首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Saccharomyces cerevisiae VPS55 (YJR044c) gene encodes a small protein of 140 amino acids with four potential transmembrane domains. VPS55 belongs to a family of genes of unknown function, including the human gene encoding the obesity receptor gene-related protein (OB-RGRP). Yeast cells with a disrupted VPS55 present normal vacuolar morphology, but exhibit an abnormal secretion of the Golgi form of the soluble vacuolar carboxypeptidase Y. However, trafficking of the membrane-bound vacuolar alkaline phosphatase remains normal. The endocytosis of uracil permease, used as an endocytic marker, is normal in vps55Delta cells, but its degradation is delayed and this marker transiently accumulates in late endosomal compartments. We also found that Vps55p is mainly localized in the late endosomes. Collectively, these results indicate that Vps55p is involved in late endosome to vacuole trafficking. Finally, we show that human OB-RGRP displays the same distribution as Vps55p and corrects the phenotypic defects of the vps55Delta strain. Therefore, the function of Vps55p has been conserved throughout evolution. This study highlights the importance of the multispanning Vps55p and OB-RGRP in membrane trafficking to the vacuole/lysosome of eukaryotic cells.  相似文献   

2.
Lysosomes are the main degradative compartments of eukaryotic cells. The CORVET and HOPS tethering complexes are well known for their role in membrane fusion in the yeast endocytic pathway. Yeast Vps33p is part of both complexes, and has two mammalian homologues: Vps33A and Vps33B. Vps33B is required for recycling of apical proteins in polarized cells and a causative gene for ARC syndrome. Here, we investigate whether Vps33B is also required in the degradative pathway. By fluorescence and electron microscopy we show that Vps33B depletion in HeLa cells leads to significantly increased numbers of late endosomes that together with lysosomes accumulate in the perinuclear region. Degradation of endocytosed cargo is impaired in these cells. By electron microscopy we show that endocytosed BSA‐gold reaches late endosomes, but is decreased in lysosomes. The increase in late endosome numbers and the lack of internalized cargo in lysosomes are indicative for a defect in late endosomal–lysosomal fusion events, which explains the observed decrease in cargo degradation. A corresponding phenotype was found after Vps33A knock down, which in addition also resulted in decreased lysosome numbers. We conclude that Vps33B, in addition to its role in endosomal recycling, is required for late endosomal–lysosomal fusion events.   相似文献   

3.
Loss of the arthrogryposis‐renal dysfunction‐cholestasis (ARC) syndrome‐linked Vps33B protein results in exaggerated inflammatory responses upon activation of receptors of the innate immune system in both vertebrates and flies. However, little is known about the signaling elements downstream of these receptors that are critical for the hypersensitivity of Vps33B mutants. Here, we show that p38b MAP kinase contributes to the enhanced inflammatory responses in flies lacking Vps33B. Loss of p38b mitogen‐activated protein kinase (MAPK) reduces enhanced inflammatory responses and prolongs the survival of infected Vps33B deficient flies. The function of p38 MAPK is not limited to its proinflammatory effects downstream of the PGRP‐LC receptor as p38 also modulates endosomal trafficking of PGRP‐LC and phagocytosis of bacteria. Expression of constitutively active p38b MAPK, but not dominant negative p38b MAPK enhances accumulation of endocytosed PGRP‐LC receptors or phagocytosed bacteria within cells. Moreover, p38 MAPK is required for induction of macropinocytosis, an alternate pathway for the downregulation of immune receptors. Together, our data indicate that p38 MAPK activates multiple pathways that can contribute to the dysregulation of innate immune signaling in ARC syndrome.  相似文献   

