首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extension of the (isothermal) Gibbs–Helmholtz equation for the heat capacity terms (ΔCp) allows formulating a temperature function of the free (Gibbs) energy change (ΔG). An approximation of the virtually unknown ΔCp temperature function enables then to determine and numerically solve temperature functions of thermodynamic parameters ΔH and ΔS (enthalpy and entropy change, respectively). Analytical solutions and respective numeric procedures for several such approximation formulas are suggested in the presented paper. Agreement between results obtained by this analysis with direct microcalorimetric measurements of ΔH (and ΔCp derived from them) was approved on selected cases of biochemical interactions presented in the literature. Analysis of several ligand-membrane receptor systems indicates that temperature profiles of ΔH and ΔS are parallel, largely not monotonic, and frequently attain both positive and negative values within the current temperature range of biochemical reactions. Their course is determined by the reaction change of heat capacity: temperature extremes (maximum or minimum) of both ΔH and ΔS occur at ΔCp?=?0, for most of these systems at roughly 285–305 K. Thus, the driving forces of these interactions may change from enthalpy-, entropy-, or enthalpy-entropy-driven in a narrow temperature interval. In contrast, thermodynamic parameters of ligand-macromolecule interactions in solutions (not bound to a membrane) mostly display a monotonic course. In the case of membrane receptors, thermodynamic discrimination between pharmacologically defined groups—agonists, partial agonists, antagonists—is in general not specified and can be achieved, in the best, solely within single receptor groups.  相似文献   

2.
Extension of the (isothermal) Gibbs-Helmholtz equation for the heat capacity terms (ΔC(p)) allows formulating a temperature function of the free (Gibbs) energy change (ΔG). An approximation of the virtually unknown ΔC(p) temperature function enables then to determine and numerically solve temperature functions of thermodynamic parameters ΔH and ΔS (enthalpy and entropy change, respectively). Analytical solutions and respective numeric procedures for several such approximation formulas are suggested in the presented paper. Agreement between results obtained by this analysis with direct microcalorimetric measurements of ΔH (and ΔC(p) derived from them) was approved on selected cases of biochemical interactions presented in the literature. Analysis of several ligand-membrane receptor systems indicates that temperature profiles of ΔH and ΔS are parallel, largely not monotonic, and frequently attain both positive and negative values within the current temperature range of biochemical reactions. Their course is determined by the reaction change of heat capacity: temperature extremes (maximum or minimum) of both ΔH and ΔS occur at ΔC(p)=0, for most of these systems at roughly 285-305 K. Thus, the driving forces of these interactions may change from enthalpy-, entropy-, or enthalpy-entropy-driven in a narrow temperature interval. In contrast, thermodynamic parameters of ligand-macromolecule interactions in solutions (not bound to a membrane) mostly display a monotonic course. In the case of membrane receptors, thermodynamic discrimination between pharmacologically defined groups-agonists, partial agonists, antagonists-is in general not specified and can be achieved, in the best, solely within single receptor groups.  相似文献   

3.
The G protein family continues to grow and at least 15 heterotrimeric G proteins have now been identified. This review deals with the nature of the functional domains of the members of the G-protein-coupled receptor family as well as the associated G proteins.  相似文献   

4.
A minor glycopeptide was newly isolated from the exhaustive pronase digest of crystalline ovalbumin by Dowex-50w column chromatography, and its structure was determined as Manα1→3Manα1→6 (Manα1→3) Manβ1→4GlcNAcβ1→4GlcNAc→Asn. This glycopeptide (GP-VI) has the smallest carbohydrate unit among the ovalbumin glycopeptides so far reported, and is also the smallest glycopeptide of all which are susceptible to endo-β-N-acetylglucosaminidases CII and H. This finding, together with the already reported data of the action of both enzymes to glycopeptides of known structures, elucidates that the structural requirement of CII enzyme for its substrate is R→2Manα1→3 (R→6) Manα1→6 (R→2Manα1→3) (R→4) Manβ1→4GlcNAcβ1→4GlcNAc→Asn, in which R represents either hydrogen or sugars, and that of H enzyme is R→2Manα1→3 (R→6) Manα1→6 (R→4) Manβ1→4GlcNAcβ1→4GlcNAc→Asn.  相似文献   

