首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Clusterin or apolipoprotein J is a heterodimeric glycoprotein which is known to be increased during tissue involution in response to hormonal changes or injury and under circumstances leading to apoptosis. Previous studies in wild-type (WT) and clusterin-null (Clu−/−) mice indicated a protective role of clusterin over-expression in astrocytes lasting up to 90 days post-ischemia. However, in in vitro and in vivo models of neonatal hypoxia-ischemia, clusterin exacerbates necrotic cell death. We developed recombinant forms of clusterin and examined their effect on propidium iodide uptake, neuronal and synaptic markers as well as electrophysiological recordings in hippocampal slice cultures from Clu−/− and WT mice subjected to oxygen-glucose deprivation (OGD). WT mice displayed a marked up-regulation of clusterin associated with electrophysiological deficits and dramatic increase of propidium iodide uptake 5 days post-OGD. Immunocytochemical and western blot analyses revealed a substantial decrease of neuronal nuclei and synaptophysin immunoreactivity that predominated in WT mice. These findings contrasted with the relative post-OGD resistance of Clu−/− mice. The addition of biologically active recombinant forms of human clusterin for 24 h post-OGD led to the abolishment of the ischemic tolerance in Clu−/− slices. This deleterious effect of clusterin was reverted by the concomitant administration of the NMDA receptor antagonist, d -2-amino-5-phosphonopentanoate. The present data indicate that in an in vitro model of ischemia characterized by the predominance of NMDA-mediated cell death, clusterin exerts a negative effect on the structural integrity and functionality of hippocampal neurons.  相似文献   

2.
Interleukin (IL)-6 is a pro-inflammatory cytokine now widely recognized to contribute to the molecular events that follow CNS injury. Little is known, however, about its action on axonal sprouting and regeneration in the brain. We addressed this issue using the model of transection of Schaffer collaterals in mice organotypic hippocampal slice cultures. Transection of slice cultures was associated with a marked release of IL-6 that could be neutralized by an IL-6 blocking antibody. We monitored functional recovery across the lesion by recording synaptic responses using a multi-electrode array. We found that application of IL-6 antibodies to the cultures after lesioning significantly reduced functional recovery across the lesion. Furthermore, the level of expression of the 43-kDa growth-associated protein (GAP-43) was lower in slices treated with the IL-6 neutralizing antibody than in those treated with a control IgG. Conversely, addition of exogenous IL-6 to the culture medium resulted in a dose-dependent enhancement of functional recovery across the lesion and a higher level of expression of GAP-43. Co-culture of CA3 hemi-slices from thy1-YFP mice with CA1 hemi-slices from wild-type animals confirmed that IL-6-treated co-cultures exhibited an increased number of growing fluorescent fibres across the lesion site. Taken together these data indicate that IL-6 plays an important role in CNS repair mechanisms by promoting regrowth and axon regeneration.  相似文献   

3.
Organotypic tissue slice culture is established from animal or patient tissues and cultivated in an in vitro ecosystem. This technique has made countless contributions to anticancer drug development due to the vast number of advantages, such as the preservation of the cell repertoire and immune components, identification of invasive ability of tumors, toxicity determination of compounds, quick assessment of therapeutic efficacy, and high predictive performance of drug responses. Importantly, it serves as a reliable tool to stratify therapeutic responders from nonresponders and select the optimal standard-of-care treatment regimens for personalized medicine, which is expected to become a potent platform and even the gold standard for anticancer drug screening of individualization in the near future.  相似文献   

