首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibrio cholerae causes the fatal cholera diarrhea. Chironomids (Diptera; Chironomidae) are abundant in freshwater aquatic habitats and estuaries and are natural reservoirs of V. cholerae. Until now, only the non-O1/O139 serogroups of V. cholerae were identified in chironomids. Here, we explored whether chironomids are natural reservoirs of V. cholerae O1/O139 serogroups, which are associated with cholera endemics and pandemics. All four life stages of chironomids were sampled from two rivers, and a laboratory culture in Pune, India, and from a pond in Israel. In total, we analyzed 223 chironomid samples. The presence of V. cholerae O1/O139 serogroups was verified using molecular tools. Nine chironomid species were identified; of them, Chironomus circumdatus was the most abundant. The presence of V. cholerae serogroup O1 and the cholera toxin genes were detected in samples from all chironomid species. However, serogroup O139 was detected in only two chironomid species. Besides PCR to detect specific genes, a metagenomic analysis that was performed in three selected C. ramosus larvae, identified a list of virulence genes associated with V. cholerae. The findings provide evidence that chironomids are natural reservoirs of toxigenic V. cholerae O1/O139. Chironomid populations and V. cholerae show biannual peak patterns. A similar pattern is found for cholera epidemics in the Bengal Delta region. Thus, we hypothesize that monitoring chironomids in endemic areas of the disease may provide a novel tool for predicting and preventing cholera epidemics. Moreover, serogroup O139 was detected only in two chironomid species that have a restricted distribution in the Indian subcontinent, possibly explaining why the distribution of the O139 serogroup is limited.  相似文献   

2.

Background

Cholera is endemic in Bangladesh, with outbreaks reported annually. Currently, the majority of epidemic cholera reported globally is El Tor biotype Vibrio cholerae isolates of the serogroup O1. However, in Bangladesh, outbreaks attributed to V. cholerae serogroup O139 isolates, which fall within the same phylogenetic lineage as the O1 serogroup isolates, were seen between 1992 and 1993 and in 2002 to 2005. Since then, V. cholerae serogroup O139 has only been sporadically isolated in Bangladesh and is now rarely isolated elsewhere.

Methods

Here, we present case histories of four cholera patients infected with V. cholerae serogroup O139 in 2013 and 2014 in Bangladesh. We comprehensively typed these isolates using conventional approaches, as well as by whole genome sequencing. Phenotypic typing and PCR confirmed all four isolates belonging to the O139 serogroup.

Findings

Whole genome sequencing revealed that three of the isolates were phylogenetically closely related to previously sequenced El Tor biotype, pandemic 7, toxigenic V. cholerae O139 isolates originating from Bangladesh and elsewhere. The fourth isolate was a non-toxigenic V. cholerae that, by conventional approaches, typed as O139 serogroup but was genetically divergent from previously sequenced pandemic 7 V. cholerae lineages belonging to the O139 or O1 serogroups.

Conclusion

These results suggest that previously observed lineages of V. cholerae O139 persist in Bangladesh and can cause clinical disease and that a novel disease-causing non-toxigenic O139 isolate also occurs.  相似文献   

3.
Pathogenic non-O1/non-O139 Vibrio cholerae strains can cause sporadic outbreaks of cholera worldwide. In this study, multilocus sequence typing (MLST) of seven housekeeping genes was applied to 55 non-O1/non-O139 isolates from clinical and environmental sources. Data from five published O1 isolates and 17 genomes were also included, giving a total of 77 isolates available for analysis. There were 66 sequence types (STs), with the majority being unique, and only three clonal complexes. The V. cholerae strains can be divided into four subpopulations with evidence of recombination among the subpopulations. Subpopulations I and III contained predominantly clinical strains. PCR screening for virulence factors including Vibrio pathogenicity island (VPI), cholera toxin prophage (CTXΦ), type III secretion system (T3SS), and enterotoxin genes (rtxA and sto/stn) showed that combinations of these factors were present in the clinical isolates with 85.7% having rtxA, 51.4% T3SS, 31.4% VPI, 31.4% sto/stn (NAG-ST) and 11.4% CTXΦ. These factors were also present in environmental isolates but at a lower frequency. Five strains previously mis-identified as V. cholerae serogroups O114 to O117 were also analysed and formed a separate population with V. mimicus. The MLST scheme developed in this study provides a framework to identify sporadic cholera isolates by genetic identity.  相似文献   