4.
The mammalian homotypic fusion and vacuole protein sorting (HOPS) complex is comprised of six subunits: VPS11, VPS16, VPS18, VPS39, VPS41 and the Sec1/Munc18 (SM) family member VPS33A. Human HOPS has been predicted to be a tethering complex required for fusion of intracellular compartments with lysosomes, but it remains unclear whether all HOPS subunits are required. We showed that the whole HOPS complex is required for fusion of endosomes with lysosomes by monitoring the delivery of endocytosed fluorescent dextran to lysosomes in cells depleted of individual HOPS proteins. We used the crystal structure of the VPS16/VPS33A complex to design VPS16 and VPS33A mutants that no longer bind each other and showed that, unlike the wild‐type proteins, these mutants no longer rescue lysosome fusion with endosomes or autophagosomes in cells depleted of the endogenous proteins. There was no effect of depleting either VIPAR or VPS33B, paralogs of VPS16 and VPS33A, on fusion of lysosomes with either endosomes or autophagosomes and immunoprecipitation showed that they form a complex distinct from HOPS. Our data demonstrate the necessity of recruiting the SM protein VPS33A to HOPS via its interaction with VPS16 and that HOPS proteins, but not VIPAR or VPS33B, are essential for fusion of endosomes or autophagosomes with lysosomes.   相似文献   

5.
Vesicle-mediated protein sorting plays an important role in segregation of intracellular molecules into distinct organelles. Extensive genetic studies using yeast have identified more than 40 vacuolar protein sorting (VPS) genes involved in vesicle transport to vacuoles. However, their mammalian counterparts are not fully elucidated. In this study, we identified two human homologues of yeast Class C VPS genes, human VPS11 (hVPS11) and human VPS18 (hVPS18). We also characterized the subcellular localization and interactions of the protein products not only from these genes but also from the other mammalian Class C VPS homologue genes, hVPS16 and rVPS33a. The protein products of hVPS11 (hVps11) and hVPS18 (hVps18) were ubiquitously expressed in peripheral tissues, suggesting that they have a fundamental role in cellular function. Indirect immunofluorescence microscopy revealed that the mammalian Class C Vps proteins are predominantly associated with late endosomes/lysosomes. Immunoprecipitation and gel filtration studies showed that the mammalian Class C Vps proteins constitute a large hetero-oligomeric complex that interacts with syntaxin-7. These results indicate that like their yeast counterparts, mammalian Class C Vps proteins mediate vesicle trafficking steps in the endosome/lysosome pathway.  相似文献   

6.
vps33 mutants missort and secrete multiple vacuolar hydrolases and exhibit extreme defects in vacuolar morphology. Toward a molecular understanding of the role of the VPS33 gene in vacuole biogenesis, we have cloned this gene from a yeast genomic library by complementation of a temperature-sensitive vps33 mutation. Gene disruption demonstrated that VPS33 was not essential but was required for growth at high temperatures. At the permissive temperature, vps33 null mutants exhibited defects in vacuolar protein localization and vacuole morphology similar to those seen in most of the original mutant alleles. Sequence analysis revealed a putative open reading frame sufficient to encode a protein of 691 amino acids. Hydropathy analysis indicated that the deduced product of the VPS33 gene is generally hydrophilic, contains no obvious signal sequence or transmembrane domains, and is therefore unlikely to enter the secretory pathway. Polyclonal antisera raised against TrpE-Vps33 fusion proteins recognized a protein in yeast cells of the expected molecular weight, approximately 75,000. In cell fractionation studies, Vps33p behaved as a cytosolic protein. The predicted VPS33 gene product possessed sequence similarity with a number of ATPases and ATP-binding proteins specifically in their ATP-binding domains. One vps33 temperature-sensitive mutant contained a missense mutation near this region of sequence similarity; the mutation resulted in a Leu-646----Pro substitution in Vps33p. This temperature-sensitive mutant strain contained normal vacuoles at the permissive temperature but lacked vacuoles specifically in the bud at the nonpermissive temperature. Our data suggest that Vps33p acts in the cytoplasm to facilitate Golgi-to-vacuole protein delivery. We propose that as a consequence of the vps33 protein-sorting defects, abnormalities in vacuolar morphology and vacuole assembly result.  相似文献   

