首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frataxin is a mitochondrial protein that is conserved throughout evolution. In yeast and mammals, frataxin is essential for cellular iron (Fe) homeostasis and survival during oxidative stress. In plants, frataxin deficiency causes increased reactive oxygen species (ROS) production and high sensitivity to oxidative stress. In this work we show that a knock-down T-DNA frataxin-deficient mutant of Arabidopsis thaliana (atfh-1) contains increased total and organellar Fe levels. Frataxin deficiency leads also to nitric oxide (NO) accumulation in both, atfh-1 roots and frataxin null mutant yeast. Abnormally high NO production might be part of the defence mechanism against Fe-mediated oxidative stress.  相似文献   

2.

Background

The neurodegenerative disease Friedreich's ataxia is the result of frataxin deficiency. Frataxin is a mitochondrial protein involved in iron–sulfur cluster (Fe–S) cofactor biogenesis, but its functional role in this pathway is debated. This is due to the interconnectivity of iron metabolic and oxidative stress response pathways that make distinguishing primary effects of frataxin deficiency challenging. Since Fe–S cluster assembly is conserved, frataxin overexpression phenotypes in a simple eukaryotic organism will provide additional insight into frataxin function.

Methods

The Schizosaccharomyces pombe frataxin homologue (fxn1) was overexpressed from a plasmid under a thiamine repressible promoter. The S. pombe transformants were characterized at several expression strengths for cellular growth, mitochondrial organization, iron levels, oxidative stress, and activities of Fe–S cluster containing enzymes.

Results

Observed phenotypes were dependent on the amount of Fxn1 overexpression. High Fxn1 overexpression severely inhibited S. pombe growth, impaired mitochondrial membrane integrity and cellular respiration, and led to Fxn1 aggregation. Cellular iron accumulation was observed at moderate Fxn1 overexpression but was most pronounced at high levels of Fxn1. All levels of Fxn1 overexpression up-regulated oxidative stress defense and mitochondrial Fe–S cluster containing enzyme activities.

Conclusions

Despite the presence of oxidative stress and accumulated iron, activation of Fe–S cluster enzymes was common to all levels of Fxn1 overexpression; therefore, Fxn1 may regulate the efficiency of Fe–S cluster biogenesis in S. pombe.

General Significance

We provide evidence that suggests that dysregulated Fe–S cluster biogenesis is a primary effect of both frataxin overexpression and deficiency as in Friedreich's ataxia.  相似文献   

3.
4.
An inherited deficiency in the frataxin protein causes neurodegeneration of the dorsal root ganglia and Friedreich''s ataxia (FA). Frataxin deficiency leads to oxidative stress and inflammatory changes in cell and animal models; however, the cause of the inflammatory changes, and especially what causes brain microglial activation is unclear. Here we investigated: 1) the mechanism by which frataxin deficiency activates microglia, 2) whether a brain-localized inflammatory stimulus provokes a greater microglial response in FA animal models, and 3) whether an anti-inflammatory treatment improves their condition. Intracerebroventricular administration of LPS induced higher amounts of microglial activation in the FA mouse model vs controls. We also observed an increase in oxidative damage in the form of 8-oxoguanine (8-oxo-G) and the DNA repair proteins MUTYH and PARP-1 in cerebellar microglia of FA mutant mice. We hypothesized that frataxin deficiency increases DNA damage and DNA repair genes specifically in microglia, activating them. siRNA-mediated frataxin knockdown in microglial BV2 cells clearly elevated DNA damage and the expression of DNA repair genes MUTYH and PARP-1. Frataxin knockdown also induced a higher level of PARP-1 in MEF cells, and this was suppressed in MUTYH-/- knockout cells. Administration of the PARP-1 inhibitor PJ34 attenuated the microglial activation induced by intracerebroventricular injection of LPS. The combined administration of LPS and angiotensin II provoke an even stronger activation of microglia and neurobehavioral impairment. PJ34 treatment attenuated the neurobehavioral impairments in FA mice. These results suggest that the DNA repair proteins MUTYH and PARP-1 may form a pathway regulating microglial activation initiated by DNA damage, and inhibition of microglial PARP-1 induction could be an important therapeutic target in Friedreich''s ataxia.  相似文献   

5.

