首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study we have utilized the structural framework of the analog GS14K4 (cyclo(VKLd-KVd-YPL KVKLd-YP, where d denotes a d-amino acid)), to examine the role of hydrophobicity in microbial activity and specificity. The hydrophobicity of GS14K4 was systematically altered by residue replacements in the hydrophobic sites of the molecule to produce a series of analogs that were either less or more hydrophobic than the parent compound. Circular dichroism spectroscopy and reversed-phase high performance liquid chromatography analysis showed that the molecules were structurally similar and only differed in overall hydrophobicity. The hydrophobicity of GS14K4 was found to be the midpoint for hemolytic activity, with more hydrophobic analogs exhibiting increased hemolytic activity and less hydrophobic analogs showing decreased hemolytic activity. For antimicrobial activity there were differences between the hydrophobicity requirements against Gram-positive and Gram-negative microorganisms. The hydrophobicity of GS14K4 was sufficient for maximum activity against Gram-negative microorganisms and yeast, with no further increases in activity occurring with increasing hydrophobicity. With Gram-positive microorganisms significant increases in activity with increasing hydrophobicity were seen in three of the six microorganisms tested. A therapeutic index (calculated as a measure of specificity of the peptides for the microorganisms over human erythrocytes) served to define the boundaries of a therapeutic window within which lay the optimum peptide hydrophobicity for each microorganism. The therapeutic window was found to be at a lower hydrophobicity level for Gram-negative microorganisms than for Gram-positive microorganisms, although the limits were more variable for the latter. Our results show that the balance between activity and specificity in the present cyclic peptides can be optimized for each microorganism by systematic modulation of hydrophobicity.  相似文献   

2.
The alarming increase in infections caused by multiple drug resistant bacteria including methicillin-resistant Staphylococcus aureus has prompted a desperate search for new antimicrobials. Augmenting the discoveries of completely new scaffolds with antimicrobial activity are efforts aimed at modifying existing molecules to optimize activity or reduce toxicity. We report herein the parallel solid-phase synthesis of analogues of the cationic antimicrobial peptide gramicidin S (GS) using amino acid side chain attachment strategy. The ornithine (Orn) residues were replaced by glutamine (Gln) and the aromatic d-phenylalanine (Phe) were replaced by different aromatic d-amino acids. Additional Gln containing GS analogues with all the possible combinations of the hydrophobic amino acids valine and leucine were also synthesized. In this work we also report the antibacterial activity of these analogs against several clinically-important drug-resistant Gram-positive and Gram-negative pathogens.  相似文献   

3.
Lee KH  Lee HY  Slutsky MM  Anderson JT  Marsh EN 《Biochemistry》2004,43(51):16277-16284
Several studies have demonstrated that proteins incorporating fluorinated analogues of hydrophobic amino acids such as leucine and valine into their hydrophobic cores exhibit increased stability toward thermal denaturation and unfolding by guanidinium chloride. However, estimates for the increase in the thermodynamic stability of a protein (DeltaDeltaG(unfold)) afforded by the substitution of a hydrophobic amino acid with its fluorinated analogue vary quite significantly. To address this, we have designed a peptide that adopts an antiparallel four-helix bundle structure in which the hydrophobic core is packed with leucine, and investigated the effects of substituting the central two layers of the core with L-5,5,5,5',5',5'-hexafluoroleucine (hFLeu). We find that DeltaDeltaG(unfold) is increased by 0.3 kcal/mol per hFLeu residue. This is in good agreement with the predicted increase in DeltaDeltaG(unfold) of 0.4 kcal/mol per residue arising from the increased hydrophobicity of the hFLeu side chain, which we determined experimentally from partitioning measurements on hFLeu and leucine. The increased stability of this fluorinated protein may therefore be ascribed to simple hydrophobic effects, rather than specific "fluorous" interactions between the hFLeu residues.  相似文献   

