首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have discovered a family of small secreted proteins in Homo sapiens and Mus musculus. The IGF-like (IGFL) genes encode proteins of approximately 100 amino acids that contain 11 conserved cysteine residues at fixed positions, including two CC motifs. In H. sapiens, the family is composed of four genes and two pseudogenes that are referred as IGFL1 to IGFL4 and IGFL1P1 and IGFL1P2, respectively. Human IGFL genes are clustered together on chromosome 19 within a 35-kb interval. M. musculus has a single IGFL family member that is located on chromosome 7. Further, evolutionary analysis shows a lack of direct orthology between any of the four human members and the mouse gene. This relationship between the mouse and the human family members suggests that the multiple members in the human complement have arisen from recent duplication events that appear limited to the primate lineage. Structural considerations and sequence comparisons would suggest that IGFL proteins are distantly related to the IGF superfamily of growth factors. IGFL mRNAs display specific expression patterns; they are expressed in fetal tissues, breast, and prostate, and in many cancers as well, and this pattern is consistent with that of the IGF family members.  相似文献   

2.
3.
Le VT  Trilling M  Hengel H 《Journal of virology》2011,85(24):13260-13270
Human cytomegalovirus is a ubiquitous herpesvirus that establishes lifelong latent infection. Changes in immune homeostasis induce the reactivation of lytic infection, which is mostly inapparent in healthy individuals but often causes overt disease in immunocompromised hosts. Based on discrepant tumor necrosis factor receptor 1 surface disposition between human cytomegalovirus AD169 variants differing in the ULb' region, we identified the latency-associated gene product pUL138, which also is expressed during productive infection, as a selective potentiator of tumor necrosis factor receptor 1, one of the key receptors of innate immunity. Ectopically expressed pUL138 coprecipitated with tumor necrosis factor receptor 1, extended the protein half-life, and enhanced its signaling responses, thus leading to tumor necrosis factor receptor 1 hyperresponsiveness. Conversely, the targeted deletion of UL138 from the human cytomegaloviral genome strongly reduced tumor necrosis factor receptor 1 surface densities of infected cells. Remarkably, the comparison of UL138 deficiency to ULb' deficiency revealed the presence of further positive modulators of tumor necrosis factor alpha signal transduction encoded within the human cytomegalovirus ULb' region, identifying this region as a hub for multilayered tumor necrosis factor alpha signaling regulation.  相似文献   

4.
Among members of the tumor necrosis factor receptor (TNFR) superfamily, 4-1BB, CD27, and glucocorticoid-induced tumor necrosis factor receptor family-related gene (GITR) share a striking homology in the cytoplasmic domain. Here we report the identification of a new member, activation-inducible TNFR family member (AITR), which belongs to this subfamily, and its ligand. The receptor is expressed in lymph node and peripheral blood leukocytes, and its expression is up-regulated in human peripheral mononuclear cells mainly after stimulation with anti-CD3/CD28 monoclonal antibodies or phorbol 12-myristate 13-acetate/ionomycin. AITR associates with TRAF1 (TNF receptor-associated factor 1), TRAF2, and TRAF3, and induces nuclear factor (NF)-kappaB activation via TRAF2. The ligand for AITR (AITRL) was found to be an undescribed member of the TNF family, which is expressed in endothelial cells. Thus, AITR and AITRL seem to be important for interactions between activated T lymphocytes and endothelial cells.  相似文献   

5.
针对肿瘤坏死因子(TNF)在肿瘤治疗剂量下产生的严重毒副作用及一些肿瘤细胞上白细胞介素-6(IL-6)受体明显增高的事实,根据TNF结构与功能研究的最新信息,利用PCR技术,对人TNFα基因进行了改造,并将其与人IL-6成熟肽编码区cDNA通过人工接头进行融合。融合蛋白在大肠杆菌中表达后,Westernblot分析表明,分子量约为37kD;活性检测结果证实,该融合蛋白兼具有TNF抗肿瘤活性和结合IL-6受体的能力,在高表达IL-6受体的人骨髓瘤细胞上测得的细胞毒活性较同样位点突变的TNF高约3倍。  相似文献   