Background

Friedreich''s ataxia (FA), the most frequent form of inherited ataxias in the Caucasian population, is caused by a reduced expression of frataxin, a highly conserved protein. Model organisms have contributed greatly in the efforts to decipher the function of frataxin; however, the precise function of this protein remains elusive. Overexpression studies are a useful approach to investigate the mechanistic actions of frataxin; however, the existing literature reports contradictory results. To further investigate the effect of frataxin overexpression, we analyzed the consequences of overexpressing human (FXN) and fly (FH) frataxins in Drosophila.

Methodology/Principal Findings

We obtained transgenic flies that overexpressed human or fly frataxins in a general pattern and in different tissues using the UAS-GAL4 system. For both frataxins, we observed deleterious effects at the biochemical, histological and behavioral levels. Oxidative stress is a relevant factor in the frataxin overexpression phenotypes. Systemic frataxin overexpression reduces Drosophila viability and impairs the normal embryonic development of muscle and the peripheral nervous system. A reduction in the level of aconitase activity and a decrease in the level of NDUF3 were also observed in the transgenic flies that overexpressed frataxin. Frataxin overexpression in the nervous system reduces life span, impairs locomotor ability and causes brain degeneration. Frataxin aggregation and a misfolding of this protein have been shown not to be the mechanism that is responsible for the phenotypes that have been observed. Nevertheless, the expression of human frataxin rescues the aconitase activity in the fh knockdown mutant.

Conclusion/Significance

Our results provide in vivo evidence of a functional equivalence for human and fly frataxins and indicate that the control of frataxin expression is important for treatments that aim to increase frataxin levels.  相似文献   

6.
Frataxin deficiency and mitochondrial dysfunction   总被引:1,自引:0,他引:1  
Pandolfo M 《Mitochondrion》2002,2(1-2):87-93
Friedreich ataxia (FA) is an inherited recessive disorder characterized by progressive neurological disability and heart abnormalities. The Friedreich ataxia gene (FRDA) encodes a small mitochondrial protein, frataxin, which is produced in insufficient amounts in the disease as a consequence of a GAA triplet repeat expansion in the first intron of the gene. Frataxin deficiency leads to excessive free radical production, dysfunction of Fe-S center containing enzymes (in particular respiratory complexes I, II and III, and aconitase), and progressive iron accumulation in mitochondria. Frataxin may be a mitochondrial iron-binding protein that prevents this metal from participating in Fenton chemistry to generate toxic hydroxyl radicals. We investigated whether frataxin deficiency may in addition interfere with signaling pathways. First, we showed that exposure of FA fibroblasts to iron fails to produce the normally observed increase in expression of the stress defense protein manganese superoxide dismutase. This impaired induction involves a nuclear factor-kappaB-independent pathway that does not require free radical signaling intermediates. We also examined the role of frataxin in neuronal differentiation by using stably transfected clones of P19 embryonic carcinoma cells with antisense or sense frataxin constructs. We found that during retinoic acid-induced neurogenesis frataxin deficiency enhances apoptosis and reduces the number of terminally differentiated neuronal-like cells. The addition of the antioxidant N-acetyl-cysteine only rescues cells non-committed to the neuronal lineage, indicating that frataxin deficiency impairs differentiation mechanisms and survival responses through different mechanisms. Both studies suggest that some abnormalities in frataxin-deficient cells are related to free radical independent signaling pathways.  相似文献   