4.
Gramicidin S (GS) is a 10-residue cyclic beta-sheet peptide with lytic activity against the membranes of both microbial and human cells, i.e. it possesses little to no biologic specificity for either cell type. Structure-activity studies of de novo-designed 14-residue cyclic peptides based on GS have previously shown that higher specificity against microbial membranes, i.e. a high therapeutic index (TI), can be achieved by the replacement of a single L-amino acid with its corresponding D-enantiomer [Kondejewski, L.H. et al. (1999) J. Biol. Chem. 274, 13181]. The diastereomer with a D-Lys substituted at position 4 caused the greatest improvement in specificity vs. other L to D substitutions within the cyclic 14-residue peptide GS14, through a combination of decreased peptide amphipathicity and disrupted beta-sheet structure in aqueous conditions [McInnes, C. et al. (2000) J. Biol. Chem. 275, 14287]. Based on this information, we have created a series of peptide diastereomers substituted only at position 4 by a D- or L-amino acid (Leu, Phe, Tyr, Asn, Lys, and achiral Gly). The amino acids chosen in this study represent a range of hydrophobicities/hydrophilicities as a subset of the 20 naturally occurring amino acids. While the D- and L-substitutions of Leu, Phe, and Tyr all resulted in strong hemolytic activity, the substitutions of hydrophilic D-amino acids D-Lys and D-Asn in GS14 at position 4 resulted in weaker hemolytic activity than in the L-diastereomers, which demonstrated strong hemolysis. All of the L-substitutions also resulted in poor antimicrobial activity and an extremely low TI, while the antimicrobial activity of the D-substituted peptides tended to improve based on the hydrophilicity of the residue. D-Lys was the most polar and most efficacious substitution, resulting in the highest TI. Interestingly, the hydrophobic D-amino acid substitutions had superior antimicrobial activity vs. the L-enantiomers although substitution of a hydrophobic D-amino acid increases the nonpolar face hydrophobicity. These results further support the role of hydrophobicity of the nonpolar face as a major influence on microbial specificity, but also highlights the importance of a disrupted beta-sheet structure on antimicrobial activity.  相似文献   

5.
As a step towards understanding the mechanism of the biological activity of cyclic antimicrobial peptides, the biophysical properties and conformations of four membrane-active cyclic peptide antibiotics, based on gramicidin S (GS), were examined in aqueous environments. These cyclic peptides, GS10 [cyclo(VKLdYP)2], GS12 [cyclo(VKLKdYPKVKLdYP)], GS14 [cyclo(VKLKVdYPLKVKLdYP)] and [d-Lys]4GS14 [cyclo(VKLdKVdYPLKVKLdYP)] (d-amino acid residues are denoted by d and are underlined) had different ring sizes of 10, 12 and 14 residues, were different in structure and amphipathicity, and covered a broad spectrum of hemolytic and antimicrobial activities. GS10, GS12 and [d-Lys]4GS14 were shown to be monomeric in buffer systems with ionic strength biological environments. GS14 was also monomeric at low concentrations, but aggregated at concentrations > 50 microm. The affinity of peptides for self-assembly and interaction with hydrophobic surfaces was related to their free energy of intermolecular interaction. The effects of variations in salt and organic solvent (trifluoroethanol) concentration and temperature on peptide conformation were also examined. Similar to GS, GS10 proved to have a stable and rather rigid conformation in different environments and over a broad range of temperatures, whereas GS12, GS14 and [d-Lys]4GS14 had more flexible conformations. Despite its conformational similarity to GS10, GS14 had unique physicochemical properties due to its tendency to aggregate at relatively low concentrations. The biophysical data explain the direct relation between structure, amphipathicity and hydrophobicity of the cyclic peptides and their hemolytic activity. However, this relation with the antimicrobial activity of the peptides is of a more complex nature due to the diversity in membrane structures of microorganisms.  相似文献   