4.
Vibrio cholerae, the causative agent of major epidemics of diarrheal disease in Bangladesh, South America, Southeastern Asia, and Africa, was isolated from clinical samples and from aquatic environments during and between epidemics over the past 20 years. To determine the evolutionary relationships and molecular diversity of these strains, in order to understand sources, origin, and epidemiology, a novel DNA fingerprinting technique, amplified fragment length polymorphism (AFLP), was employed. Two sets of restriction enzyme-primer combinations were tested for fingerprinting of V. cholerae serogroup O1, O139, and non-O1, O139 isolates. Amplification of HindIII- and TaqI-digested genomic DNA produced 30 to 50 bands for each strain. However, this combination, although capable of separating environmental isolates of O1 and non-O1 strains, was unable to distinguish between O1 and O139 clinical strains. This result confirmed that clinical O1 and O139 strains are genetically closely related. On the other hand, AFLP analyses of restriction enzyme ApaI- and TaqI-digested genomic DNA yielded 20 to 30 bands for each strain, but were able to separate O1 from O139 strains. Of the 74 strains examined with the latter combination, 26 serogroup O1 strains showed identical banding patterns and were represented by the O1 El Tor strain of the seventh pandemic. A second group, represented by O139 Bengal, included 12 strains of O139 clinical isolates, with 7 from Thailand, 3 from Bangladesh, and 2 from India. Interestingly, an O1 clinical isolate from Africa also grouped with the O139 clinical isolates. Eight clinical O1 isolates from Mexico grouped separately from the O1 El Tor of the seventh pandemic, suggesting an independent origin of these isolates. Identical fingerprints were observed between an O1 environmental isolate from a river in Chile and an O1 clinical strain from Kenya, both isolated more than 10 years apart. Both strains were distinct from the O1 seventh pandemic strain. Two O139 clinical isolates from Africa clustered with environmental non-O1 isolates, independent of other O139 strains included in the study. These results suggest that although a single clone of pathogenic V. cholerae appears responsible for many cases of cholera in Asia, Africa, and Latin America during the seventh pandemic, other cases of clinical cholera were caused by toxigenic V. cholerae strains that appear to have been derived locally from environmental O1 or non-O1 strains.  相似文献   

5.
A total of 26 strains of Vibrio cholerae, including members of the O1, O139, and non-O1, non-O139 serogroups from both clinical and environmental sources, were examined for the presence of genes encoding cholera toxin (ctxA), zonula occludens toxin (zot), accessory cholera enterotoxin (ace), hemolysin (hlyA), NAG-specific heat-stable toxin (st), toxin-coregulated pilus (tcpA), and outer membrane protein (ompU), for genomic organization, and for the presence of the regulatory protein genes tcpI and toxR in order to determine relationships between epidemic serotypes and sources of isolation. While 22 of the 26 strains were hemolytic on 5% sheep blood nutrient agar, all strains were PCR positive for hlyA, the hemolysin gene. When multiplex PCR was used, all serogroup O1 and O139 strains were positive for tcpA, ompU, and tcpI. All O1 and O139 strains except one O1 strain and one O139 strain were positive for the ctxA, zot, and ace genes. Also, O1 strain VO3 was negative for the zot gene. All of the non-O1, non-O139 strains were negative for the ctxA, zot, ace, tcpA, and tcpI genes, and all of the non-O1, non-O139 strains except strain VO26 were negative for ompU. All of the strains except non-O1, non-O139 strain VO22 were PCR positive for the gene encoding the central regulatory protein, toxR. All V. cholerae strains were negative for the NAG-specific st gene. Of the nine non-ctx-producing strains of V. cholerae, only one, non-O1, non-O139 strain VO24, caused fluid accumulation in the rabbit ileal loop assay. The other eight strains, including an O1 strain, an O139 strain, and six non-O1, non-O139 strains, regardless of the source of isolation, caused fluid accumulation after two to five serial passages through the rabbit gut. Culture filtrates of all non-cholera-toxigenic strains grown in AKI media also caused fluid accumulation, suggesting that a new toxin was produced in AKI medium by these strains. Studies of clonality performed by using enterobacterial repetitive intergenic consensus sequence PCR, Box element PCR, amplified fragment length polymorphism (AFLP), and pulsed-field gel electrophoresis (PFGE) collectively indicated that the V. cholerae O1 and O139 strains had a clonal origin, whereas the non-O1, non-O139 strains belonged to different clones. The clinical isolates closely resembled environmental isolates in their genomic patterns. Overall, there was an excellent correlation among the results of the PCR, AFLP, and PFGE analyses, and individual strains derived from clinical and environmental sources produced similar fingerprint patterns. From the results of this study, we concluded that the non-cholera-toxin-producing strains of V. cholerae, whether of clinical or environmental origin, possess the ability to produce a new secretogenic toxin that is entirely different from the toxin produced by toxigenic V. cholerae O1 and O139 strains. We also concluded that the aquatic environment is a reservoir for V. cholerae O1, O139, non-O1, and non-O139 serogroup strains.  相似文献   