5.
Membrane proteins regulate many cellular processes including signaling cascades, ion transport, membrane fusion, and cell-to-cell communications. Understanding the architecture and conformational fluctuations of these proteins is critical to understanding their regulation and functions. Fluorescence methods including intensity mapping, fluorescence resonance energy transfer (FRET), and photo-induced electron transfer, allow for targeted measurements of domains within membrane proteins. These methods can reveal how a protein is structured and how it transitions between different conformational states. Here, I will review recent work done using fluorescence to map the structures of membrane proteins, focusing on how each of these methods can be applied to understanding the dynamic nature of individual membrane proteins and protein complexes.  相似文献   

6.
To determine how the lipid environment affects membrane protein structure and function, strains of Escherichia coli were developed in which normal phospholipid composition can be altered or foreign lipids can be introduced. The properties of LacY (lactose permease) were investigated as a function of lipid environment. Assembly of LacY in membranes lacking PE (phosphatidylethanolamine) results in misorientation of the N-terminal six-TM (transmembrane domain) helical bundle with loss of energy-dependent uphill transport and retention of energy-independent downhill transport. Post-assembly introduction of PE results in nearly native orientation of TMs and restoration of uphill transport. Foreign lipids with no net charge can substitute for PE in supporting native LacY topology, but restoration of uphill transport is dependent on native topology and the proper folding of a solvent-exposed domain. Increasing the positive charge density of the cytoplasmically exposed surface of LacY counters TM misorientation in the absence of neutral lipids, demonstrating that charge interactions between these domains and the surface of the membrane bilayer are determinants of TM orientation. Therefore membrane protein organization or reorganization is determined either during initial assembly or post-insertionally through direct interactions between the protein and the lipid environment, which affects the topogenic potency of opposing charged residues as topological signals independent of the translocon.  相似文献   

7.
The four peptide analogs of the amphipathic helix whose interactions with dimyristoyl phosphatidylcholine were described in the preceding paper were compared with apolipoproteins (apo) A-I and A-II in ability to displace native apolipoprotein from high density lipoprotein (HDL) and in ability to activate lecithin:cholesterol acyltransferase. The rank order of the ability of the four peptide analogs to displace apo-A-I from intact HDL was 18A-Pro-18A greater than 18A greater than des-Val10-18A greater than reverse-18A, the same order suggested in the preceding paper for relative lipid affinities. Modified HDL from which 40% of the apo-A-I had been displaced by 18A was indistinguishable from unmodified HDL in its ability to act as a lecithin:cholesterol acyltransferase substrate. This suggests that the easily displaced apo-A-I molecules in polydisperse HDL are relatively ineffectual as lecithin:cholesterol acyltransferase activators and/or 18A replaces the lecithin:cholesterol acyltransferase activity lost. The peptide analog 18A-Pro-18A was found to be a powerful activator of lecithin:cholesterol acyltransferase when incubated with unilamellar egg phosphatidylcholine (PC) vesicles, reaching 140% of the activity of apo-A-I at a 1:1.75 peptide-to-egg PC ratio. In another experiment, it was found that discoidal egg PC complexes of 18A-Pro-18A, 18A, and des-Val10-18A, formed by cholate dialysis, had 30-45% of the activity of apo-A-I/egg PC discoidal complexes, also formed by cholate dialysis, at the same peptide/lipid weight ratio. Examination of the structures formed when the 18A-Pro-18A peptide was incubated with unilamellar egg PC vesicles indicated that the ability of 18A-Pro-18A to exceed apo-A-I in lecithin:cholesterol acyltransferase activating ability is due to the spontaneous conversion by 18A-Pro-18A of egg PC vesicles to small protein annulus-bilayer disc structures. Apo-A-I, apo-A-II, nor any of the other three peptide analogs of the amphipathic helix studied were able to convert a significant fraction of egg PC unilamellar vesicles to discoidal structures.  相似文献   

8.
Gangliosides inhibit the binding of 125I-labeled human chorionic gonadotropin to rat testes membranes. The inhibition is the result of an interaction between the hormone and the ganglioside rather than the membrane and ganglioside, and the interaction with the ganglioside can be detected by fluorescence spectroscopy. In both the binding inhibition and fluorescence studies, human chorionic gonadotropin recognizes an oligosaccharide sequence on the ganglioside molecule distinct from the sequence recognized by thyrotropin.  相似文献   