6.
Protein folding is frequently guided by local residue interactions that form clusters in the protein core. The interactions between residue clusters serve as potential nucleation sites in the folding process. Evidence postulates that the residue interactions are governed by the hydrophobic propensities that the residues possess. An array of hydrophobicity scales has been developed to determine the hydrophobic propensities of residues under different environmental conditions. In this work, we propose a graph-theory-based data mining framework to extract and isolate protein structural features that sustain invariance in evolutionary-related proteins, through the integrated analysis of five well-known hydrophobicity scales over the 3D structure of proteins. We hypothesize that proteins of the same homology contain conserved hydrophobic residues and exhibit analogous residue interaction patterns in the folded state. The results obtained demonstrate that discriminatory residue interaction patterns shared among proteins of the same family can be employed for both the structural and the functional annotation of proteins. We obtained on the average 90 percent accuracy in protein classification with a significantly small feature vector compared to previous results in the area. This work presents an elaborate study, as well as validation evidence, to illustrate the efficacy of the method and the correctness of results reported.  相似文献   

7.
Post-translational isomerization of l-amino acids to d-amino acids is a subtle modification, not detectable by standard techniques such as Edman sequencing or MS. Accurate predictions require more sequences of modified polypeptides. A 46-amino-acid-long conotoxin, r11a, belonging to the I-superfamily was previously shown to have a d-Phe residue at position 44. In this report, we characterize two related peptides, r11b and r11c, with d-Phe and d-Leu, respectively, at the homologous position. Electrophysiological tests show that all three peptides induce repetitive activity in frog motor nerve, and epimerization of the single amino acid at the third position from the C-terminus attenuates the potency of r11a and r11b, but not that of r11c. Furthermore, r11c (but neither r11a nor r11b) also acts on skeletal muscle. We identified more cDNA clones encoding conopeptide precursors with Cys patterns similar to r11a/b/c. Although the predicted mature toxins have the same cysteine patterns, they belong to two different gene superfamilies. A potential correlation between the identity of the gene superfamily to which the I-conotoxin belongs and the presence or absence of a d-amino acid in the primary sequence is discussed. The great diversity of I-conopeptide sequences provides a rare opportunity for defining parameters that may be important for this most stealthy of all post-translational modifications. Our results indicate that neither the chemical nature of the side chain nor the precise vicinal sequence around the modified residue seem to be critical, but there may be favored loci for isomerization to a d-amino acid.  相似文献   

8.
Amphiphilic alpha-helices play a major role in membrane dependent processes and are manifested in the primary structure of a protein by the periodic appearance of hydrophobic residues. Based on these periodic sequences, the hydrophobic moment was introduced, , which essentially treats the hydrophobicity of amino acid residues as a two-dimensional vector sum and provides a measure of amphiphilicity within regular repeat structures. To identify putative amphiphilic alpha-helix forming sequences, hydrophobic moment analysis assumes an amino acid residue periodicity of 100 and scans protein primary structures to find the 11-residue window with maximal . Taken with the window's mean hydrophobicity, , hydrophobic moment plot analysis uses the coordinate pair, [, ] to classify alpha-helices as either surface active, globular or transmembrane. More recently, this latter analysis has been extended to recognize candidate oblique orientated alpha-helices. Here, the hydrophobic moment is reviewed and data to query the logic of using a fixed window length and a fixed residue angular periodicity in hydrophobic moment analysis are provided. In addition, problems associated with the use of such analysis to predict alpha-helix structure/function relationships are considered.  相似文献   

9.
GammaB-crystallin consists of two domains each comprising two "Greek key" motifs. Both domains fold independently, and domain interactions contribute significantly to the stability of the C-terminal domain. In a previous study (Palme S et al., 1996, Protein Sci 6:1529-1636) it was shown that Phe56 from the N-terminal domain, a residue involved in forming a hydrophobic core at the domain interface, effects the interaction of the two domains, and therefore, the stability of the C-terminal domain. Ala or Asp at position 56 drastically decreased the stability of the C-terminal domain, whereas Trp had a more moderate effect. In this article we present the X-ray structures of these interface mutants and correlate them with the stability data. The mutations do not effect the overall structure of the molecule. No structural changes are observed in the vicinity of the replaced residue, suggesting that the local structure is too rigid to allow compensations for the amino acid replacements. In the mutants gammaB-F56A and -F56D, a solvent-filled groove accessible to the bulk solvent is created by the replacement of the bulky Phe side chain. In gammaB-F56W, the pyrrole moiety of the indole ring replaces the phenyl side chain of the wild type. With the exception of gammaB-F56W, there is a good correlation between the hydrophobicity of the amino acid at position 56 according to the octanol scale and the stability of the C-terminal domain. In gammaB-F56W, the C-terminal domain is less stable than estimated from the hydrophobicity, presumably because the ring nitrogen (Nepsilon1) has no partner to form hydrogen bonds. The data suggest that the packing of hydrophobic residues in the interface core is important for domain interactions and the stability of gammaB-crystallin. Apparently, for protein stability, the same principles apply for hydrophobic cores within domains and at domain interfaces.  相似文献   

