首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary To seek a morphological expression of circadian rhythm, we investigated cytologically pineal glands taken from rats every 2 to 4 h under a lighting regime of 12 h of illumination (6:00 to 18:00) and 12 h of darkness. The changes in the number of synaptic ribbons and ribbon fields was observed by electron microscopy. The number of these intracellular elements was greatest at 2:00 and the lowest at 14:00, the difference being statistically significant. There were no significant local differences in numbers with respect to the part of the pineal gland examined. The data are similar to those of Vollrath from the pineal gland of a guinea pig, and seem to confirm a circadian function in the pineal gland in mammals.Supported by grants-in-aid from the Ministry of Education, Science and Culture, and the Ministry of Health and Welfare  相似文献   

2.
Summary Circadian morphological variations of pinealocytes in the superficial pineal of the Chinese hamster (Cricetulus griseus) were studied using quantitative electron-microscopic techniques. The volume of the nucleus and cytoplasm of pinealocytes exhibited similar circadian variations, with the maximum around the middle of the light period and the minimum during the first half of the dark period. Synaptic ribbons in pinealocytes were classified into three groups, type-1, –2 and –3 synaptic ribbons, which appeared as rods, round or irregular bodies and ring-shaped structures, respectively; a synaptic ribbon index was determined for the respective types. The synaptic ribbon index was expressed as the number of synaptic ribbons in the pinealocyte profile representing the cell size. The type-1 synaptic ribbon index, which was smallest during the second half of the light period, was increased during the dark period. The length of straight or slightly curved rods showed a 24-h change similar to that of the type-1 synaptic ribbon index; the length of the rods was maximal during the first half of the dark period and minimal at the end of the light period. There was no apparent circadian variation in the type-2 synaptic ribbon index. The type-3 synaptic ribbon index was higher during the light period than during the dark period; the index attained zero 3h after the onset of darkness and, thereafter, increased gradually.  相似文献   

3.
Chronic sympathetic denervation of the pineal gland by bilateral removal of the superior cervical ganglia (SCG) was performed on female rats 30 days before impregnation. The offspring, maintained in the dark from birth, had disruption of the malate dehydrogenase circadian rhythm in the testes at 25 days of age. A daily injection of melatonin (1 mg/kg s.c. at 10:00 or 18:00 h) to denervated mothers from the 14th day of pregnancy up to the 10th day postpartum produced one daily phase in the enzyme activity of testes in the offspring. Entrainment of daily enzyme activity also was obtained when the hormone was administered orally to the pups during the postnatal period or when pups were reared by intact (not denervated) foster mothers. The results indicate the involvement of the maternal pineal gland in the maternal transfer of photoperiodic information necessary for the coordination of the circadian system in young rats.  相似文献   

4.
Chronic sympathetic denervation of the pineal gland by bilateral removal of the superior cervical ganglia (SCG) was performed on female rats 30 days before impregnation. The offspring, maintained in the dark from birth, had disruption of the malate dehydrogenase circadian rhythm in the testes at 25 days of age. A daily injection of melatonin (1 mg/kg s.c. at 10:00 or 18:00 h) to denervated mothers from the 14th day of pregnancy up to the 10th day postpartum produced one daily phase in the enzyme activity of testes in the offspring. Entrainment of daily enzyme activity also was obtained when the hormone was administered orally to the pups during the postnatal period or when pups were reared by intact (not denervated) foster mothers. The results indicate the involvement of the maternal pineal gland in the maternal transfer of photoperiodic information necessary for the coordination of the circadian system in young rats.  相似文献   

5.
6.
Pineal "synaptic" ribbons are a heterogeneous population of organelles. "Synaptic" ribbons (SR) sensu stricto, "synaptic" spherules (SS), and intermediate forms (IMF) are present. Their function and origin are unknown, and a knowledge of their prenatal development is lacking. Thus the pineal glands of prenatal, neonatal, and adult guinea pigs were prepared for electron microscopy. "Synaptic" ribbons were studied morphologically and quantitatively. The three categories of "synaptic" ribbons reported in adult pineal glands were also present in prenatal pineal glands. Their structural features, distribution, grouping, and composition patterns are similar to those in adults. "Synaptic" ribbons were first detected in pinealocytes of the distal region of a 42-day postcoitus (PC) pineal gland and were comparable with those in adults. They increased in number with age and reached a peak at 63 days PC, followed by a steep decline at 66 and 67 days PC. By day 69 PC, the numbers increased again and showed a dramatic increase after birth. Several true ribbon synapses were seen at day 63 PC between pinealocyte cell processes or between pinealocyte cell process and pinealocyte cell body. Since true ribbon synapses have not been found in adult guinea pig pinealocytes, their synaptic nature could have been lost during development. No precursors for the "synaptic" ribbons were found. The endoplasmic reticulum cisternae may be the origin for the ribbon vesicles because of their close association with the "synaptic" ribbons.  相似文献   