4.
5.
We investigated the consequences of transient application of specific stimuli mimicking inflammation to hippocampal tissue on microglia activation and neuronal cell vulnerability to a subsequent excitotoxic insult. Two-week-old organotypic hippocampal slice cultures, from 7-day-old C57BL/6 donor mice, were exposed for 3 h to lipopolysaccharide (LPS; 10 ng/mL) followed by 3 h co-incubation with 1 mM ATP, or 100 microM 2'3'-O-(4-benzoyl-benzoyl) adenosine 5'-triphosphate triethylammonium, a selective P2X(7) receptor agonist. These treatments in combination, but not individually, induced a pronounced activation and apoptotic-like death of macrophage antigen-1 (MAC-1)-positive microglia associated with a massive release of interleukin (IL)-1beta exceeding that induced by LPS alone. Antagonists of P2X(7) receptors prevented these effects. Transient pre-exposure of slice cultures to a combination of LPS and P2X(7) receptor agonists, but not either one or the other alone, significantly exacerbated CA3 pyramidal cell loss induced by subsequent 12 h exposure to 8 microM alpha-amino-3-hydroxy-5-methyl-4-isoxazole propinate (AMPA). Potentiation of AMPA toxicity was prevented when IL-1beta production or its receptor signaling were blocked by an inhibitor of interleukin-converting-enzyme or IL-1 receptor antagonist during application of LPS + ATP. The same treatments did not prevent microglia apoptosis-like death. These findings show that transient exposure to specific pro-inflammatory stimuli in brain tissue can prime neuronal susceptibility to a subsequent excitotoxic insult. P2X(7) receptor stimulation, and the consequent IL-1beta release, is mandatory for exacerbation of neuronal loss. These mechanisms may contribute to determine cell death/survival in acute and chronic neurodegenerative conditions associated with inflammatory events.  相似文献   

6.
Chen K  Li D  Jiang YH  Yao WJ  Wang XJ  Wei XC  Gao J  Xie LD  Yan ZY  Wen ZY  Chien S 《Cell research》2004,14(2):161-168
The cDNA fragment of human TRAIL (TNF-related apoptosis inducing ligand) was cloned into RevTet-On, a Tetregulated and high-level gene expression system. The gene expression system was constructed in a human leukemic cell line: Jurkat. By using RevTet-On TRAIL gene expression system in Jurkat as a cell model, we studied the influence of TRAIL gene on the changes of cellular apoptosis before and after the TRAIL gene expression, which was induced by adding tetracycline derivative doxycycline (Dox). The results indicated that the cellular apoptosis ratio was largely dependent on the TRAIL gene expression level. Moreover, it was found that the apoptosis-inducing TRAIL could cause significant changes in the biophysical properties of Jurkat cells. The cell surface charge density decreased, the membrane fluidity declined, the elastic coefficients K1 increased, and the proportion of α-helix in membrane protein secondary structure decreased. Thus, the apoptosis-inducing TRAIL gene caused significant changes on the biomechanic properties of Jurkat cells.  相似文献   

7.
The aggravating effect of hyperglycemia on ischemic brain injury can be mimicked in a model of in vitro ischemia (IVI) using murine hippocampal slice cultures. Using this model, we found that the damage in the CA1 region following IVI in the absence or presence of 40 mm glucose (hyperglycemia) is highly temperature dependent. Decreasing the temperature from 35 to 31 degrees C during IVI prevented cell death, whereas increasing the temperature by 2 degrees C markedly aggravated damage. As blockade of the mitochondrial permeability transition (MPT) is equally effective as hypothermia in preventing ischemic cell death in vivo, we investigated whether inhibition of MPT or of caspases was protective following IVI. In the absence of glucose, the MPT blockers cyclosporin A and MeIle4-CsA but not the immunosuppressive compound FK506 diminished cell death. In contrast, following hyperglycemic IVI, MPT blockade was ineffective. Also, the pan-caspase inhibitor Boc-Asp(OMe)fluoromethyl ketone did not decrease cell death in the CA1 region following IVI or hyperglycemic IVI. We conclude that cell death in the CA1 region of organotypic murine hippocampal slices following IVI is highly temperature dependent and involves MPT. In contrast, cell death following hyperglycemic IVI, although completely prevented by hypothermia, is not mediated by mechanisms that involve MPT or caspase activation.  相似文献   

