首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Information contained in the mammalian glycome is decoded by glycan-binding proteins (GBPs) that mediate diverse functions including host-pathogen interactions, cell trafficking and transmembrane signaling. Although information on the biological roles of GBPs is rapidly expanding, challenges remain in identifying the glycan ligands and their impact on GBP function. Protein-glycan interactions are typically low affinity, requiring multivalent interactions to achieve a biological effect. Though many glycoproteins can carry the glycan structure recognized by the GBP, other factors, such as recognition of protein epitopes and microdomain localization, may restrict which glycoproteins are functional ligands in situ. Recent advances in development of glycan arrays, synthesis of multivalent glycan ligands, bioengineering of cell-surface glycans and glycomics databases are providing new tools to identify the ligands of GBPs and to elucidate the mechanisms by which they participate in GBP function.  相似文献   

2.
Human milk contains a large diversity of free glycans beyond lactose, but their functions are not well understood. To explore their functional recognition, here we describe a shotgun glycan microarray prepared from isolated human milk glycans (HMGs), and our studies on their recognition by viruses, antibodies, and glycan-binding proteins (GBPs), including lectins. The total neutral and sialylated HMGs were derivatized with a bifunctional fluorescent tag, separated by multidimensional HPLC, and archived in a tagged glycan library, which was then used to print a shotgun glycan microarray (SGM). This SGM was first interrogated with well defined GBPs and antibodies. These data demonstrated both the utility of the array and provided preliminary structural information (metadata) about this complex glycome. Anti-TRA-1 antibodies that recognize human pluripotent stem cells specifically recognized several HMGs that were then further structurally defined as novel epitopes for these antibodies. Human influenza viruses and Parvovirus Minute Viruses of Mice also specifically recognized several HMGs. For glycan sequencing, we used a novel approach termed metadata-assisted glycan sequencing (MAGS), in which we combine information from analyses of glycans by mass spectrometry with glycan interactions with defined GBPs and antibodies before and after exoglycosidase treatments on the microarray. Together, these results provide novel insights into diverse recognition functions of HMGs and show the utility of the SGM approach and MAGS as resources for defining novel glycan recognition by GBPs, antibodies, and pathogens.  相似文献   

3.
H Zhang  Z Wang  J Stupak  O Ghribi  JD Geiger  QY Liu  J Li 《Proteomics》2012,12(15-16):2510-2522
The development of glycomics increasingly requires the detection and quantification of large numbers of glycans, which is only partially achieved by current glycomics approaches. Taking advantage of selected reaction monitoring to enhance both sensitivity and selectivity, we report here a strategy termed targeted glycomics that enables highly sensitive and consistent identification and quantification of diverse glycans across multiple samples at the same time. In this proof-of-principle study, we validated the method by analyzing global N-glycans expressed in different systems: single proteins, cancer cells, and serum samples. A dynamic range of three orders of magnitude was obtained for the detection of all five glycans released from ribonuclease B. The limit of detection of 80 attomole for Man(9) GlcNAc(2) demonstrated the excellent sensitivity of the method. The capability of the strategy to identify diverse glycans was demonstrated by identification and detection of 162 different glycans and isomers from pancreatic cancer cells. The sensitivity of the method was illustrated further by the ability to detect eight glycans from 250 cancer cells and five glycans released from 100 cancer cells. In serum obtained from rabbits fed control diet or diet enriched with 2% cholesterol, differences to 42 glycans were accurately measured and this indicates that this strategy might find use in studies of biomarker discovery and validation.  相似文献   

4.
The study of glycosylation patterns (glycomics) in biological samples is an emerging field that can provide key insights into cell development and pathology. A current challenge in the field of glycomics is to determine how to quantify changes in glycan expression between different cells, tissues, or biological fluids. Here we describe a novel strategy, quantitation by isobaric labeling (QUIBL), to facilitate comparative glycomics. Permethylation of a glycan with (13)CH 3I or (12)CH 2DI generates a pair of isobaric derivatives, which have the same nominal mass. However, each methylation site introduces a mass difference of 0.002922 Da. As glycans have multiple methylation sites, the total mass difference for the isobaric pair allows separation and quantitation at a resolution of approximately 30000 m/Delta m. N-Linked oligosaccharides from a standard glycoprotein and human serum were used to demonstrate that QUIBL facilitates relative quantitation over a linear dynamic range of 2 orders of magnitude and permits the relative quantitation of isomeric glycans. We applied QUIBL to quantitate glycomic changes associated with the differentiation of murine embryonic stem cells to embryoid bodies.  相似文献   