10.
11.
The structures of 14-residue head-to-tail cyclic gramicidin S peptides have been investigated to develop the structural rationale for their antimicrobial and hemolytic profiles. The basis for these studies is GS14 (cyclo(VKLKVdYPLKVKLdYP)), designed as an extension of the naturally occurring antimicrobial peptide. The structure of GS14 has been determined using NMR methods and was found to exist in a highly amphipathic antiparallel beta-sheet conformation. Systematic enantiomeric substitutions within the framework of the GS14 peptide were found to decrease the amphipathicity of this molecule. These results indicated that there was a direct correlation between the high amphipathic character and potent hemolytic activity in the diastereomers, whereas an inverse correlation existed between amphipathicity and antimicrobial function. To define the structural consequences of changing the amphipathic nature of GS14 analogs to maximize antimicrobial activity and to minimize hemolysis, NMR structures were determined in water and the membrane-mimetic solvent trifluoroethanol. The structures show that these attributes are the result of induction of the beta-sheet character in a membrane environment and the positioning of charged side chains on the hydrophobic face of the cyclic framework, thus decreasing the amphipathicity and directed hydrophobicity of these molecules. Implications for the design of more effective antimicrobials are discussed.  相似文献   

12.
In order to elucidate the structure-antiviral activity relationship of cecropin A (1-8)-magainin 2 (1-12) (termed CA-MA) hybrid peptide, several analogues with amino acid substitutions were synthesized. In a previous study, it was shown that serine at position 16 in CA-MA hybrid peptide was very important for antimicrobial activity. Analogues were designed to increase the hydrophobic property by substituting a hydrophobic amino acid residue (S --> A, V, F or W, position 16) in the CA-MA hybrid peptide. In this study, the structure-antiviral activity relationships of CA-MA and its analogues were investigated. In particular, substitution of Ser with a hydrophobic amino acid, Val, Phe or Trp at position 16 caused a dramatic increase in the virus-cell fusion inhibitory activity. These results suggested that the hydrophobicity at position 16 in the hydrophobic region of CA-MA is important for potent antiviral activity.  相似文献   

13.
The aim of the present investigation is to determine the effect of α-helical propensity and sidechain hydrophobicity on the stability of amphipathic α-helices. Accordingly, a series of 18-residue amphipathic α-helical peptides has been synthesized as a model system where all 20 amino acid residues were substituted on the hydrophobic face of the amphipathic α-helix. In these experiments, all three parameters (sidechain hydrophobicity, α-helical propensity and helix stability) were measured on the same set of peptide analogues. For these peptide analogues that differ by only one amino acid residue, there was a 0.96 kcal/mole difference in α-helical propensity between the most (Ala) and the least (Gly) α-helical analogue, a 12.1-minute difference between the most (Phe) and the least (Asp) retentive analogue on the reversed-phase column, and a 32.3°C difference in melting temperatures between the most (Leu) and the least (Asp) stable analogue. The results show that the hydrophobicity and α-helical propensity of an amino acid sidechain are not correlated with each other, but each contributes to the stability of the amphipathic α-helix. More importantly, the combined effects of α-helical propensity and sidechain hydrophobicity at a ratio of about 2:1 had optimal correlation with α-helix stability. These results suggest that both α-helical propensity and sidechain hydrophobicity should be taken into consideration in the design of α-helical proteins with the desired stability.  相似文献   