6.
The APO-1 (APT) antigen is a cell surface antigen expressed on a variety of normal and malignant cells. Binding of anti-APO-1 antibody to the APO-1 antigen induces programmed cell death (apoptosis). The APO-1 antigen shows homology to the members of the tumor necrosis factor receptor/nerve growth factor receptor superfamily. Using cosmid DNA containing the APO-1 gene as a probe for fluorescence in situ hybridization, we have mapped the gene to a subregion of chromosomal band 10q23. The human APO-1 locus lies within a conserved synteny segment present on mouse chromosome 19 consistent with the previous chromosomal assignment of the corresponding mouse antigen.  相似文献   

7.
8.
In a signal sequence trap screening of the murine brain, we identified a new member of the tumor necrosis factor receptor superfamily designated TROY. TROY is a type I membrane protein of 416 amino acids with characteristic cysteine-rich motifs in the extracellular domain and a tumor necrosis factor receptor-associated factor (TRAF) 2 binding sequence in the cytoplasmic domain of 223 amino acids. In fact, activation of nuclear factor kappaB was induced by the overexpression of TROY and inhibited by dominant negative forms of TRAF2, TRAF5, and TRAF6, indicating that TRAFs and nuclear factor kappaB are involved in the signal transduction of TROY. We also cloned a cDNA for a human counterpart, which showed a 75% homology with mouse TROY at the amino acid level. The extracellular domain of TROY exhibits an extensive homology with that of Edar, a receptor that specifies hair follicle fate. TROY mRNA is strongly expressed in brain and embryo and moderately expressed in the heart, lung, and liver but not the spleen. In the embryo, the expression level is particularly strong in the skin. Interestingly, in situ hybridization analysis of the embryo showed that TROY mRNA was exclusively expressed in the epithelium of many tissues. On the other hand, in neonatal mice, TROY is expressed in hair follicles like Edar as well as in the cerebrum, suggesting pleiotropic functions of TROY in development as well as in the adult mice. The Troy gene is located near the waved coat (Wc) locus, a mutant related to abnormalities in skin and hair.  相似文献   

9.
Transmembrane protein (TMEM) is a family of protein that spans cytoplasmic membranes and allows cell–cell and cell–environment communication. Dysregulation of TMEMs has been observed in multiple cancers. However, little is known about TMEM116 in cancer development. In this study, we demonstrate that TMEM116 is highly expressed in non-small-cell lung cancer (NSCLC) tissues and cell lines. Inactivation of TMEM116 reduced cell proliferation, migration and invasiveness of human cancer cells and suppressed A549 induced tumor metastasis in mouse lungs. In addition, TMEM116 deficiency inhibited PDK1-AKT-FOXO3A signaling pathway, resulting in accumulation of TAp63, while activation of PDK1 largely reversed the TMEM116 deficiency induced defects in cancer cell motility, migration and invasive. Together, these results demonstrate that TMEM116 is a critical integrator of oncogenic signaling in cancer metastasis.Subject terms: Non-small-cell lung cancer, Non-small-cell lung cancer  相似文献   

10.
The failure to reject the semiallogenic fetus by maternal T lymphocytes suggests that potent mechanisms regulate these cells. PDCD1 is a CD28 family receptor expressed by T cells, and its ligand CD274 is strongly expressed by trophoblast cells of the human placenta. In this study, we examined whether human maternal T cells express PDCD1. Immunofluorescence examination of uterine tissues revealed PDCD1 expression on CD3+ cells was low in nonpregnant endometrium but increased in first-trimester decidua and remained elevated in term decidua (P < 0.05). In addition, higher relative proportions of term decidual CD8 bright, CD4+, and regulatory T cells expressed PDCD1 in comparison to autologous peripheral blood (P < 0.05). Term decidual T cells also expressed full-length and soluble PDCD1 mRNA isoforms more abundantly than their peripheral blood counterparts (P 相似文献   