7.
Frataxin is a mitochondrial protein involved in iron metabolism. Defective expression of frataxin causes Friedreich ataxia (FA), an inherited degenerative syndrome characterized by ataxia, cardiomyopathy, and high incidence of diabetes. Here we report that frataxin-deficient cells are more prone to undergo stress-induced mitochondrial damage and apoptosis, while the overexpression of frataxin confers protection to a variety of cell types. Moreover, we reveal the existence of an extramitochondrial pool of frataxin, which can efficiently prevent mitochondrial damage and apoptosis in different cellular systems. Remarkably, extramitochondrial frataxin can fully replace mitochondrial frataxin in promoting survival of FA cells.  相似文献   

8.
9.
10.
Mutations in the frataxin gene cause dorsal root ganglion demyelination and neurodegeneration, which leads to Friedreich's ataxia. However the consequences of frataxin depletion have not been measured in dorsal root ganglia or Schwann cells. We knocked down frataxin in several neural cell lines, including two dorsal root ganglia neural lines, 2 neuronal lines, a human oligodendroglial line (HOG) and multiple Schwann cell lines and measured cell death and proliferation. Only Schwann cells demonstrated a significant decrease in viability. In addition to the death of Schwann cells, frataxin decreased proliferation in Schwann, oligodendroglia, and slightly in one neural cell line. Thus the most severe effects of frataxin deficiency were on Schwann cells, which enwrap dorsal root ganglia neurons. Microarray of frataxin-deficient Schwann cells demonstrated strong activations of inflammatory and cell death genes including interleukin-6 and Tumor Necrosis Factor which were confirmed at the mRNA and protein levels. Frataxin knockdown in Schwann cells also specifically induced inflammatory arachidonate metabolites. Anti-inflammatory and anti-apoptotic drugs significantly rescued frataxin-dependent Schwann cell toxicity. Thus, frataxin deficiency triggers inflammatory changes and death of Schwann cells that is inhibitable by inflammatory and anti-apoptotic drugs.  相似文献   

11.
Friedreich ataxia is the most common recessive neurodegenerative disease and is caused by reduced expression of mitochondrial frataxin. Frataxin depletion causes impairment in iron-sulfur cluster and heme biosynthesis, disruption of iron homeostasis and hypersensitivity to oxidants. Currently no pharmacological treatment blocks disease progression, although antioxidant therapies proved to benefit patients. We show that sensitivity of yeast frataxin-deficient cells to hydrogen peroxide is partially mediated by the metacaspase. Metacaspase deletion in frataxin-deficient cells results in recovery of antioxidant capacity and heme synthesis. In addition, our results suggest that metacaspase is associated with mitochondrial respiration, intracellular redox control and genomic stability.  相似文献   

12.
Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by low levels of the mitochondrial protein frataxin. The main phenotypic features of frataxin-deficient human and yeast cells include iron accumulation in mitochondria, iron-sulfur cluster defects and high sensitivity to oxidative stress. Frataxin deficiency is also associated with severe impairment of glutathione homeostasis and changes in glutathione-dependent antioxidant defenses. The potential biological consequences of oxidative stress and changes in glutathione levels associated with frataxin deficiency include the oxidation of susceptible protein thiols and reversible binding of glutathione to the SH of proteins by S-glutathionylation. In this study, we isolated mitochondria from frataxin-deficient ?yfh1 yeast cells and lymphoblasts of FRDA patients, and show evidence for a severe mitochondrial glutathione-dependent oxidative stress, with a low GSH/GSSG ratio, and thiol modifications of key mitochondrial enzymes. Both yeast and human frataxin-deficient cells had abnormally high levels of mitochondrial proteins binding an anti-glutathione antibody. Moreover, proteomics and immunodetection experiments provided evidence of thiol oxidation in α-ketoglutarate dehydrogenase (KGDH) or subunits of respiratory chain complexes III and IV. We also found dramatic changes in GSH/GSSG ratio and thiol modifications on aconitase and KGDH in the lymphoblasts of FRDA patients. Our data for yeast cells also confirm the existence of a signaling and/or regulatory process involving both iron and glutathione.  相似文献   