14.
A substrate and inhibitor analysis of the thrombin interaction with synthetic peptide substrates and inhibitors of differing hydrophobicity and volume of the side amino acid residue, localized in the sub-centers thrombin S2 and S3 were carried out. The kinetic parameters of individual stages of the enzymatic reaction process (K(S), k2, k3) were estimated. It is shown that the efficiency of acylation and deacylation stages of the enzymatic reaction decreases with increasing hydrophobicity of the substituent in P2 as well as P3, at the same time the affinity of selected peptides toward enzyme is steadily increasing. With the aim to evaluate the hydrophobicity of compounds a LogP value was calculated and was made an attempt to compare them with the correspondent Ki values. Comparative kinetic analysis of Z-Arg-OMe and its uncharged analogue Z-Cit-OMe has shown the absence of uncharged analog hydrolysis, however, the mentioned citrulline derivate inhibits the hydrolysis of the charged analogue. These findings confirm the important role of hydrophobic moiety in the structure of thrombin inhibitors in preferential binding mode and inhibition of thrombin active side.  相似文献   

15.
An attempt is made to obtain information as to the spatial distribution of amino acid residues in globular proteins in terms of their chemical, physical, energetic and conformational properties. The crystallographic data on twenty-one protein molecules form the basis for the study. The properties of the residues, namely, hydrophobicity, polarity, acidity, molecular weight, bulkness, chromatographic index, refractivity, short/medium/long-range energetics, and powers to adopt a-helical, extended and bend structures are analysed by dividing the protein globule into six concentric shells containing equal numbers of residues. The results show that the decisive factor in determining the spatial position of a residue in a protein molecule is of composite nature involving a compromise between the various properties of the residue. The observed deviations from the general hydrophobic interior and hydrophilic exterior in globular proteins are nicely brought out. A valuable clue is obtained as to the directional properties of α-helical and extended structure segments in proteins. The relative buried, exposed and intermediate characters of the residues in protein globules are obtained in a very realistic approach.  相似文献   

16.
The polyproline‐II helix is the most extended naturally occurring helical structure and is widely present in polar, exposed stretches and “unstructured” denatured regions of polypeptides. Can it be hydrophobic? In this study, we address this question using oligomeric peptides formed by a hydrophobic proline analogue, (2S,3aS,7aS)‐octahydroindole‐2‐carboxylic acid (Oic). Previously, we found the molecular principles underlying the structural stability of the polyproline‐II conformation in these oligomers, whereas the hydrophobicity of the peptide constructs remains to be examined. Therefore, we investigated the octan‐1‐ol/water partitioning and inclusion in detergent micelles of the oligo‐Oic peptides. The results showed that the hydrophobicity is remarkably enhanced in longer oligomeric sequences, and the oligo‐Oic peptides with 3 to 4 residues and higher are specific towards hydrophobic environments. This contrasts significantly to the parent oligoproline peptides, which were moderately hydrophilic. With these findings, we have demonstrated that the polyproline‐II structure is compatible with nonpolar media, whereas additional manipulations of the terminal functionalities feature solubility in extremely nonpolar solvents such as hexane.  相似文献   

17.
Mammalian hemodynamics: a new similarity principle   总被引:2,自引:0,他引:2  
An attempt is made to obtain information as to the spatial distribution of amino acid residues in globular proteins in terms of their chemical, physical, energetic and conformational properties. The crystallographic data on twenty-one protein molecules form the basis for the study. The properties of the residues, namely, hydrophobicity, polarity, acidity, molecular weight, bulkness, chromatographic index, refractivity, short/medium/long-range energetics, and powers to adopt a-helical, extended and bend structures are analysed by dividing the protein globule into six concentric shells containing equal numbers of residues. The results show that the decisive factor in determining the spatial position of a residue in a protein molecule is of composite nature involving a compromise between the various properties of the residue. The observed deviations from the general hydrophobic interior and hydrophilic exterior in globular proteins are nicely brought out. A valuable clue is obtained as to the directional properties of α-helical and extended structure segments in proteins. The relative buried, exposed and intermediate characters of the residues in protein globules are obtained in a very realistic approach.  相似文献   