11.
Previous reports have suggested that human CD4+ CD25hiFOXP3+ T regulatory cells (Tregs) have functional plasticity and may differentiate into effector T cells under inflammation. The molecular mechanisms underlying these findings remain unclear. Here we identified the residue serine 422 of human FOXP3 as a phosphorylation site that regulates its function, which is not present in murine Foxp3. PIM1 kinase, which is highly expressed in human Tregs, was found to be able to interact with and to phosphorylate human FOXP3 at serine 422. T cell receptor (TCR) signaling inhibits PIM1 induction, whereas IL-6 promotes PIM1 expression in in vitro expanded human Tregs. PIM1 negatively regulates FOXP3 chromatin binding activity by specifically phosphorylating FOXP3 at Ser422. Our data also suggest that phosphorylation of FOXP3 at the Ser418 site could prevent FOXP3 phosphorylation at Ser422 mediated by PIM1. Knockdown of PIM1 in in vitro expanded human Tregs promoted FOXP3-induced target gene expression, including CD25, CTLA4, and glucocorticoid-induced tumor necrosis factor receptor (GITR), or weakened FOXP3-suppressed IL-2 gene expression and enhanced the immunosuppressive activity of Tregs. Furthermore, PIM1-specific inhibitor boosted FOXP3 DNA binding activity in in vitro expanded primary Tregs and also enhanced their suppressive activity toward the proliferation of T effector cells. Taken together, our findings suggest that PIM1 could be a new potential therapeutic target in the prevention and treatment of human-specific autoimmune diseases because of its ability to modulate the immunosuppressive activity of human Tregs.  相似文献   

12.
The interaction between 4-1BB ligand (CD137L), a member of the tumor necrosis factor superfamily, and its receptor 4-1BB provides a co-stimulatory signal for T lymphocyte proliferation and survival. However, the structure of 4-1BBL has not been thoroughly investigated, and none of the human recombinant 4-1BBL molecules available have been described as capable of co-stimulating T cells. The present work provides a model of the three-dimensional structure of the tumor necrosis factor homology domain of 4-1BBL and describes the production of a recombinant human soluble 4-1BBL whose originality lies in that it contains the whole extracellular tail preceding the tumor necrosis factor homology domain and an AviTag peptide (AviTag-4-1BBL) allowing enzymatic biotinylation and multimerization via streptavidin. We provide evidence that this chimeric protein exists as a homotrimer, whereas commercial FLAG-tagged 4-1BBL does not. This resulted in a much higher affinity for 4-1BB (1.2 nM) as compared with FLAG-4-1BBL (55.2 nM). We demonstrate that the single extracellular cysteine residue in the tail (Cys-51) could form a disulfide bond, both in our recombinant protein and in physiologically expressed 4-1BBL. The mutation of this cysteine residue exerted no effect on trimerization but increased the dissociation rate of AviTag-4-1BBL from 4-1BB. In its soluble form, AviTag-4-1BBL did not stimulate purified T cells but dramatically inhibited proliferation of peripheral blood mononuclear cells stimulated with anti-CD3 mAb. In contrast, a very significant co-stimulatory effect was observed on purified T cells once AviTag-4-1BBL was immobilized onto streptavidin beads. In addition, we show that the cross-linking of two trimeric AviTag-4-1BBL molecules was the minimum step required to elicit significant costimulatory activity.  相似文献   

13.
Immediate early gene X-1 interacts with proteins that modulate apoptosis   总被引:6,自引:0,他引:6  
Immediate early gene X-1 (IEX-1) modulates apoptosis, cellular growth, mechanical strain-induced cardiac hypertrophy, and vascular intimal hyperplasia. To determine how IEX-1 alters apoptosis, we performed yeast two-hybrid studies using IEX-1 as the "bait" protein, and examined interactions between IEX-1 and proteins expressed by a human kidney cDNA expression library. We found that IEX-1 interacts with several proteins of which at least four are known to play a role in the regulation of apoptosis: (1) calcium-modulating cyclophilin ligand; (2) tumor necrosis factor-related apoptosis-inducing ligand (tumor necrosis factor superfamily, member 10); (3) ML-1 myeloid cell leukemia gene encoded protein; and (4) BAT3, a gene present in the major histo-compatibility complex. Our data suggest that IEX-1 may regulate apoptosis by directly interacting with various proteins involved in the control of apoptotic pathways.  相似文献   