5.
Interactions of glycan-binding proteins (GBPs) with glycans are essential in cell adhesion, bacterial/viral infection, and cellular signaling pathways. Experimental characterization of these interactions based on glycan microarrays typically involves (1) labeling GBPs directly with fluorescent reagents before incubation with the microarrays, or (2) labeling GBPs with biotin before the incubation and detecting the captured GBPs after the incubation using fluorescently labeled streptavidin, or (3) detecting the captured GBPs after the incubation using fluorescently labeled antibodies raised against the GBPs. The fluorescent signal is mostly measured ex situ after excess fluorescent materials are washed off. In this study, by using a label-free optical scanner for glycan microarray detection, we measured binding curves of 7 plant lectins to 24 glycans: four β1-4-linked galactosides, three β1-3-linked galactosides, one β-linked galactoside, one α-linked N-acetylgalactosaminide, eight α2-3-linked sialosides, and seven α2-6-linked sialosides. From association and dissociation constants deduced by global-fitting the binding curves, we found that (1) labeling lectins directly with fluorescent agents change binding profiles of lectins, in some cases by orders of magnitude; (2) those lectin-glycan binding reactions characterized with large dissociation rates, though biologically relevant, are easily missed or deemed insignificant in ex situ fluorescence-based assays as most captured lectins are washed off before detection. This study highlights the importance of label-free real-time detection of protein-ligand interactions and the potential pitfall in interpreting fluorescence-based assays for characterization of protein-glycan interactions.  相似文献   

6.
Carbohydrate microarrays are powerful tools in glycomics. Interactions of different carbohydrate structures with a wide variety of biological targets, including proteins, RNA, viruses, and whole cells, have been investigated using this technique. Binding preferences and specificities, inhibition of interactions, enzymatic activities, and structure-function relationships have been determined. Screening and characterization of antibodies have been conducted using microarrays. Binding of whole cells to the arrays has been exploited to search for novel binding proteins and to detect bacteria in blood. Here, we review the different techniques for carbohydrate microarray production and application. To illustrate the utility of arrays for glycomics research, some select experiments are discussed in greater detail.  相似文献   

7.
Many diseases and disorders are characterized by quantitative and/or qualitative changes in complex carbohydrates. Mass spectrometry methods show promise in monitoring and detecting these important biological changes. Here we report a new glycomics method, termed glycan reductive isotope labeling (GRIL), where free glycans are derivatized by reductive amination with the differentially coded stable isotope tags [12C6]aniline and [13C6]aniline. These dual-labeled aniline-tagged glycans can be recovered by reverse-phase chromatography and can be quantified based on ultraviolet (UV) absorbance and relative ion abundances. Unlike previously reported isotopically coded reagents for glycans, GRIL does not contain deuterium, which can be chromatographically resolved. Our method shows no chromatographic resolution of differentially labeled glycans. Mixtures of differentially tagged glycans can be directly compared and quantified using mass spectrometric techniques. We demonstrate the use of GRIL to determine relative differences in glycan amount and composition. We analyze free glycans and glycans enzymatically or chemically released from a variety of standard glycoproteins, as well as human and mouse serum glycoproteins, using this method. This technique allows linear relative quantitation of glycans over a 10-fold concentration range and can accurately quantify sub-picomole levels of released glycans, providing a needed advancement in the field of glycomics.  相似文献   