8.
Purkinje cells are vulnerable to a number of physical, chemical, and genetic insults during development and maturity. Normal development of these cells depends on the cell-cell interactions between granule and astroglial cell populations. Apoptotic death in Purkinje neurons had been shown to be associated with cell cycle activation, and new DNA synthesis is associated with Purkinje cell death in staggerer and lurcher mutant mice. Here using an in vitro organotypic slice culture model from 9 (P9) and 4 days (P4) old postnatal rats we show that the cyclin dependent kinase (cdk) inhibitors (roscovitine, olomoucine, and flavopiridol) protect the Purkinje cells from cell death. The results are more pronounced in the cerebellar sections from P4 rats. Analysis of Purkinje neurons in sections from P4 rats after 1 week of culturing showed that while there were very limited calbindin positive neurons in the untreated sections the cdk inhibitor treated sections had a notably higher number. Although treatment with cdk inhibitors inhibited Purkinje cell loss significantly, the morphology of these neurons was abnormal, with stunted dendrites and axons. Since the retinoblastoma protein (Rb) is the major pocket protein involved in determining the differentiated state of neurons we examined the effect of over-expressing Rb in the organotypic cultures. Rb overexpression significantly inhibited the Purkinje cell death and these neurons maintained their normal morphology. Thus our studies show that the cell death in Purkinje neurons observed in organotypic cultures is cell cycle dependent and the optimal survival requires Rb.  相似文献   

9.
Organotypic cultures of retina explants preserve the complex cellular microenvironment of the retina and have been used as a tool to assess the biological functions of some cell types. However, studies to date have shown that microglial cells activate quickly in response to the retina explantation. In this study, microglial cells migrated and ramified in quail embryo retina organotypic cultures (QEROCs) according to chronological patterns bearing a resemblance to those in the retina in situ, despite some differences in cell density and ramification degree. Retinal explants from quail embryos at 9 days of incubation (E9) proved to be the best in vitro system for reproducing a physiological-like behavior of microglial cells when cultured in Eagle's basal medium supplemented with horse serum. During the first week in vitro, microglial cells migrated tangentially in the vitreal part of QEROCs, and some began to migrate radially from 3 days in vitro (div) onward, ramifying in the inner and outer plexiform layers, thus mimicking microglia development in the retina in situ, although reaching a lower degree of ramification after 7 div. From 8 div onward, microglial cells rounded throughout the explant thickness simultaneously with the nonphysiological appearance of dead photoreceptors and round microglia in the outernuclear layer. Therefore, E9 QEROCs can be used during the first week in vitro as a model system for experimental studies of molecules putatively involved in microglial migration and ramification.  相似文献   

10.
Induction of necrotic tumor cell death by TRAIL/Apo-2L   总被引:4,自引:0,他引:4  
A great deal of enthusiasm is being generated for TRAIL (TNF-related apoptosis-inducing ligand)/Apo-2L as a tumor therapeutic agent because it is cytotoxic to a variety of tumor cell types but not normal cells. Moreover, it is well documented that TRAIL/Apo-2L-induced tumor cell death is a caspase-dependent apoptotic process. Through the use of a transfected cell line expressing murine TRAIL/Apo-2L and a recombinant adenovirus encoding the murine TRAIL/Apo-2L cDNA (Ad5-mTRAIL) against two murine tumor cell lines [TRAMP-C2 (prostate adenocarcinoma) and Renca (renal adenocarcinoma)], we found that mTRAIL/Apo-2L also can kill tumor cells by inducing necrosis. Specifically, we observed the default method of mTRAIL/Apo-2L-induced death in TRAMP-C2 cells was via a necrotic process, characterized by the complete lack of an annexin V+/PI population, SAPK/JNK phosphorylation, caspase activation, Bid cleavage, or cytochrome c release. Moreover, the inclusion of zVAD-fmk, an inhibitor of caspase activation, markedly enhanced mTRAIL/Apo-2L-mediated killing of TRAMP-C2. In contrast, apoptosis was induced in TRAMP-C2 using TNF, as measured by the criteria listed above, as was Renca by mTRAIL/Apo-2L. These results demonstrate the natural occurrence of both TRAIL/Apo-2L-induced apoptotic and necrotic signaling mechanisms within tumor cells.  相似文献   