7.
Efficient human immunodeficiency virus type 1 (HIV-1) budding requires an interaction between the PTAP late domain in the viral p6(Gag) protein and the cellular protein TSG101. In yeast, Vps23p/TSG101 binds both Vps28p and Vps37p to form the soluble ESCRT-I complex, which functions in sorting ubiquitylated protein cargoes into multivesicular bodies. Human cells also contain ESCRT-I, but the VPS37 component(s) have not been identified. Bioinformatics and yeast two-hybrid screening methods were therefore used to identify four novel human proteins (VPS37A-D) that share weak but significant sequence similarity with yeast Vps37p and to demonstrate that VPS37A and VPS37B bind TSG101. Detailed studies produced four lines of evidence that human VPS37B is a Vps37p ortholog. 1) TSG101 bound to several different sites on VPS37B, including a putative coiled-coil region and a PTAP motif. 2) TSG101 and VPS28 co-immunoprecipitated with VPS37B-FLAG, and the three proteins comigrated together in soluble complexes of the correct size for human ESCRT-I ( approximately 350 kDa). 3) Like TGS101, VPS37B became trapped on aberrant endosomal compartments in the presence of VPS4A proteins lacking ATPase activity. 4) Finally, VPS37B could recruit TSG101/ESCRT-I activity and thereby rescue the budding of both mutant Gag particles and HIV-1 viruses lacking native late domains. Further studies of ESCRT-I revealed that TSG101 mutations that inhibited PTAP or VPS28 binding blocked HIV-1 budding. Taken together, these experiments define new components of the human ESCRT-I complex and characterize several TSG101 protein/protein interactions required for HIV-1 budding and infectivity.  相似文献   

8.
Arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome (MIM 208085) is an autosomal recessive multisystem disorder that may be associated with germline VPS33B mutations. VPS33B is involved in regulation of vesicular membrane fusion by interacting with SNARE proteins, and evidence of abnormal polarised membrane protein trafficking has been reported in ARC patients. We characterised clinical and molecular features of ARC syndrome in order to identify potential genotype-phenotype correlations. The clinical phenotype of 62 ARC syndrome patients was analysed. In addition to classical features described previously, all patients had severe failure to thrive, which was not adequately explained by the degree of liver disease and 10% had structural cardiac defects. Almost half of the patients who underwent diagnostic organ biopsy (7/16) developed life-threatening haemorrhage. We found that most patients (9/11) who suffered severe haemorrhage (7 post biopsy and 4 spontaneous) had normal platelet count and morphology. Germline VPS33B mutations were detected in 28/35 families (48/62 individuals) with ARC syndrome. Several mutations were restricted to specific ethnic groups. Thus p.Arg438X mutation was common in the UK Pakistani families and haplotyping was consistent with a founder mutation with the most recent common ancestor 900–1,000 years ago. Heterozygosity was found in the VPS33B locus in some cases of ARC providing the first evidence of a possible second ARC syndrome gene. In conclusion we state that molecular diagnosis is possible for most children in whom ARC syndrome is suspected and VPS33B mutation analysis should replace organ biopsy as a first line diagnostic test for ARC syndrome.  相似文献   

9.
Mutations in the VPS (vacuolar protein sorting) genes of Saccharomyces cerevisiae have been used to define the trafficking steps that soluble vacuolar hydrolases take en route from the late Golgi to the vacuole. The class D VPS genes include VPS21, PEP12, and VPS45, which appear to encode components of a membrane fusion complex involved in Golgi-to-endosome transport. Vps21p is a member of the Rab family of small Ras-like GTPases and shows strong homology to the mammalian Rab5 protein, which is involved in endocytosis and the homotypic fusion of early endosomes. Although Rab5 and Vps21p appear homologous at the sequence level, it has not been clear if the functions of these two Rabs are similar. We find that Vps21p is an endosomal protein that is involved in the delivery of vacuolar and endocytosed proteins to the vacuole. Vacuolar and endocytosed proteins accumulate in distinct transport intermediates in cells that lack Vps21p function. Therefore, it appears that Vps21p is involved in two trafficking steps into the prevacuolar/late endosomal compartment.  相似文献   

10.

Background  

Vps25p is the product of yeast gene VPS25 and is found in an endosomal sorting complex required for transport (ESCRT)-II, along with Vps22p and Vps36p. This complex is essential for sorting of ubiquitinated biosynthetic and endosomal cargoes into endosomes.  相似文献   