13.
There is no current approved therapy for the ultimately lethal neuro- and cardio-degenerative disease Friedreich''s ataxia (FA). Finding minimally-invasive molecular biomarkers of disease progression and drug effect could support smaller, shorter clinical trials. Since we and others have noted a deficient oxidative stress response in FA, we investigated the expression of 84 genes involved in oxidative stress, signaling, and protection in control and FA lymphoblasts ranging from 460 to 1122 GAA repeats. Several antioxidant genes responded in a dose-dependent manner to frataxin expression at the mRNA and protein levels, which is inversely correlated with disease progression and severity. We tested the effect of experimental Friedreich’s ataxia therapies dimethyl fumarate (DMF) and type 1 histone deacetylase inhibitor (HDACi) on biomarker mRNA expression. We observed that exposure of lymphoblasts to DMF and HDACi dose-dependently unsilenced frataxin expression and restored the potential biomarkers NCF2 and PDLIM1 expression to control levels. We suggest that in addition to frataxin expression, blood lymphoblast levels of NCF2 and PDLIM1 could be useful biomarkers for disease progression and drug effect in future clinical trials of Friedreich’s ataxia.  相似文献   

14.
Toll-like receptor 9 (TLR9) triggering is a promising novel strategy to combat cancer as it induces innate and adaptive immunity responses. B-cell lymphoma is unique in this context as tumor cells express TLR9 and may harbor latent Epstein-Barr virus (EBV), a gamma-herpesvirus with remarkable oncogenic potential when latent. Latent EBV may be promoted by TLR9 triggering via suppression of lytic EBV. Here, we elaborated an initial assessment of the impact of TLR9 triggering on EBV-positive and EBV-negative B-cell lymphoma using Burkitt''s lymphoma (BL) cell lines as an in vitro model. We show that, independent of the presence of EBV, the TLR9 ligand oligodeoxynucleotide (ODN) CpG-2006 may or may not induce caspase-dependent cell death in BL cells. Moreover, ODN CpG-2006-induced cell death responses of BL cells were associated with TLR9 single-nucleotide polymorphisms (SNPs) rs5743836 or rs352140, which we detected in primary BL tumors and in peripheral blood from healthy individuals at similar frequencies. Thus, our findings suggest that the effect of TLR9 agonists on BL cells should be tested in vitro before installment of therapy and TLR9 SNPs in BL patients should be determined as potential biological markers for the therapeutic response to treatment targeting innate immunity.  相似文献   

15.
Vazzola V  Losa A  Soave C  Murgia I 《FEBS letters》2007,581(4):667-672
Frataxin is present in mitochondria of all eukaryotes as well as in the cytoplasm of bacteria. In humans, reduced expression of frataxin is associated with Friedreich's ataxia, a recessive inherited neurodegenerative and cardiac disorder leading to reduced life expectancy. Experimental evidences suggest that frataxin acts as an iron-chaperone protein, donating iron to the proteins involved in [Fe-S] cluster assembly and heme synthesis. It also possibly contributes to the process of iron detoxification and storage. The frataxin homolog from Arabidopsis thaliana (AtFH) is a single nuclear-encoded gene targeted to mitochondria and sharing 65% similarity with animal frataxin. In the present work, we show that the knocking out of AtFH gene causes arrest of Arabidopsis embryo development at the globular stage. Consistently with that, we also show by in situ hybridization that AtFH is expressed, in wt Arabidopsis plants, in ovule primordia as well as in embryos at various stages of development, suggesting a key role of plant frataxin during embryogenesis.  相似文献   

