interval of 2.83 cM between adjacent loci. The length of linkage groups ranged from 81 to 161 cM for R04 and R06, respectively. The use of 235 SSR markers allowed us to align the A-genome chromosomes of B. napus with those of B. rapa ssp. pekinensis. The development of this map is vital to the integration of genome sequence and genetic information and will enable the international research community to share resources and data for the improvement of B. rapa and other cultivated Brassica species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Sweetpotato genomic research is minimal compared to most other major crops despite its worldwide importance as a food crop. The development of a genetic linkage map in sweetpotato will provide valuable information about the genomic organization of this important species that can be used by breeders to accelerate the introgression of desired traits into breeding lines. We developed a mapping population consisting of 240 individuals of a cross between ‘Tanzania’, a cream-fleshed African landrace, and ‘Beauregard’, an orange-fleshed US sweetpotato cultivar. The genetic linkage map of this population was constructed using Amplified Fragment Length Polymorphism (AFLP) markers. A total of 1944 (‘Tanzania’) and 1751 (‘Beauregard’) AFLP markers, of which 1511 and 1303 were single-dose markers respectively, were scored. Framework maps consisting of 86 and 90 linkage groups for ‘Tanzania’ and ‘Beauregard’ respectively, were developed using a combination of JoinMap 3.0 and MAPMAKER/EXP 3.0. A total of 947 single-dose markers were placed in the final framework linkage map for ‘Tanzania’. The linkage map size was estimated as 5792 cM, with an average distance between markers of 4.5 cM. A total of 726 single-dose markers were placed in the final framework map for ‘Beauregard’. The linkage map length was estimated as 5276 cM, with an average distance between markers of 4.8 cM. Duplex and triple-dose markers were used to identify the corresponding homologous groups in the maps. Our research supports the hypothesis that sweetpotato is an autopolyploid. Distorted segregation in some markers of different dosages in this study suggests that some preferential pairing occurs in sweetpotato. However, strict allopolyploid inheritance in sweetpotato can be ruled out due to the observed segregation ratios of the markers, and the proportion of simplex to multiple-dose markers. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This paper is a portion of a dissertation submitted by Jim C. Cervantes-Flores.  相似文献   

16.
 One hundred and thirty nine restriction fragment length polymorphisms (RFLPs) were used to construct a soybean (Glycine max L. Merr.) genetic linkage map and to identify quantitative trait loci (QTLs) associated with resistance to corn earworm (Helicoverpa zea Boddie) in a population of 103 F2-derived lines from a cross of ‘Cobb’ (susceptible) and PI229358 (resistant). The genetic linkage map consisted of 128 markers which converged onto 30 linkage groups covering approximately 1325 cM. There were 11 unlinked markers. The F2-derived lines and the two parents were grown in the field under a plastic mesh cage near Athens, Ga., in 1995. The plants were artificially infested with corn earworm and evaluated for the amount of defoliation. Using interval-mapping analysis for linked markers and single-factor analysis of variance (ANOVA), markers were tested for an association with resistance. One major and two minor QTLs for resistance were identified in this population. The PI229358 allele contributed insect resistance at all three QTLs. The major QTL is linked to the RFLP marker A584 on linkage group (LG) ‘M’ of the USDA/Iowa State University public soybean genetic map. It accounts for 37% of the total variation for resistance in this cross. The minor QTLs are linked to the RFLP markers R249 (LG ‘H’) and Bng047 (LG ‘D1’). These markers explain 16% and 10% of variation, respectively. The heritability (h2) for resistance was estimated as 64% in this population. Received: 15 October 1997 / Accepted: 4 November 1997  相似文献   