11.
We describe an organotypic model of human skin comprised of a stratified layer of human epidermal keratinocytes and dermal fibroblasts within a contracted collagen lattice. Feasible and reproducible production of the skin construct has required the use of traditional as well as specialized culture techniques. The configuration of the construct has been engineered to maintain polarity and permit extended culture at the air-liquid interface. Morphological, biochemical and kinetic parameters were assessed and functional assays were performed to determine the degree of similarity to human skin. Light and ultrastructural morphology of the epidermis closely resembled human skin. The immunocytochemical localization of a number of differentiation markers and extracellular matrix proteins was also similar to human skin. Kinetic data showed a transition of the epidermal layer to a morein vivo-like growth rate during the development of the construct at the air-liquid interface. The barrier properties of the construct also increased with time reaching a permeability to water of less than 2%·h after approximately 2 weeks at the air-liquid interface which is still on average 30-fold more water-permeable than normal human skin. The construct is currently used forin vitro research and testing and is also being tested in clinical applications.  相似文献   

12.
Summary A new culture vessel for the growth of cells on biological substrata and under organotypic conditions is described. This device, named Combi-ring-dish (CRD), is composed of four concentric rings designed to take up one or several substrata on which cells can be grown either immersed in culture medium or exposed to air and fed from underneath. Using the CRD, outer root sheath cells, isolated from plucked human hair follicles and plated on growth-arrested 3T3 feeder layers, were grown on native collagen lattices populated with living human fibroblasts. After reaching confluence, the immersed cultures were recombined (in vitro) with pieces of freeze-killed dermis and grown further, exposed to air. Thus by mimicking epidermal growth conditions, differentiation was dramatically improved, compared to control cultures on plastic substratum. Virtually all morphologic features of interfollicular epidermis developed. This seems a suitable model to investigate the differentiation potential of human hair follicle cells.  相似文献   

13.
Although accumulating evidence has confirmed the important roles of thyroid hormone (T3) and its receptors (TRs) in tumor progression, the specific functions of TRs in carcinogenesis remain unclear. In the present study, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) was directly upregulated by T3 in TR-overexpressing hepatoma cell lines. TRAIL is an apoptotic inducer, but it can nonetheless trigger non-apoptotic signals favoring tumorigenesis in apoptosis-resistant cancer cells. We found that TR-overexpressing hepatoma cells treated with T3 were apoptosis resistant, even when TRAIL was upregulated. This apoptotic resistance may be attributable to simultaneous upregulation of Bcl-xL by T3, because (1) knockdown of T3-induced Bcl-xL expression suppressed T3-mediated protection against apoptosis, and (2) overexpression of Bcl-xL further protected hepatoma cells from TRAIL-induced apoptotic death, consequently leading to TRAIL-promoted metastasis of hepatoma cells. Moreover, T3-enhanced metastasis in vivo was repressed by the treatment of TRAIL-blocking antibody. Notably, TRAIL was highly expressed in a subset of hepatocellular carcinoma (HCC) patients, and this high-level expression was significantly correlated with that of TRs in these HCC tissues. Together, our findings provide evidence for the existence of a novel mechanistic link between increased TR and TRAIL levels in HCC. Thus, TRs induce TRAIL expression, and TRAIL thus synthesized acts in concert with simultaneously synthesized Bcl-xL to promote metastasis, but not apoptosis.  相似文献   