11.
Trafficking of cargo through the endosomal system depends on endosomal fusion events mediated by SNARE proteins, Rab-GTPases, and multisubunit tethering complexes. The CORVET and HOPS tethering complexes, respectively, regulate early and late endosomal tethering and have been characterized in detail in yeast where their sequential membrane targeting and assembly is well understood. Mammalian CORVET and HOPS subunits significantly differ from their yeast homologues, and novel proteins with high homology to CORVET/HOPS subunits have evolved. However, an analysis of the molecular interactions between these subunits in mammals is lacking. Here, we provide a detailed analysis of interactions within the mammalian CORVET and HOPS as well as an additional endosomal-targeting complex (VIPAS39-VPS33B) that does not exist in yeast. We show that core interactions within CORVET and HOPS are largely conserved but that the membrane-targeting module in HOPS has significantly changed to accommodate binding to mammalian-specific RAB7 interacting lysosomal protein (RILP). Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome-associated mutations in VPS33B selectively disrupt recruitment to late endosomes by RILP or binding to its partner VIPAS39. Within the shared core of CORVET/HOPS, we find that VPS11 acts as a molecular switch that binds either CORVET-specific TGFBRAP1 or HOPS-specific VPS39/RILP thereby allowing selective targeting of these tethering complexes to early or late endosomes to time fusion events in the endo/lysosomal pathway.  相似文献   

12.
In the yeast Saccharomyces cerevisiae, mutations in vacuolar protein sorting (VPS) genes result in secretion of proteins normally localized to the vacuole. Characterization of the VPS pathway has provided considerable insight into mechanisms of protein sorting and vesicle-mediated intracellular transport. We have cloned VPS9 by complementation of the vacuolar protein sorting defect of vps9 cells, characterized its gene product, and investigated its role in vacuolar protein sorting. Cells with a vps9 disruption exhibit severe vacuolar protein sorting defects and a temperature-sensitive growth defect at 38 degrees C. Electron microscopic examination of delta vps9 cells revealed the appearance of novel reticular membrane structures as well as an accumulation of 40- to 50-nm-diameter vesicles, suggesting that Vps9p may be required for the consumption of transport vesicles containing vacuolar protein precursors. A temperature-conditional allele of vps9 was constructed and used to investigate the function of Vps9p. Immediately upon shifting of temperature-conditional vps9 cells to the nonpermissive temperature, newly synthesized carboxypeptidase Y was secreted, indicating that Vps9p function is directly required in the VPS pathway. Antibodies raised against Vps9p immunoprecipitate a rare 52-kDa protein that fractionates with cytosolic proteins following cell lysis and centrifugation. Analysis of the VPS9 DNA sequence predicts that Vps9p is related to human proteins that bind Ras and negatively regulate Ras-mediated signaling. We term the related regions of Vps9p and these Ras-binding proteins a GTPase binding homology domain and suggest that it defines a family of proteins that bind monomeric GTPases. Vps9p may bind and serve as an effector of a rab GTPase, like Vps2lp, required for vacuolar protein sorting.  相似文献   

13.
The retromer complex is a conserved cytoplasmic coat complex that mediates the endosome-to-Golgi retrieval of vacuole/lysosome hydrolase receptors in yeast and mammals. The recognition of cargo proteins by the retromer is performed by the Vps35p/VPS35 (where Vps is vacuolar protein sorting) component, which together with Vps26p/VPS26 and Vps29p/VPS29, forms the cargo-selective subcomplex. In this report, we have identified a highly-conserved region of Vps35p/VPS35 that is essential for the interaction with Vps26p/VPS26 and for assembly of the retromer complex. Mutation of residues within the conserved region results in Vps35p/VPS35 mutants, which cannot bind to Vps26p/VPS26 and are not efficiently targeted to the endosomal membrane. These data implicate Vps26p/VPS26 in regulating Vps35p/VPS35 membrane association and therefore suggest a role for Vps26p/VPS26 in cargo recognition.  相似文献   