18.
The previous notion that the amino acid side chain at position 104 of subtilisins is involved in the binding of the side chain at position P4 of the substrate has been investigated. The amino acid residue Val104 in subtilisin 309 has been replaced by Ala, Arg, Asp, Phe, Ser, Trp and Tyr by site-directed mutagenesis. It is shown that the P4 specificity of this enzyme is not determined solely by the amino acid residue occupying position 104, as the enzyme exhibits a marked preference for aromatic groups in P4, regardless of the nature of the position-104 residue. With hydrophilic amino acid residues at this position, no involvement is seen in binding of either hydrophobic or hydrophilic amino acid residues at position P4 of the substrates. The substrate with Asp in P4 is an exception, as the preference for this substrate is increased dramatically by introduction of an arginine residue at position 104 in the enzyme, presumably due to a substrate-induced conformational change. However, when position 104 is occupied by hydrophobic residues, it is highly involved in binding of hydrophobic amino acid residues, either by increasing the hydrophobicity of S4 or by determining the size of the pocket. The results suggest that the amino acid residue at position 104 is mobile such that it is positioned in the S4 binding site only when it can interact favourably with the substrate's side chain at position P4.  相似文献   

19.
The 120-kD gelation factor and alpha-actinin are among the most abundant F-actin cross-linking proteins in Dictyostelium discoideum. Both molecules are homodimers and have extended rod-like configurations that are respectively approximately 35 and 40 nm long. Here we report the complete cDNA sequence of the 120-kD gelation factor which codes for a protein of 857 amino acids. Its calculated molecular mass is 92.2 kD which is considerably smaller than suggested by its mobility in SDS-PAGE. Analysis of the sequence shows a region that is highly homologous to D. discoideum alpha-actinin, chicken fibroblast alpha-actinin, and human dystrophin. This conserved domain probably represents an actin binding site that is connected to the rod-forming part of the molecule via a highly charged stretch of amino acids. Whereas the sequence of alpha-actinin (Noegel, A., W. Witke, and M. Schleicher. 1987. FEBS [Fed. Eur. Biochem. Soc.] Lett. 221:391-396) suggests that the extended rod domain of the molecule is based on four spectrin-like repeats with high alpha-helix potential, the rod domain of the 120-kD gelation factor is constructed from six 100-residue repeats that have a high content of glycine and proline residues and which, in contrast to alpha-actinin, do not appear to have a high alpha-helical content. These repeats show a distinctive pattern of regions that have high beta-sheet potential alternating with short zones rich in residues with a high potential for turns. This observation suggests that each 100-residue motif has a cross-beta conformation with approximately nine sheets arranged perpendicular to the long axis of the molecule. In the high beta-potential zones every second residue is often hydrophobic. In a cross-beta structure, this pattern would result in one side of the domain having a surface rich in hydrophobic side chains which could account for the dimerization of the 120-kD gelation factor subunits.  相似文献   

20.
Molecular structure of an apolipoprotein determined at 2.5-A resolution   总被引:8,自引:0,他引:8  
The three-dimensional structure of an apolipoprotein isolated from the African migratory locust Locusta migratoria has been determined by X-ray analysis to a resolution of 2.5 A. The overall molecular architecture of this protein consists of five long alpha-helices connected by short loops. As predicted from amino acid sequence analyses, these helices are distinctly amphiphilic with the hydrophobic residues pointing in toward the interior of the protein and the hydrophilic side chains facing outward. The molecule falls into the general category of up-and-down alpha-helical bundles as previously observed, for example, in cytochrome c'. Although the structure shows the presence of five long amphiphilic alpha-helices, the alpha-helical moment and hydrophobicity of the entire molecule fall into the range found for normal globular proteins. Thus, in order for the amphiphilic helices to play a role in the binding of the protein to a lipid surface, there must be a structural reorganization of the protein which exposes the hydrophobic interior to the lipid surface. The three-dimensional motif of this apolipoprotein is compatible with a model in which the molecule binds to the lipid surface via a relatively nonpolar end and then spreads on the surface in such a way as to cause the hydrophobic side chains of the helices to come in contact with the lipid surface, the charged and polar residues to remain in contact with water, and the overall helical motif of the protein to be maintained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号