14.
Organotypic slice culture is a living cell research technique which blends features of both in vivo and in vitro techniques. While organotypic brain slice culture techniques have been well established in rodents, there are few reports on the study of organotypic slice culture, especially of the central nervous system (CNS), in chicken embryos. We established a combined in ovo electroporation and organotypic slice culture method to study exogenous genes functions in the CNS during chicken embryo development. We performed in ovo electroporation in the spinal cord or optic tectum prior to slice culture. When embryonic development reached a specific stage, green fluorescent protein (GFP)‐positive embryos were selected and fluorescent expression sites were cut under stereo fluorescence microscopy. Selected tissues were embedded in 4% agar. Tissues were sectioned on a vibratory microtome and 300 μm thick sections were mounted on a membrane of millicell cell culture insert. The insert was placed in a 30‐mm culture dish and 1 ml of slice culture media was added. We show that during serum‐free medium culture, the slice loses its original structure and propensity to be strictly regulated, which are the characteristics of the CNS. However, after adding serum, the histological structure of cultured‐tissue slices was able to be well maintained and neuronal axons were significantly longer than that those of serum‐free medium cultured‐tissue slices. As the structure of a complete single neuron can be observed from a slice culture, this is a suitable way of studying single neuronal dynamics. As such, we present an effective method to study axon formation and migration of single neurons in vitro.  相似文献   

15.
Human glioma cells (138MG) have a low-affinity uptake system for choline (Km = 20 µM; Vmax = 56 pmol/min/106 cells). The uptake is reduced by acetylcholine, hemicholinium-3, HgCl2, and phosphodiesterase inhibitors. Release of [3H]choline from preloaded cultures showed two pools with half-lives of 1.3 and 160 min. Choline release was stimulated by 8-bromo-cAMP or isobutylmethylxanthine. The results suggest that release of choline occurs by a facilitated diffusion transport system and is increased by elevations of intracellular cAMP.  相似文献   

16.
We report on a three-dimensional organotypic culture in vitro of explants from the human uterine exocervix. Exocervical fragments (2-3 mm3) from pre-menopausal women were cultured on sponges submerged in Dulbecco's Modified Eagle's Medium containing p-nonylphenol and 10% fetal bovine serum for up to 3 weeks and the viability and cellular responses were assayed. The fragments were analyzed by immunohistochemistry for the expression and distribution of a broad spectrum of cellular markers: p63, Ki-67, involucrin, high molecular weight cytokeratins, estrogen receptor-alpha, vimentin, CD45, and CD31. The fragments preserved their tissue architecture and cellular heterogeneity comparable to that observed in exocervical tissue in vivo. Prior to culture, the original epithelium was composed of stratified multilayered keratinocytes with integrated monocyte/dendritic-like cells in the basal and suprabasal layers. The epithelium began to exfoliate in culture and within 4 days appeared to have lost its differentiated high-zone layers of keratinocytes. After 10 days a new epithelium, slightly different from the original one, was formed; it displayed an increasing prominence of basal and suprabasal keratinocyte layers, containing infiltrating leukocytes that had probably migrated from the submucosa. The epithelium subsequently lost its organization, concomitant with a progressive involution of the stroma. Subepithelial capillaries appeared to be well maintained throughout the culture period. Aside from the maintenance of cellular heterogeneity within the fragments of exocervix, these culture systems are a valuable tool for studying the mechanisms of epithelial regeneration, and may prove to be a useful model for studying mucosal immunity.  相似文献   

17.
In our previous study, elevation of endogenous acetylcholine (ACh) by tacrine (THA) rescued NMDA-induced long-lasting hippocampal cell damage via muscarinic M1 receptors. However, the detailed molecular mechanism underlying the effect of ACh is unclear. This study investigated possible involvement of the VEGF signaling system in the rescuing effect of ACh on N-methyl-d-aspartate (NMDA)-induced long-lasting hippocampal cell damage using organotypic hippocampal slice cultures (OHSCs). As previously reported, NMDA pretreatment caused long-lasting hippocampal cell damage in OHSCs in a manner reversible by treatment with THA. The protein kinase C (PKC) inhibitor Ro31-8220, but not the extracellular signal-regulated kinase (ERK) inhibitor U0126, dose-dependently and almost completely abolished the effect of THA. The rescuing effect of THA was also partially but significantly blocked by Ki8751, a selective inhibitor of type 2 vascular endothelial growth factor (VEGF) receptor (VEGFR-2) tyrosine kinase. NMDA pretreatment elevated the expression level of HIF1α, whereas it decreased the expression of VEGF-A. Moreover, NMDA pretreatment reduced the level of phosphorylated VEGFR-2 without apparently affecting the level of VEGFR-2 or β-actin. These NMDA pretreatment-induced changes were significantly attenuated by THA treatment. Immunohistochemical analysis conducted 6 days after NMDA pretreatment revealed that VEGF-A and VEGFR-2 were mainly expressed on astrocytes and neurons, respectively, in OHSCs. In OHSCs pretreated with NMDA, THA treatment induced a morphological and activation-related change in astrocytes expressing VEGF-A. The present results demonstrate that endogenous acetylcholine plays a rescuing role towards excitotoxicity-induced long-lasting hippocampal cell damage in part via paracrine VEGF signaling between astrocytes and hippocampal neurons or autocrine VEGF signaling in hippocampal neurons in OHSCs.  相似文献   