16.
17.
Defects in frataxin result in Friedreich ataxia, a genetic disease characterized by early onset of neurodegeneration, cardiomyopathy, and diabetes. Frataxin is a conserved mitochondrial protein that controls iron needed for iron-sulfur cluster assembly and heme synthesis and also detoxifies excess iron. Studies in vitro have shown that either monomeric or oligomeric frataxin delivers iron to other proteins, whereas ferritin-like frataxin particles convert redox-active iron to an inert mineral. We have investigated how these different forms of frataxin are regulated in vivo. In Saccharomyces cerevisiae, only monomeric yeast frataxin (Yfh1) was detected in unstressed cells when mitochondrial iron uptake was maintained at a steady, low nanomolar level. Increments in mitochondrial iron uptake induced stepwise assembly of Yfh1 species ranging from trimer to > or = 24-mer, independent of interactions between Yfh1 and its major iron-binding partners, Isu1/Nfs1 or aconitase. The rate-limiting step in Yfh1 assembly was a structural transition that preceded conversion of monomer to trimer. This step was induced, independently or synergistically, by mitochondrial iron increments, overexpression of wild type Yfh1 monomer, mutations that stabilize Yfh1 trimer, or heat stress. Faster assembly kinetics correlated with reduced oxidative damage and higher levels of aconitase activity, respiratory capacity, and cell survival. However, deregulation of Yfh1 assembly resulted in Yfh1 aggregation, aconitase sequestration, and mitochondrial DNA depletion. The data suggest that Yfh1 assembly responds to dynamic changes in mitochondrial iron uptake or stress exposure in a highly controlled fashion and that this may enable frataxin to simultaneously promote respiratory function and stress tolerance.  相似文献   

18.
Frataxin, a small nuclear-encoded protein targeted to mitochondria, is known to play an important role in both the mitochondrial respiratory chain and iron homeostasis. The protein is highly conserved in most eukaryotic organisms with no major structural changes, suggesting that it serves a crucial function in all organisms. Recently, purified frataxin was used as a therapeutic treatment of Friedreich’s ataxia, a common degenerative disorder that results from a frataxin protein deficiency, by directly applying the protein to the diseased cells. In this report, we describe a novel and rapid method of synthesizing genes encoding frataxin proteins for the purpose of efficient protein production. The artificial yeast and human frataxin genes were synthesized by direct assembly of serial deoxyoligonucleotide primers designed based on the optimal nucleotide sequences. When we tested the expression of these synthetic genes in two E. coli host strains, the yeast frataxin gene was expressed 20 folds higher in Rosetta (DE3) cells than in BL21 (DE3) cells, whereas the expression levels of human frataxin were similar in both E. coli strains. Attenuation of the Fenton reactions by the purified yeast and human frataxin proteins was observed under the defined conditions, which suggests that the recombinant frataxin proteins are active and functional. The procedure described here could be applied to many known genes or to generate novel synthetic genes that can be redesigned by arranging functional domains from previously identified genes and to study the structure and function of synthetic recombinant proteins and potential usage.  相似文献   

19.
20.
Friedreich's ataxia (FRDA), the most common inherited ataxia, is a neurodegenerative disease caused by a reduction in the levels of the mitochondrial protein frataxin, the function of which remains a controversial matter. Several therapeutic approaches are being developed to increase frataxin expression and reduce the intramitochondrial iron aggregates and oxidative damage found in this disease. In this study, we tested separately the response of a Drosophila RNAi model of FRDA ( Llorens et al., 2007) to treatment with the iron chelator deferiprone (DFP) and the antioxidant idebenone (IDE), which are both in clinical trials. The FRDA flies have a shortened life span and impaired motor coordination, and these phenotypes are more pronounced in oxidative stress conditions. In addition, under hyperoxia, the activity of the mitochondrial enzyme aconitase is strongly reduced in the FRDA flies. This study reports that DFP and IDE improve the life span and motor ability of frataxin-depleted flies. We show that DFP eliminates the excess of labile iron in the mitochondria and thus prevents the toxicity induced by iron accumulation. IDE treatment rescues aconitase activity in hyperoxic conditions. These results validate the use of our Drosophila model of FRDA to screen for therapeutic molecules to treat this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号