14.
The yeast Vps4 protein (Vps4p) is a member of the AAA protein family (ATPases associated with diverse cellular activities) and a key player in the transport of proteins out of a prevacuolar endosomal compartment. In human cells, we identified two non-allelic orthologous proteins (VPS4-A and VPS4-B) of yeast Vps4p. The human VPS4-A and VPS4-B proteins display a high degree of sequence identity to each other (80 %) and to the yeast Vps4 protein (59 and 60 %, respectively). Yeast cells lacking a functional VPS4 gene exhibit a temperature-sensitive growth defect and mislocalise a carboxypeptidase Y-invertase fusion protein to the cell surface. Heterologous expression of human VPS4 genes in vps4 mutant yeast strains led, in the case of human VPS4-A, to a partial and, in the case of human VPS4-B, to a complete suppression of the temperature-sensitive growth defect. The vacuolar protein sorting defect of vps4 mutant yeast cells was complemented completely by heterologous expressed human VPS4-B protein, and partially by the human VPS4-A protein. Expression of mutant human VPS4-A (E228Q) and VPS4-B (E235Q) proteins, harbouring single amino acid exchanges in their AAA domains, induced dominant-negative vacuolar protein sorting defects in wild-type yeast cells in both cases. Two-hybrid experiments suggest that the human VPS4-A and VPS4-B proteins can form heteromeric complexes, and subcellular localisation experiments indicate that both human VPS4 proteins associate with endosomal compartments in yeast. Based on these results, we conclude that both human VPS4 proteins are involved in intracellular protein trafficking, presumably at a late endosomal protein transport step, similar to the Vps4p in yeast.  相似文献   

15.
16.
The retromer complex facilitates the sorting of integral membrane proteins from the endosome to the late Golgi. In mammalian cells, the efficient recruitment of retromer to endosomes requires the lipid phosphatidylinositol 3-phosphate (PI3P) as well as Rab5 and Rab7 GTPases. However, in yeast, the role of Rabs in recruiting retromer to endosomes is less clear. We identified novel physical interactions between retromer and the Saccharomyces cerevisiae VPS9-domain Rab5-family guanine nucleotide exchange factors (GEFs) Muk1 and Vps9. Furthermore, we identified a new yeast VPS9 domain-containing protein, VARP-like 1 (Vrl1), which is related to the human VARP protein. All three VPS9 domain–containing proteins show localization to endosomes, and the presence of any one of them is necessary for the endosomal recruitment of retromer. We find that expression of an active VPS9-domain protein is required for correct localization of the phosphatidylinositol 3-kinase Vps34 and the production of endosomal PI3P. These results suggest that VPS9 GEFs promote retromer recruitment by establishing PI3P-enriched domains at the endosomal membrane. The interaction of retromer with distinct VPS9 GEFs could thus link GEF-dependent regulatory inputs to the temporal or spatial coordination of retromer assembly or function.  相似文献   

17.
Mutations in the S. cerevisiae VPS29 and VPS30 genes lead to a selective protein sorting defect in which the vacuolar protein carboxypeptidase Y (CPY) is missorted and secreted from the cell, while other soluble vacuolar hydrolases like proteinase A (PrA) are delivered to the vacuole. This phenotype is similar to that seen in cells with mutations in the previously characterized VPS10 and VPS35 genes. Vps10p is a late Golgi transmembrane protein that acts as the sorting receptor for soluble vacuolar hydrolases like CPY and PrA, while Vps35p is a peripheral membrane protein which cofractionates with membranes enriched in Vps10p. The sequences of the VPS29, VPS30, and VPS35 genes do not yet give any clues to the functions of their products. Each is predicted to encode a hydrophilic protein with homologues in the human and C. elegans genomes. Interestingly, mutations in the VPS29, VPS30, or VPS35 genes change the subcellular distribution of the Vps10 protein, resulting in a shift of Vps10p from the Golgi to the vacuolar membrane. The route that Vps10p takes to reach the vacuole in a vps35 mutant does not depend upon Sec1p mediated arrival at the plasma membrane but does require the activity of the pre-vacuolar endosomal t-SNARE, Pep12p. A temperature conditional allele of the VPS35 gene was generated and has been found to cause missorting/secretion of CPY and also Vps10p to mislocalize to a vacuolar membrane fraction at the nonpermissive temperature. Vps35p continues to cofractionate with Vps10p in vps29 mutants, suggesting that Vps10p and Vps35p may directly interact. Together, the data indicate that the VPS29, VPS30, and VPS35 gene products are required for the normal recycling of Vps10p from the prevacuolar endosome back to the Golgi where it can initiate additional rounds of vacuolar hydrolase sorting.  相似文献   