7.
Summary Previous studies have shown that pineal synaptic ribbons and spherules may respond differently under normal and experimental conditions. It has been suggested that the increase in the number of ribbons may be a prerequisite for enhanced melatonin formation. In the present study, the number of ribbons and spherules as well as the level of serum melatonin were monitored over a 24-h period in the male rabbit, the pineal gland of which is known to contain many spherules. It was found that both the number of ribbons and the levels of serum melatonin show the typical nocturnal increase, exhibiting peaks at 02:00 and 06:00 h, respectively. There is a good correlation (R = 0.8) of the two parameters. The spherules, in contrast, show no statistically significant circadian changes in number and cannot be correlated with the levels of serum melatonin. It is concluded that ribbons and spherules may differ in function and that the ribbons may be somehow involved in the regulation of melatonin formation.Supported by the Deutsche Forschungsgemeinschaft (Grant Vo 135/7) within the project SPP Neuroendokrinologie  相似文献   

8.
In the pineal gland numbers of synaptic ribbons (SR) undergo day/night changes which parallel the rhythm of melatonin synthesis. Since pineal biosynthetic activity is controlled by activation of adrenoreceptors, we investigated the effects of adrenergic agonists and antagonists on pineal synaptic ribbon numbers and N-acetyltransferase (NAT) activity, the key enzyme of melatonin synthesis in rats. In vivo application of the beta-adrenergic antagonist propranolol decreased melatonin synthesis when given during the dark phase but did not affect SR numbers. Treatment during daytime with the beta-adrenergic agonist isoproterenol increased pineal NAT activity whereas SR numbers did not change. Norepinephrine stimulated NAT activity in vitro in a dose-dependent manner, but did not elevate SR numbers. Incubation with an analog of the second messenger cyclic adenosine monophosphate increased both NAT activity and SR numbers. These results suggest that the beta-adrenergic system does not play a decisive role in the regulation of the nocturnal increase in SR numbers observed in the rat pineal gland.  相似文献   

9.
10.
The circadian locomotor activity rhythm of the Japanese newt has been thought to be driven by a putative brain oscillator(s) subordinate to the pineal clock. The existence of mutual coupling between the pineal clock and the brain oscillator(s) in vivo was examined. We covered the newt's skull with aluminum foil and simultaneously reversed the light-dark cycle, thereby allowing the pineal organ to be exposed to constant darkness while the rest of the animal was exposed to the reversed light-dark cycle. In control animals, whose heads were covered with transparent plastic, the rhythm of synaptic ribbon number in the pineal photoreceptor cells was entrained to the reversed light-dark cycle. Rhythms from newts whose heads were shielded, however, were similar to those observed in the unoperated newts kept under constant darkness. The locomotor activity rhythms of both head-covered animals and control animals were entrained to the reversed light-dark cycle. These data suggest that extrapineal photoreception can entrain the putative brain oscillator(s), but not the pineal clock. Thus, at least in an aspect of photic entrainment, there seems to be little or no mutual coupling between the pineal clock and the putative brain oscillator(s) in the circadian system of the Japanese newt.Abbreviations LD light-dark - DD constant darkness - SCN suprachiasmatic nucleus - SR synaptic ribbon  相似文献   

11.
We studied the effects of adjuvant arthritis (AA) on the endocrine circadian rhythms of plasma prolactin (PRL), growth hormone (GH), insulin-like growth factor-1 (IGF-1), luteinizing hormone (LH), testosterone, and melatonin and of pituitary PRL and GH mRNA in male Long Evans rats. Groups of control and AA rats (studied 23 days after AA induction) that were housed under a 12/12 h light/dark cycle (light on at 06:00 h) were killed at 4 h intervals starting at 14:00 h. Cosinor analysis revealed a significant 12 h rhythm in PRL and PRL mRNA (p < 0.001) in controls with peaks at 14:00 h and 02:00 h, respectively. The peak at 02:00 h was abolished in the AA group resulting in a significant 24 h rhythm in parallel with that of PRL (p < 0.05) and PRL mRNA (p < 0.0001). Growth hormone showed no rhythm, but a significant rhythm of GH mRNA was present in both groups (p < 0.0001). Insulin-like growth factor-1 showed a 24 h rhythm in control but not in AA rats. The mean values of GH, GH mRNA, and IGF-1 were significantly reduced in AA. Luteinizing hormone displayed a significant 24 h rhythm (p < 0.01) peaking in the dark period in the control but not AA group. Testosterone showed in phase temporal changes of LH levels with AA abolishing the 02:00 h peak. Melatonin exhibited a significant 24 h rhythm in control (p < 0.001) and AA (p < 0.01) rats with maximum levels during the dark phase; the mesor value was higher in the AA males. These results demonstrate that AA interferes with the rhythms of all the studied hormones except the non-24 h (arrhythmic) GH secretion pattern and the rhythm in melatonin. The persistence of a distinct melatonin rhythm in AA suggests the observed disturbances of hormonal rhythms in this condition do not occur at the level of the pineal gland.  相似文献   