9.
C S Park  C Miller 《Biochemistry》1992,31(34):7749-7755
Electrostatic interactions between charybdotoxin (CTX), a specific peptide pore blocker of K+ channels, and a Ca(2+)-activated K+ channel were investigated with a genetically manipulable recombinant CTX. Point mutations at certain charged residues showed only small effects on the binding affinity of the toxin molecule: Lys11, Glu12, Arg19, His21, Lys31, and Lys32. Replacement by Gln at Arg25, Lys27, or Lys34 strongly decreased the affinity of the toxin. These affinity changes were mainly due to large increases of toxin dissociation rates without much effect on association rates, as if close-range interactions between the toxin and its receptor site of the channel were disrupted. We also found that the neutralization of Lys27 to Gln removed the toxin's characteristic voltage dependence in dissociation rate. Mutation and functional mapping of charged residues revealed a molecular surface of CTX which makes direct contact with the extracellular mouth of the K+ channel.  相似文献   

10.
Ryanodine receptors (RyRs) are huge ion channels that are responsible for the release of Ca(2+) from the sarco/endoplasmic reticulum. RyRs form homotetramers with a mushroom-like shape, consisting of a large cytoplasmic head and transmembrane stalk. Ca(2+) is a major physiological ligand that triggers opening of RyRs, but a plethora of modulatory proteins and small molecules in the cytoplasm and sarco/endoplasmic reticulum lumen have been recognized. Over 300 mutations in RyRs are associated with severe skeletal muscle disorders or triggered cardiac arrhythmias. With the advent of high-resolution structures of individual domains, many of these can be mapped onto the three-dimensional structure.  相似文献   

11.

Background

Analysis of preferred binding regions of a ligand on a protein is important for detecting cryptic binding pockets and improving the ligand selectivity.

Result

The enhanced sampling approach TAMD has been adapted to allow a ligand to unbind from its native binding site and explore the protein surface. This so-called re-TAMD procedure was then used to explore the interaction between the N terminal peptide of histone H3 and the YEATS domain. Depending on the length of the peptide, several regions of the protein surface were explored. The peptide conformations sampled during the re-TAMD correspond to peptide free diffusion around the protein surface.

Conclusions

The re-TAMD approach permitted to get information on the relative influence of different regions of the N terminal peptide of H3 on the interaction between H3 and YEATS.
  相似文献   

12.
13.
14.
In recent years, studies of the interactions of designed hydrophobic and amphipathic polypeptides with biological membranes have progressed considerably. In-plane and transmembrane helical domains have been engineered as well as sequences that exhibit dynamic distributions of different topologies. These sequences not only help our understanding of the thermodynamic interaction contributions that determine peptide orientation, but also exhibit interesting biological functions as autonomous units. In addition, helices are considered to be folding intermediates of multi-spanning membrane proteins. The specificity and thermodynamic stability of transmembrane helix-helix interactions or the assembly of beta sheets at the membrane surface have, therefore, become a focus of ongoing research.  相似文献   

15.
The 18-amino acid amphipathic helical peptide Ac-DWFKAFYDKVAEKFKEAF-NH(2) promotes the separation of cholesterol from the phospholipid, resulting in the formation of cholesterol crystallites, even at mole fractions of cholesterol as low as 0.3. The peptide exerts a greater degree of penetration into membranes of pure phosphatidylcholine in the absence of cholesterol than into bilayers of phosphatidylcholine and cholesterol. The circular dichroism spectrum of the peptide in buffer indicates that it self-associates, leading to the formation of structures with higher helical content. However, in the presence of lipid, the peptide remains helical over a larger concentration range. The peptide undergoes a thermal transition on heating. Cholesterol has little effect on the secondary structure of the peptide; however, increased Trp emission intensity in the absence of cholesterol indicates a deeper penetration of the helix upon removal of cholesterol from the membrane. The results with these model systems demonstrate changes in peptide-lipid interactions that may be related to the observed biological properties of this peptide.  相似文献   

16.
1. A comparative study was made of transferrin and iron uptake by rabbit, rat and human reticulocytes and chick embryo erythrocytes from rabbit, rat, human, chicken and porcine transferrins, human lactoferrin and chicken conalbumin. 2. Three methods were used, viz. direct and competitive uptake studies of transferrin and iron by the four species of cells, and competitive studies of transferrin binding by solubilized membrane receptors (rabbit reticulocytes only). 3. Methods were devised to analyse the data so as to obtain indices of relatedness or relative affinities of each type of heterologous transferrin in rates of iron uptake found with transferrin and cells from various species are largely due to variation in the affinity of cellular receptors for different transferrins. 5. It is concluded that the procedure used in this investigation allow the assessment of phylogenetic relationships and evolutionary trends obtained by structural studies of proteins.  相似文献   