8.
Glycomics-an integrated approach to study structure-function relationships of complex carbohydrates (or glycans)-is an emerging field in this age of post-genomics. Realizing the importance of glycomics, many large scale research initiatives have been established to generate novel resources and technologies to advance glycomics. These initiatives are generating and cataloging diverse data sets necessitating the development of bioinformatic platforms to acquire, integrate, and disseminate these data sets in a meaningful fashion. With the consortium for functional glycomics (CFG) as the model system, this review discusses databases and the bioinformatics platform developed by this consortium to advance glycomics.  相似文献   

9.
Comprehensive analyses of proteins from cells and tissues are the most effective means of elucidating the expression patterns of individual disease-related proteins. On the other hand, the simultaneous separation and characterization of proteins by 1-DE or 2-DE followed by MS analysis are one of the fundamental approaches to proteomic analysis. However, these analyses do not permit the complete structural identification of glycans in glycoproteins or their structural characterization. Over half of all known proteins are glycosylated and glycan analyses of glycoproteins are requisite for fundamental proteomics studies. The analysis of glycan structural alterations in glycoproteins is becoming increasingly important in terms of biomarkers, quality control of glycoprotein drugs, and the development of new drugs. However, usual approach such as proteoglycomics, glycoproteomics and glycomics which characterizes and/or identifies sugar chains, provides some structural information, but it does not provide any information of functionality of sugar chains. Therefore, in order to elucidate the function of glycans, functional glycomics which identifies the target glycoproteins and characterizes functional roles of sugar chains represents a promising approach. In this review, we show examples of functional glycomics technique using alpha 1,6 fucosyltransferase gene (Fut8) in order to identify the target glycoprotein(s). This approach is based on glycan profiling by CE/MS and LC/MS followed by proteomic approaches, including 2-DE/1-DE and lectin blot techniques and identification of functional changes of sugar chains.  相似文献   

10.
The nascent field of glycomics is currently undergoing rapid development, largely as a result of advances in technologies for analyzing glycan structure, unraveling glycan-protein interactions and establishing the functional significance of glycans. A meeting was held in November 2006 to explore the challenges and opportunities ahead for this emerging 'omics' domain.  相似文献   

11.
Carbohydrate microarray technologies are new developments at the frontiers of glycomics. Results of 'proof of concept' experiments with carbohydrate-binding proteins of the immune system - antibodies, selectins, a cytokine and a chemokine - and several plant lectins indicate that microarrays of carbohydrates (glycoconjugates, oligosaccharides and monosaccharides) will greatly facilitate not only surveys of proteins for carbohydrate-binding activities but also elucidation of their ligands. It is predicted that both naturally occurring and synthetic carbohydrates will be required for the fabrication of microarrays that are sufficiently comprehensive and representative of entire glycomes. New leads to biological pathways that involve carbohydrate-protein interactions and new therapeutic targets are among biomedically important outcomes anticipated from applications of carbohydrate microarrays.  相似文献   

12.
The term 'glycomics' describes the scientific attempt to identify and study all the glycan molecules - the glycome - synthesised by an organism. The aim is to create a cell-by-cell catalogue of glycosyltransferase expression and detected glycan structures. The current status of databases and bioinformatics tools, which are still in their infancy, is reviewed. The structures of glycans as secondary gene products cannot be easily predicted from the DNA sequence. Glycan sequences cannot be described by a simple linear one-letter code as each pair of monosaccharides can be linked in several ways and branched structures can be formed. Few of the bioinformatics algorithms developed for genomics/proteomics can be directly adapted for glycomics. The development of algorithms, which allow a rapid, automatic interpretation of mass spectra to identify glycan structures is currently the most active field of research. The lack of generally accepted ways to normalise glycan structures and exchange glycan formats hampers an efficient cross-linking and the automatic exchange of distributed data. The upcoming glycomics should accept that unrestricted dissemination of scientific data accelerates scientific findings and initiates a number of new initiatives to explore the data.  相似文献   