12.
A study is made of the number of pineal gland synaptic ribbons in 35 male Wistar rats over a 24-hour period during the months of September and February, in correlation to the serum melatonin levels during the same periods and photophases. The results of the study confirm those reported by others authors and suggest that the synaptic ribbons may be the stimuli-transmitting organs facilitating pineal secretory function.  相似文献   

13.
Summary Synaptic ribbons, functionally enigmatic structures of mammalian pinealocytes, were studied during the postnatal development of the pineal gland in the golden hamster (Mesocricetus auratus). On day 4 post partum, synaptic ribbons appear in cells that have already started to differentiate into pinealocytes. Between days 4 and 9, an increase in the number of synaptic ribbons occurs, concomitant with the continuing differentiation of the pineal tissue. Between days 9 and 16, when differentiation of this tissue is almost completed, the number of synaptic ribbons decreases and approaches that characteristic of the adult pineal gland. During development, the synaptic ribbons increase in length, and dense core vesicles are frequently found in the vicinity of these structures. It is assumed that a functional relationship exists between dense core vesicles and the synaptic ribbons, which are considered to be engaged in a certain form of secretory activity of the mammalian pineal gland.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

14.
Circadian and seasonal variations were observed in the karyometric index of pinealocytes in the cortical and medullary regions of the distal pineal body. The study involved 70 Wistar rats over a 24-hour interval (0:6, 10:00, 14:00, 18:00, 22:00, 02:00, 06:00 h) during two natural photoluminous periods, i.e. late summer (Long photoperiod) and Winter (Short photoperiod). The results show a difference between the high and low points of both photoperiods. Cortico-medullary differences are found at different times of day during long photoperiod (0:6; 10:00; 14:00 and 18:00 h.) and short photoperiod (14:00; 22:00 and 02:00 h.). The variance analyses between nuclear volume and point-time and between nuclear volume, point-time and location are significative. A high correlation between circadian rhythms and volumetric variations in both layers and photoperiod are found. The results also show significant differences in cortico-medullary karyometric indices between both seasons as well as between the diurnal and nocturnal hours of both photoperiods. It is suggested that the pineal body of the rat is influenced by circadian and seasonal photoperiod and may have groups of cells with different functional characteristics, depending on their location within the gland.  相似文献   

15.
16.
Abstract: The circadian rhythms in melatonin production in the chicken pineal gland and retina reflect changes in the activity of serotonin N -acetyltransferase (arylalkylamine N -acetyltransferase; AA-NAT; EC 2.3.1.87). Here we determined that the chicken AA-NAT mRNA is detectable in follicular pineal cells and retinal photoreceptors and that it exhibits a circadian rhythm, with peak levels at night. AA-NAT mRNA was not detected in other tissues. The AA-NAT mRNA rhythm in the pineal gland and retina persists in constant darkness (DD) and constant lighting (LL). The amplitude of the pineal mRNA rhythm is not decreased in LL. Light appears to influence the phase of the clock driving the rhythm in pineal AA-NAT mRNA in two ways: The peak is delayed by ∼6 h in LL, and it is advanced by >4 h by a 6-h light pulse late in subjective night in DD. Nocturnal AA-NAT mRNA levels do not change during a 20-min exposure to light, whereas this treatment dramatically decreases AA-NAT activity. These observations suggest that the rhythmic changes in chicken pineal AA-NAT activity reflect, at least in part, clock-generated changes in mRNA levels. In contrast, changes in mRNA content are not involved in the rapid light-induced decrease in AA-NAT activity.  相似文献   