17.
Protein receptor-ligand interactions play important roles in mediating enzyme catalysis, signal transduction, and other protein functions. Immunoaffinity purification followed by mass spectrometry analysis is a common method for identifying protein receptor-ligand complexes. However, it is difficult to distinguish between specific protein binding partners and non-specifically bound proteins that co-purify with the complex. In addition, weakly interacting binding partners may dissociate from the protein receptor-ligand complexes during immunoaffinity purification. The combination of chemical crosslinking, affinity purification, and differential mass spectrometry analysis provides a direct method for capturing stable, weak, and transient protein interactions that occur in vivo and in vitro. This approach enables the identification of functional receptor-ligand binding partners with high confidence. Herein, we describe a differential mass spectrometry approach coupled with in situ chemical crosslinking and immunoaffinity purification for identifying receptor-ligand binding partners. In particular, we identified a functional, counter-ligand structure of the natural killer cell p30-related protein.  相似文献   

18.
The physical interactions that occur between the nicotinic acetylcholine receptor from Torpedo and the agonists carbamylcholine and tetramethylamine have been studied using both conventional infrared difference spectroscopy and a novel double-ligand difference technique. The latter was developed to isolate vibrational bands from residues in a membrane receptor that interact with individual functional groups on a small molecule ligand. The binding of either agonist leads to an increase in vibrational intensity at frequencies centered near 1663, 1655, 1547, 1430, and 1059 cm(-1) indicating that both induce a conformational change from the resting to the desensitized state. Vibrational shifts near 1580, 1516, 1455, 1334, and between 1300 and 1400 cm(-1) are assigned to structural perturbations of tyrosine and possibly both tryptophan and charged carboxylic acid residues upon the formation of receptor-quaternary amine interactions, with the relatively intense feature near 1516 cm(-1) indicating a key role for tyrosine. Other vibrational bands suggest the involvement of additional side chains in agonist binding. Two side-chain vibrational shifts from 1668 and 1605 cm(-1) to 1690 and 1620 cm(-1), respectively, could reflect the formation of a hydrogen bond between the ester carbonyl of carbamylcholine and an arginine residue. The results demonstrate the potential of the double-ligand difference technique for dissecting the chemistry of membrane receptor-ligand interactions and provide new insight into the nature of nicotinic receptor-agonist interactions.  相似文献   

19.
In this work, the behavior of the neurohypophyseal hormones and their selected analogs was studied in the presence of membrane models in an attempt to correlate their activities with a distinct behavior at a level of peptide-lipid interactions. The influence of the peptides studied on the lipid acyl chain order was determined using FTIR spectroscopy. Conformational changes in the peptides upon binding to liposomes were examined using CD spectra. Attempts were also made to determine the binding parameters of the peptides to lipids using isothermal titration calorimetry (ITC). The results show unambiguously that the neurohyphophyseal hormone-like peptides interact with lipids, being a model of a eukaryotic cell membrane. Moreover, hydrophobic interactions between the peptides and liposomes are likely to determine the overall conformation of the peptide, especially below the temperature of the main phase transition (T(m)). Thus, the bulky and hydrophobic nature of the residues incorporated into the N-terminal part of neurohyphophyseal hormones is an important factor for both restriction of peptide mobility and the interaction of the analog with biomembrane. In turn, above T(m), the electrostatic interactions become also relevant for the conformation of the acyclic tail of the AVP-like peptides.  相似文献   

20.
The first chemokine structure, that of IL-8/CXCL8, was determined in 1990. Since then, many chemokine structures have emerged. To the initial disappointment of structural biologists, the tertiary structures of these small proteins were found to be highly conserved. However, they have since proven to be much more interesting and diverse than originally expected. Somewhat like lego blocks, many chemokines oligomerize and there is significant diversity in their oligomeric forms and propensity to oligomerize. Chemokines not only interact with receptors where different oligomeric forms can induce different signaling responses, they also interact with glycosaminoglycans which can stabilize oligomers and other structures that would not otherwise form in solution. Although chemokine monomers and dimers yielded quickly to structure determination, structural information about larger chemokine oligomers, chemokines receptors, and complexes of chemokines with glycosaminoglycans and receptors has been more difficult to obtain, but recent breakthroughs suggest that this information will be forthcoming, especially with receptor structures. Equally important and challenging, will be efforts to correlate the structural information with function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号