6.
Here, we report on the characterization of 22 clinical toxigenic V. cholerae non-O1/non-O139 strains isolated in the Middle Asia (Uzbekistan) in 1971–1990. PCR analysis has revealed that these strains contain the main virulence genes such as ctxA, zot, ace (CTXφ); rstC (RS1φ); tcpA, toxT, aldA (pathogenicity island VPI), but they lack both pandemic islands VSP-I and VSP-II specific to epidemic strains of O1 serogroup of El Tor biotype and O139 serogroup. Only two of the twenty two toxigenic strains have tcpA gene of El Tor type, one strain has tcpA gene of classical type, while nineteen other strains carry a new variant of this gene, designated as tcpA uzb. Nucleotide sequences analysis of virulence genes in toxigenic V. cholerae non-O1/non-O139 strains from Uzbekistan showed that they differ significantly from the sequences of these genes in epidemic O1 and O139 strain indicating that they belong to a separate line of evolution of virulent V. cholerae strains. For the first time it is shown that V. cholerae non-O1/non-O139 toxigenic strains of different serogroups may belong to the same clone.  相似文献   

7.
Vibrio cholerae non-O1, non-O139 was isolated from natural surface waters from different sites sampled in diarrhea endemic zones in Kolkata, India. Twenty-one of these isolates were randomly selected and included in the characterization. The multiserogroup isolates were compared by their virulence traits with a group of clinical non-O1, non-O139 isolates from the same geographic area. Of the 21 environmental isolates, 6 and 14 strains belonged to Heiberg groups I and II, respectively. Three of the environmental isolates showed resistance to 2,2-diamine-6,7-diisopropylpteridine phosphate. All of the non-O1, non-O139 strains were positive for toxR, and except for one environmental isolate, none of them were positive for tcpA in the PCR assay. None of the isolates were positive for genes encoding cholera toxin (ctxA), heat-stable toxin (est), heat-labile toxin (elt), and Shiga toxin variants (stx) of Escherichia coli. Additionally, except for one environmental isolate (PC32), all were positive for the gene encoding El Tor hemolysin (hly). The culture supernatants of 86% (18 of 21) of the environmental isolates showed a distinct cytotoxic effect on HeLa cells, and some of these strains also produced cell-rounding factor. The lipase, protease, and cell-associated hemagglutination activities and serum resistance properties of the environmental and clinical isolates did not differ much. However, seven environmental isolates exhibited very high hemolytic activities (80 to 100%), while none of the clinical strains belonged to this group. The environmental isolates manifested three adherence patterns, namely, carpet-like, diffuse, and aggregative adherence, and the clinical isolates showed diffuse adherence on HeLa cells. Of the 11 environmental isolates tested for enteropathogenic potential, 8 (73%) induced positive fluid accumulation (≥100) in a mouse model, and the reactivities of these isolates were comparable to those of clinical strains of non-O1, non-O139 and toxigenic O139 V. cholerae. Comparison of the counts of the colonized environmental and clinical strains in the mouse intestine showed that the organisms of both groups had similar colonizing efficiencies. These findings indicate the presence of potentially pathogenic V. cholerae non-O1, non-O139 strains in surface waters of the studied sites in Kolkata.  相似文献   

8.
Non-O1/non-O139 nontoxigenic Vibrio cholerae associated with cholera-like diarrhea has been reported in Kolkata, India. However, the property involved in the pathogenicity of these strains has remained unclear. The character of 25 non-O1/non-O139 nontoxigenic V. cholerae isolated during 8 years from 2007 to 2014 in Kolkata was examined. Determination of the serogroup showed that the serogroups O6, O10, O35, O36, O39, and O70 were represented by two strains in each serogroup, and the remaining isolates belonged to different serogroups. To clarify the character of antibiotic resistance of these isolates, an antibiotic resistance test and the gene analysis were performed. According to antimicrobial drug susceptibility testing, 13 strains were classified as drug resistant. Among them, 10 strains were quinolone resistant and 6 of the 13 strains were resistant to more than three antibiotics. To define the genetic background of the antibiotic character of these strains, whole-genome sequences of these strains were determined. From the analysis of these sequences, it becomes clear that all quinolone resistance isolates have mutations in quinolone resistance-determining regions. Further research on the genome sequence showed that four strains possess Class 1 integrons in their genomes, and that three of the four integrons are found to be located in their genomic islands. These genomic islands are novel types. This indicates that various integrons containing drug resistance genes are spreading among V. cholerae non-O1/non-O139 strains through the action of newly generated genomic islands.  相似文献   