14.
Clones encoding the entire coding and 3' untranslated region of the human type I tumor necrosis factor receptor (p60) gene (TNFR1) were isolated by hybridization using probes derived from TNFR-1 cDNA. The gene was characterized by restriction mapping. DNA blot analysis and sequence analysis. The coding region and the 3' untranslated region are distributed over 10 exons. Each of the four repeats, comprising the extracellular ligand binding domain and characterizing a receptor superfamily, is interrupted by an intron. However, the intron-exon structure is not conserved in the nerve growth factor receptor gene, another member of this superfamily. By PCR analysis of human-mouse somatic cell hybrids and in situ hybridization using biotinylated genomic TNFR1 DNA, we localized the gene to human chromosomal band 12p13. This corresponds to the homologous murine gene localized at the distal region of mouse chromosome 6.  相似文献   

15.
We identified a new Ca2+-dependent lectin-like receptor gene, DECTIN-1 (HGMW-approved symbol CLECSF12), the human orthologue of mouse Dectin-1, coding for a putative type II transmembrane glycoprotein with an extracellular C-type lectin-like domain. The gene structure and two alternative spliced forms of DECTIN-1 are described. The DECTIN-1 gene was localized in the natural killer gene complex on human Chromosome 12p12.3-p13.2, between OLR1 and CD94 (position 21.8 cM on the genetic map). The DECTIN-1 gene is highly expressed at the mRNA level in dendritic cells and is not further up-regulated during the maturation of these cells with tumor necrosis factor-alpha. The DECTIN-1 gene therefore represents a novel human member of the C-type lectin-like receptor gene family preferentially expressed in dendritic cells.  相似文献   

16.
17.

Background  

The Apo-1/Fas (CD95) molecule is an apoptosis-signaling cell surface receptor belonging to the tumor necrosis factor (TNF) receptor family. Both Fas and Fas ligand (FasL) are expressed in activated mature T cells, and prolonged cell activation induces susceptibility to Fas-mediated apoptosis. The Apo-1/Fas gene is located in a chromosomal region that shows linkage in multiple sclerosis (MS) genome screens, and studies indicate that there is aberrant expression of the Apo-1/Fas molecule in MS.  相似文献   

18.
增殖诱导配体 (aproliferation inducingligand ,APRIL)是肿瘤坏死因子 (TNF)家族的新成员 ,在多种肿瘤组织中有高表达 ,能促进肿瘤细胞增殖 ,防止肿瘤细胞受CD95L、FasL等诱导的凋亡 ;调节体液免疫 ;并在T、B淋巴细胞的成熟和活化中起一定作用。因此 ,APRIL与肿瘤的发生、发展以及免疫系统的调节有密切关系。  相似文献   

19.
TMEM207 was first characterized as being an important molecule for the invasion activity of gastric signet-ring cell carcinoma cells. In order to unravel the pathological properties of TMEM207, we generated several transgenic mouse lines, designated C57BL/6-Tg (ITF-TMEM207), in which murine TMEM207 was ectopically expressed under a truncated (by ~200 bp) proximal promoter of the murine intestinal trefoil factor (ITF) gene (also known as Tff3). Unexpectedly, a C57BL/6-Tg (ITF-TMEM207) mouse line exhibited a high incidence of spontaneous intradermal tumors with histopathological features that resembled those of various human cutaneous adnexal tumors. These tumors were found in ~14% female and 13% of male 6- to 12-month-old mice. TMEM207 immunoreactivity was found in hair follicle bulge cells in non-tumorous skin, as well as in cutaneous adnexal tumors of the transgenic mouse. The ITF-TMEM207 construct in this line appeared to be inserted to a major satellite repeat sequence at chromosome 2, in which no definite coding molecule was found. In addition, we also observed cutaneous adnexal tumors in three other C57BL/6-Tg (ITF-TMEM207) transgenic mouse lines. We believe that the C57BL/6-Tg (ITF-TMEM207) mouse might be a useful model to understand human cutaneous adnexal tumors.KEY WORDS: Cutaneous adnexal tumor, Mouse model, TMEM207  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号