13.
Recent progress in mass spectrometry has led to new challenges in glycomics, including the development of rapid glycan enrichment techniques. A facile technique for exploration of a carbohydrate-related biomarker is important because proteomics research targets glycosylation, a posttranslational modification. Here we report an "all-in-one" protocol for high throughput clinical glycomics. This new technique integrates glycoblotting-based glycan enrichment onto the BlotGlycoABC bead, on-bead stabilization of sialic acids, and fluorescent labeling of oligosaccharides in a single workflow on a multiwell filter plate. The advantage of this protocol and MALDI-TOF MS was demonstrated through differentiation of serum N-glycan profiles of subjects with congenital disorders of glycosylation and hepatocellular carcinoma and healthy donors. The method also permitted total cellular glycomics analysis of human prostate cancer cells and normal human prostate epithelial cells. These results demonstrate the potentials of glycan enrichment/processing for biomarker discovery.  相似文献   

14.
Because the glycosylation of proteins is known to change in tumor cells during the development of breast cancer, a glycomics approach is used here to find relevant biomarkers of breast cancer. These glycosylation changes are known to correlate with increasing tumor burden and poor prognosis. Current antibody-based immunochemical tests for cancer biomarkers of ovarian (CA125), breast (CA27.29 or CA15-3), pancreatic, gastric, colonic, and carcinoma (CA19-9) target highly glycosylated mucin proteins. However, these tests lack the specificity and sensitivity for use in early detection. This glycomics approach to find glycan biomarkers of breast cancer involves chemically cleaving oligosaccharides (glycans) from glycosylated proteins that are shed or secreted by breast cancer tumor cell lines. The resulting free glycan species are analyzed by MALDI-FT-ICR MS. Further structural analysis of the glycans can be performed in FTMS through the use of tandem mass spectrometry with infrared multiphoton dissociation. Glycan profiles were generated for each cell line and compared. These methods were then used to analyze sera obtained from a mouse model of breast cancer and a small number of serum samples obtained from human patients diagnosed with breast cancer or patients with no known history of breast cancer. In addition to the glycosylation changes detected in mice as mouse mammary tumors developed, glycosylation profiles were found to be sufficiently different to distinguish patients with cancer from those without. Although the small number of patient samples analyzed so far is inadequate to make any legitimate claims at this time, these promising but very preliminary results suggest that glycan profiles may contain distinct glycan biomarkers that may correspond to glycan "signatures of cancer."  相似文献   

15.
A glycan microarray was developed by using 2,6-diaminopyridine (DAP) as a fluorescent linker and printing of the glycan-DAP conjugates (GDAPs) on epoxy-activated glass slides. Importantly, all coupled GDAPs showed a detectable level of concentration-dependent GDAP fluorescence under blue laser excitation (495 nm) that can be used for both grid location and on-slide quantification. A glycan array including a large number of GDAP’s derived from natural and commercially available free glycans was constructed and glycan interactions with various plant lectins were investigated. In addition, binding parameters of lectins to glycans were obtained by varying both the amount of GDAPs on the array and the lectin concentration in analyses. These data demonstrate the general utility of GDAP microarrays for functional glycomic analyses and for determining binding parameters of glycan binding proteins (GBPs).  相似文献   

16.
Separation technologies for glycomics   总被引:9,自引:0,他引:9  
Progress in genome projects has provided us with fundamentals on genetic information; however, the functions of a large number of genes remain to be elucidated. To understand the in vivo functions of eukaryotic genes, it is essential to grasp the features of their post-translational modifications. Among them, protein glycosylation is a central issue to be discussed, considering the predominant roles of glycoproteins in cell-cell and cell-substratum recognition events in multicellular organisms. In this context, it is necessary to establish a core strategy for analyzing glycosylated proteins under the concept of the "glycome" [Trends Glycosci. Glycotechnol. 12 (2000) 1]. Though the term glycome should be defined, in analogy to the genome and proteome, as "a whole set of glycans produced in a single organism", here we propose a glycome project specifically focusing on glycoproteins. Principal objectives in the project are to identify: (1) which genes encode glycoproteins (i.e. genome information); (2) which sites among potential glycosylation sites are actually glycosylated (i.e. glycosylation site information); (3) what are the structures of glycans (i.e. structural information); and (4) what are the effects (functions) of glycosylation (functional information). For these purposes, two affinity technologies have been introduced. One is named the "glyco-catch method" to identify genes encoding glycoproteins [Proteomics 1 (2001) 295], and the other is the recently reinforced "frontal affinity chromatography" [J. Chromatogr. A 890 (2000) 261]. By the former method, genes that encode glycoproteins as well as glycosylation sites are systematically identified by the efficient combination of conventional lectin-affinity chromatography and contemporary in silico database searching. The following three actions have been devised for rapid and systematic characterization of glycans: (1) mass spectrometry to acquire exact mass information; (2) 2-D/3-D mapping to obtain refined chemical information; and (3) reinforced frontal affinity chromatography to determine affinity constants (K(a)-values) for a set of lectins. Pyridylaminated glycans are used throughout the characterization processes. In this review, the concept and strategy of glycomic approaches are described referring to the on-going glycome project focused on the nematode Caenorhabditis elegans.  相似文献   