18.
Ad-IL-24对人胶质瘤细胞生长抑制效应的体外实验   总被引:2,自引:0,他引:2  
研究携带人白介素24(IL-24)的腺病毒表达载体(Ad-IL-24)对人U251胶质瘤细胞生长的影响和抗肿瘤分子机制。将不同MOI Ad-IL-24感染U251人胶质瘤细胞后, MTT法检测Ad-IL-24对U251细胞生长的抑制作用, 流式细胞仪和Hochest 染色法检测细胞的凋亡率。RT-PCR检测bcl-2、bax、ICE、C-myc、HIF-1a和p53等基因的转录表达水平, Western blotting检测Cleaved Caspase-3的表达。结果表明100 MOI Ad-IL-24感染U251细胞后能明显抑制细胞生长, 并能明显诱导细胞凋亡, 感染72 h后细胞凋亡率可达42%, 感染4 d后细胞生长抑制率可达50%。RT-PCR检测发现Ad-IL-24能引起与细胞凋亡和血管形成相关基因bax/bcl-2、ICE、C-myc、p53的上调和HIF-1a的下调, 并促进Caspase-3的活化。本研究结果显示Ad-IL-24能明显抑制人胶质瘤细胞U251生长和诱导细胞凋亡, 其抗肿瘤机制可能与通过bax/ bcl-2、ICE、c-myc、p53的上调和HIF-1a的下调, 进而导致Caspase-3的活化而诱导肿瘤细胞发生凋亡有关。  相似文献   

19.
肿瘤坏死因子相关的凋亡诱导配体 (TRAIL)能选择性诱导肿瘤细胞凋亡 .为利用基因工程技术获得重组TRAIL蛋白可溶性片段 (sTRAIL) ,设计 1对引物 .利用PCR技术特异性扩增出sTRAIL的cDNA ,克隆于质粒pGEM 3Zf( )的EcoRⅠ和PstⅠ位点 .经测序证明序列正确后克隆于表达质粒pBV2 2 0的EcoRⅠ和PstⅠ位点 ,转化大肠杆菌DH5α .转化菌株经温度诱导 ,SDS PAGE检测和Western印迹鉴定 ,获得重组sTRAIL的高水平非融合表达菌株 .表达量占菌体总蛋白的 2 0 % .对其表达产物进行了初步纯化 ,SDS PAGE结果显示纯度可达 90 %以上 .用L92 9细胞测定其生物学活性表明 ,重组蛋白在体外能明显诱导肿瘤细胞凋亡  相似文献   

20.
To study effects of short-term cerebral ischemia, hippocampal slice cultures were subjected to oxygen and glucose deprivation (OGD) followed by a period of normoxic reoxygenation. Propidium iodide staining, and MTT/formazan-assay were used to evaluate cell viability and metabolic activity. CA1 pyramidal cells were analyzed at the light- and electron microscopic levels. Cell damage was found to be insignificant during the first hour after 10 min OGD but profound following 4 h, showing delayed neuronal cell damage caused by short-term OGD. Our model can be used to characterize the mechanisms of cell damage caused by mild cerebral ischemia. These data might apply to further development of neuroprotective tools for the treatment of brain diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号