17.
The objectives of this study were to test the effects of light on melatonin rhythms in the pineal gland and gut of goldfish Carassius auratus and to investigate whether melatonin function differed in these two tissues, which are photosensitive and non-photosensitive respectively. Rhythms were evaluated by measuring arylalkylamine N-acetyltransferase (AANAT2) and melatonin receptor 1 (MT-R1) mRNA expression and melatonin concentration in the pineal gland, gut (in vivo), and cell cultures of the two tissues (in vitro). Compared to control, pineal gland melatonin secretion was higher at night, whereas the 24-h dark and ophthalmectomy groups maintained higher AANAT2 and MT-R1 mRNA expression during the day. Melatonin levels and AANAT2 and MT-R1 mRNA expression in the gut were also the highest at night, but the 24-h light, dark, and ophthalmectomy groups did not significantly differ from control. Furthermore, we measured AANAT2 and MT-R1 mRNA expression in high temperature water (30 °C) to investigate differences in the antioxidant capacity of pineal gland vs. gut melatonin. Melatonin and H2O2 levels, as well as AANAT2 and MT-R1 mRNA expression, were all higher in the two tissues under thermal stress, compared with their levels at 22 °C. Taken together, our results suggest that light has no effect on melatonin patterns in the gut, which appears to exhibit its own circadian rhythm, but both gut and pineal gland melatonin exhibit similar antioxidant function.  相似文献   

18.
Diverse circadian systems related to phylogeny and ecological adaptive strategies are proposed in teleosts. Recently, retinal photoreception was reported to be important for the circadian pacemaking activities of the Nile tilapia Oreochromis niloticus. We aimed to confirm the photic and circadian responsiveness of its close relative-the Mozambique tilapia O. mossambicus. Melatonin production in cannulated or ophthalmectomized fish and its secretion from cultured pineal glands were examined under several light regimes. Melatonin production in the cannulated tilapias was measured at 3-h intervals; it fluctuated daily, with a nocturnal increase and a diurnal decrease. Exposing the cannulated fish to several light intensities (1500-0.1 lx) and to natural light (0.1 and 0.3 lx) suppressed melatonin levels within 30 min. Static pineal gland culture under light-dark and reverse light-dark cycles revealed that melatonin synthesis increased during the dark periods. Rhythmic melatonin synthesis disappeared on pineal gland culture under constant dark and light conditions. After ophthalmectomy, plasma melatonin levels did not vary with light-dark cycles. These results suggest that (1) Mozambique tilapias possess strong photic responsiveness, (2) their pineal glands are sensitive to light but lack circadian pacemaker activity, and (3) they require lateral eyes for rhythmic melatonin secretion from the pineal gland.  相似文献   

19.
In the mammalian pineal gland, synaptic bodies (SBs) are poorly understood organelles. Previous studies in rabbits have shown that the organelles are rather heterogeneous in shape, are few in number during the day and increase in number at night. No studies are currently available on seasonal changes in this species and it is unknown whether the biological rhythms are identical in the proximal, intermediate and distal parts of the elongated pineal. To this end, a study was made of 84 rabbits kept under natural lighting conditions to examine numerical variations of the different types of SBs in the proximal, intermediate and distal regions of pineal glands procured at different timepoints of a 24-hour cycle and in each of the four annual seasons. In the present study, rod-like, sphere-like, ovoid, rectangular and triangular SB profiles were distinguished; the first two types being the most abundant. In addition to the well-known circadian changes, with low numbers of SB profiles during the day and high numbers at night, we found pronounced season-related differences as well as differences related to pineal regions. In autumn and winter, nighttime SR profile numbers were significantly higher than in spring and summer. With respect to regional differences it was found that the amplitude of the circadian rhythm increased in a proximo-distal direction in the gland. In autumn the strongly enhanced nocturnal increase was restricted to the distal region of the gland, whereas in winter it was seen in both the distal and the intermediate regions. The regional differences are probably related to the fact that the postganglionic sympathetic fibres, which regulate pineal function, enter the gland distally and proceed rostrally to the proximal region. Taken together, the results show that day- and nightlength are structurally coded in the pineal gland by means of SB numbers. Provided the SBs of the mammalian pineal gland are involved in synaptic processes, the results suggest that synaptic processes are enhanced at night as well as in autumn and winter.  相似文献   

20.
There is ample experimental evidence that changes of earth-strength static magnetic fields, pulsed magnetic fields, or alternating electric fields (60 Hz) depress the nocturnally enhanced melatonin synthesis of the pineal gland of certain mammals. No data on the effects of high-frequency electromagnetic fields on melatonin synthesis is available. In the present study, exposure to 900 MHz electromagnetic fields [0.1 to 0.6 mW/cm2, approximately 0.06 to 0.36 W/kg specific absorption rate (SAR) in rats and 0.04 W/kg in Djungarian hamsters; both continuous and/or pulsed at 217 Hz, for 15 min to 6 h] at day or night had no notable short-term effect on pineal melatonin synthesis in male and female Sprague-Dawley rats and Djungarian hamsters. Pineal synaptic ribbon profile numbers (studied in rats only) were likewise not affected. The 900 MHz electromagnetic fields, unpulsed or pulsed at 217 Hz, as applied in the present study, have no short-term effect on the mammalian pineal gland. Bioelectromagnetics 18:376–387, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号