17.
SSR markers are desirable markers in analysis of genetic diversity, quantitative trait loci mapping and gene locating. In this study, SSR markers were developed from two genomic libraries enriched for (GA)n and (CA)n of foxtail millet [Setaria italica (L.) P. Beauv.], a crop of historical importance in China. A total of 100 SSR markers among the 193 primer pairs detected polymorphism between two mapping parents of an F2 population, i.e. “B100” of cultivated S. italica and “A10” of wild S. viridis. Excluding 14 markers with unclear amplifications, and five markers unlinked with any linkage group, a foxtail millet SSR linkage map was constructed by integrating 81 new developed SSR markers with 20 RFLP anchored markers. The 81 SSRs covered nine chromosomes of foxtail millet. The length of the map was 1,654 cM, with an average interval distance between markers of 16.4 cM. The 81 SSR markers were not evenly distributed throughout the nine chromosomes, with Ch.8 harbouring the least (3 markers) and Ch.9 harbouring the most (18 markers). To verify the usefulness of the SSR markers developed, 37 SSR markers were randomly chosen to analyze genetic diversity of 40 foxtail millet accessions. Totally 228 alleles were detected, with an average 6.16 alleles per locus. Polymorphism information content (PIC) value for each locus ranged from 0.413 to 0.847, with an average of 0.697. A positive correlation between PIC and number of alleles and between PIC and number of repeat unit were found [0.802 and 0.429, respectively (P < 0.01)]. UPGMA analysis revealed that the 40 foxtail millet cultivars could be grouped into five clusters in which the landraces’ grouping was largely consistent with ecotypes while the breeding varieties from different provinces in China tended to be grouped together. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
As genome and cDNA sequencing projects progress, a tremendous amount of sequence information is becoming publicly available. These sequence resources can be exploited for gene discovery and marker development. Simple sequence repeat (SSR) markers are among the most useful because of their great variability, abundance, and ease of analysis. By in silico analysis of 10,232 non-redundant expressed sequence tags (ESTs) in pepper as a source of SSR markers, 1,201 SSRs were found, corresponding to one SSR in every 3.8 kb of the ESTs. Eighteen percent of the SSR–ESTs were dinucleotide repeats, 66.0% were trinucleotide, 7.7% tetranucleotide, and 8.2% pentanucleotide; AAG (14%) and AG (12.4%) motifs were the most abundant repeat types. Based on the flanking sequences of these 1,201 SSRs, 812 primer pairs that satisfied melting temperature conditions and PCR product sizes were designed. 513 SSRs (63.1%) were successfully amplified and 150 of them (29.2%) showed polymorphism between Capsicum annuum ‘TF68’ and C. chinense ‘Habanero’. Dinucleotide SSRs and EST–SSR markers containing AC-motifs were the most polymorphic. Polymorphism increased with repeat length and repeat number. The polymorphic EST–SSRs were mapped onto the previously generated pepper linkage map, using 107 F2 individuals from an interspecific cross of TF68 × Habanero. One-hundred and thirtynine EST–SSRs were located on the linkage map in addition to 41 previous SSRs and 63 RFLP markers, forming 14 linkage groups (LGs) and spanning 2,201.5 cM. The EST–SSR markers were distributed over all the LGs. This SSR-based map will be useful as a reference map in Capsicum and should facilitate the use of molecular markers in pepper breeding.Gibum Yi and Je Min Lee equally contributed to this work.  相似文献   

19.
Plum pox virus (sharka; PPV) can cause severe crop loss in economically important Prunus species such as peach, plum, apricot, and cherry. Of these species, certain apricot cultivars (‘Stark Early Orange’, ‘Goldrich’, ‘Harlayne’) display significant levels of resistance to the disease and are the genetic substrate for studies of several xlaboratories working cooperatively to genetically characterize and mark the resistance locus or loci for marker-assisted breeding. The goals of the work presented in this communication are the characterization of the genetics of PPV resistance in ‘Stark Early Orange’ and the development of co-dominant molecular markers for marker-assisted selection (MAS) in PPV resistance breeding. We present the first genetic linkage map for an apricot backcross population of ‘Stark Early Orange’ and the susceptible cultivar ‘Vestar’ that segregates for resistance to PPV. This map is comprised of 357 loci (330 amplified fragment length polymorphisms (AFLPs), 26 simple sequence repeats (SSRs), and 1 morphological marker for PPV resistance) assigned to eight linkage groups. Twenty-two of the mapped SSRs are shared in common with genetic reference map for Prunus (T × E; Joobeur et al. 1998) and anchor our apricot map to the general Prunus map. A PPV resistance locus was mapped in linkage group 1 and four AFLP markers segregating with the PPV resistance trait, identified through bulk segregant analysis, facilitated the development of SSRs in this region. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Lalli, D.A. and Salava, J. contributed equally to this work.  相似文献   

20.
Map-based cloning to find genes of interest, markerassisted selection (MAS), and marker-assisted breeding (MAB) all require good genetic maps with high reproducible markers. For map construction as well as chromosome assignment, development of single copy PCR-based markers and map integration process are necessary. In this study, the 132 markers (57 STS from BAC-end sequences, 13 STS from RFLP, and 62 SSR) were newly developed as single copy type PCR-based markers. They were used together with 1830 markers previously developed in our lab to construct an integrated map with the Joinmap 3.0 program. This integrated map contained 169 SSR, 354 RFLP, 23 STS from BAC-end sequences, 6 STS from RFLP, 152 AFLP, 51 WRKY, and 99 rRAMP markers on 12 chromosomes. The integrated map contained four genetic maps of two interspecific (Capsicum annuum ‘TF68’ and C. chinense ‘Habanero’) and two intraspecific (C. annuum ‘CM334’ and C. annuum ‘Chilsungcho’) populations of peppers. This constructed integrated map consisted of 805 markers (map distance of 1858 cM) in interspecific populations and 745 markers (map distance of 1892 cM) in intraspecific populations. The used pepper STS were first developed from end sequences of BAC clones from Capsicum annuum ‘CM334’. This integrated map will provide useful information for construction of future pepper genetic maps and for assignment of linkage groups to pepper chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号