18.
Sec1/Munc‐18 (SM) family proteins are essential regulators in intracellular transport in eukaryotic cells. The SM protein Vps33 functions as a core subunit of two tethering complexes, class C core vacuole/endosome tethering (CORVET) and homotypic fusion and vacuole protein sorting (HOPS) in the endocytic pathway in yeast. Metazoan cells possess two Vps33 proteins, VPS33A and VPS33B, but their precise roles remain unknown. Here, we present a comparative analysis of Caenorhabditis elegans null mutants for these proteins. We found that the vps‐33.1 (VPS33A) mutants exhibited severe defects in both endocytic function and endolysosomal biogenesis in scavenger cells. Furthermore, vps‐33.1 mutations caused endocytosis defects in other tissues, and the loss of maternal and zygotic VPS‐33.1 resulted in embryonic lethality. By contrast, vps‐33.2 mutants were viable but sterile, with terminally arrested spermatocytes. The spermatogenesis phenotype suggests that VPS33.2 is involved in the formation of a sperm‐specific organelle. The endocytosis defect in the vps‐33.1 mutant was not restored by the expression of VPS‐33.2, which indicates that these proteins have nonredundant functions. Together, our data suggest that VPS‐33.1 shares most of the general functions of yeast Vps33 in terms of tethering complexes in the endolysosomal system, whereas VPS‐33.2 has tissue/organelle specific functions in C. elegans.   相似文献   

19.
We identified VTA1 in a screen for mutations that result in altered vacuole morphology. Deletion of VTA1 resulted in delayed trafficking of the lipophilic dye FM4-64 to the vacuole and altered vacuolar morphology when cells were exposed to the dye 5-(and 6)-carboxy-2',7'-dichlorofluorescein diacetate (CDCFDA). Deletion of class E vacuolar protein sorting (VPS) genes, which encode proteins that affect multivesicular body formation, also showed altered vacuolar morphology upon exposure to high concentrations of CDCFDA. These results suggest a VPS defect for Deltavta1 cells. Deletion of VTA1 did not affect growth on raffinose and only mildly affected carboxypeptidase S sorting. Turnover of the surface protein Ste3p, the a-factor receptor, was affected in Deltavta1 cells with the protein accumulating on the vacuolar membrane. Likewise the alpha-factor receptor Ste2p accumulated on the vacuolar membrane in Deltavta1 cells. We demonstrated that many class E VPS deletion strains are hyper-resistant to the cell wall disruption agent calcofluor white. Deletion of VTA1 or VPS60, another putative class E gene, resulted in calcofluor white hypersensitivity. A Vta1p-green fluorescent protein fusion protein transiently associated with a Pep12p-positive compartment. This localization was altered by deletion of many of the class E VPS genes, indicating that Vta1p binds to endosomes in a manner dependent on the assembly of the endosomal sorting complexes required for transport. Membrane-associated Vta1p co-purified with Vps60p, suggesting that Vta1p is a class E Vps protein that interacts with Vps60p on a prevacuolar compartment.  相似文献   

20.
Activated GTP-bound Rab proteins are thought to interact with effectors to elicit vesicle targeting and fusion events. Vesicle-associated v-SNARE and target membrane t-SNARE proteins are also involved in vesicular transport. Little is known about the functional relationship between Rabs and SNARE protein complexes. We have constructed an activated allele of VPS21, a yeast Rab protein involved in vacuolar protein sorting, and demonstrated an allele-specific interaction between Vps21p and Vac1p. Vac1p was found to bind the Sec1p homologue Vps45p. Although no association between Vps21p and Vps45p was seen, a genetic interaction between VPS21 and VPS45 was observed. Vac1p contains a zinc-binding FYVE finger that may bind phosphatidylinositol 3-phosphate [PtdIns(3)P]. In other FYVE domain proteins, this motif and PtdIns(3)P are necessary for membrane association. Vac1 proteins with mutant FYVE fingers still associated with membranes but showed vacuolar protein sorting defects and reduced interactions with Vps45p and activated Vps21p. Vac1p membrane association was not dependent on PtdIns(3)P, Pep12p, Vps21p, Vps45p, or the PtdIns 3-kinase, Vps34p. Vac1p FYVE finger mutant missorting phenotypes were suppressed by a defective allele of VPS34. These data indicate that PtdIns(3)P may perform a regulatory role, possibly involved in mediating Vac1p protein-protein interactions. We propose that activated-Vps21p interacts with its effector, Vac1p, which interacts with Vps45p to regulate the Golgi to endosome SNARE complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号