17.
Oligosaccharide microarrays for glycomics   总被引:9,自引:0,他引:9  
Hirabayashi J 《Trends in biotechnology》2003,21(4):141-3; discussion 143
Glycomics is an emerging field that was proposed at the end of the 20th century as a new concept to follow genomics and proteomics. Studies on glycans are indispensable to define complex life systems and cell communities because all living organisms consist of diverse cells, which are covered with an abundance of heterogeneous carbohydrates. Although studies on glycans are extremely difficult because of the lack of basic technologies common to DNAs and proteins, a few new aspects of glycotechnologies have now become realized in the form of "bio-chips", which include "oligosaccharide arrays" or "glyco-chips". Recently, Fukui et al. developed oligosaccharide microarrays for glycomic analysis of extensive carbohydrate-binding proteins. How and why such glyco-engineering projects have been made in the contexts of both pure and applied sciences is described.  相似文献   

18.
Glycan‐binding proteins (GBPs) play an important role in cell adhesion, bacterial/viral infection, and cellular signaling pathways. However, little is known about the precision alteration of GBPs referred to pathological changes in hepatic stellate cells (HSCs) during liver fibrosis. Here, the carbohydrate microarrays were used to probe the alteration of GBPs in the activated HSCs and quiescent HSCs. As a result, 12 carbohydrates (e.g. Gal, GalNAc, and Man‐9Glycan) showed increased signal, while seven carbohydrates (e.g. NeuAc, Lac, and GlcNAc‐O‐Ser) showed decreased signal in activated HSCs. Three carbohydrates (Gal, GalNAc, and NeuAc) were selected and subsequently used to validate the results of the carbohydrate microarrays as well as assess the distribution and localization of their binding proteins in HSCs and liver tissues by cy/histochemistry; the results showed that GBPs mainly distributed in the cytoplasma membrane and perinuclear region of cytoplasm. The immunocytochemistry was further used to verify some GBPs really exist in Golgi apparatus of the cells. The precision alteration and localization of GBPs referred to pathological changes in HSCs may provide pivotal information to help understand the biological functions of glycans how to exert through their recognition by a wide variety of GBPs. This study could lead to the development of new anti‐fibrotic strategies.  相似文献   

19.
Neutrophils are the most abundant white blood cells in humans and play a vital role in several aspects of the immune response. Numerous reports have implicated neutrophil glycosylation as an important factor in mediating these interactions. We report here the application of high sensitivity glycomics methodologies, including matrix assisted laser desorption ionisation (MALDI-TOF) and MALDI-TOF/TOF analyses, to the structural analysis of N- and O-linked carbohydrates released from two samples of neutrophils, prepared by two separate and geographically remote laboratories. The data produced demonstrates that the cells display a diverse range of sialylated and fucosylated complex glycans, with a high level of similarity between the two preparations.  相似文献   

20.
糖组学是研究糖链组成及其功能的一门新学科,近年来备受关注.目前糖组学的研究还处于起步阶段,阻碍糖组学迅速发展的主要原因是糖链本身结构的复杂性和研究技术的限制.微阵列技术作为一种快速、高效、高通量、微型化和自动化的分析技术,已经在基因组学和蛋白质组学的研究中发挥了重要的作用,将其应用于糖组学研究必将推动糖组学的发展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号