9.
Of the 200+ serogroups of Vibrio cholerae, only O1 or O139 strains are reported to cause cholera, and mostly in endemic regions. Cholera outbreaks elsewhere are considered to be via importation of pathogenic strains. Using established animal models, we show that diverse V. cholerae strains indigenous to a non-endemic environment (Sydney, Australia), including non-O1/O139 serogroup strains, are able to both colonize the intestine and result in fluid accumulation despite lacking virulence factors believed to be important. Most strains lacked the type three secretion system considered a mediator of diarrhoea in non-O1/O13 V. cholerae. Multi-locus sequence typing (MLST) showed that the Sydney isolates did not form a single clade and were distinct from O1/O139 toxigenic strains. There was no correlation between genetic relatedness and the profile of virulence-associated factors. Current analyses of diseases mediated by V. cholerae focus on endemic regions, with only those strains that possess particular virulence factors considered pathogenic. Our data suggest that factors other than those previously well described are of potential importance in influencing disease outbreaks.  相似文献   

10.
The bacterium Vibrio cholerae is a natural inhabitant of aquatic ecosystems across the planet. V. cholerae serogroups O1 and O139 are responsible for cholera outbreaks in developing countries accounting for 3–5 million infections worldwide and 28.800–130.000 deaths per year according to the World Health Organization. In contrast, V. cholerae serogroups other than O1 and O139, also designated as V. cholerae non-O1/O139 (NOVC), are not associated with epidemic cholera but can cause other illnesses that may range in severity from mild (e.g. gastroenteritis, otitis, etc.) to life-threatening (e.g. necrotizing fasciitis). Although generally neglected, NOVC-related infections are on the rise and represent one of the most striking examples of emerging human diseases linked to climate change. NOVC strains are also believed to potentially contribute to the emergence of new pathogenic strains including strains with epidemic potential as a direct consequence of genetic exchange mechanisms such as horizontal gene transfer and genetic recombination. Besides general features concerning the biology and ecology of NOVC strains and their associated diseases, this review aims to highlight the most relevant aspects related to the emergence and potential threat posed by NOVC strains under a rapidly changing environmental and climatic scenario.  相似文献   

11.
The aim of this study was to investigate the presence of TCP gene clusters among clinical and environmental Vibrio cholerae isolates and to explore the genetic relatedness of isolates using ribotyping technique. A total of 50 V. cholerae strains (30 clinical and 20 environmental) were included in this study. Three clinical isolates were negative for TCP cluster genes while the cluster was absent in all of the environmental strains. Ribotyping of rRNA genes with BglI produced 18 different ribotype patterns, three of which belonged to clinical O1 serotype isolates. The remaining 15 ribotypes belonged to clinical non-O1, non-O139 serogroups (two patterns) and environmental non-O1, non-O139 serogroups (13 patterns). Clinical V. cholerae O1 strains from 2004 through 2006 and several environmental non-O1, non-O139 V. cholerae strains from 2006 showed 67.3 % similarity and fell within one single gene cluster. Ribotyping analysis made it possible to further comprehend the close originality of clinical isolates as very little changes have been occurred within rRNA genes of different genotypes of V. cholerae strains through years. In conclusion, ribotyping analysis of environmental V. cholerae isolates showed a substantial genomic diversity supporting the fact that genetic changes within bacterial genome occurs during years in the environment, while only little changes may arise within the genome of clinical isolates.  相似文献   

12.
Non-O1/non-O139 Vibrio cholerae inhabits estuarine and coastal waters globally, but its clinical significance has not been sufficiently investigated, despite the fact that it has been associated with septicemia and gastroenteritis. The emergence of virulent non-O1/non-O139 V. cholerae is consistent with the recognition of new pathogenic variants worldwide. Oyster, sediment, and water samples were collected during a vibrio surveillance program carried out from 2009 to 2012 in the Chesapeake Bay, Maryland. V. cholerae O1 was detected by a direct fluorescent-antibody (DFA) assay but was not successfully cultured, whereas 395 isolates of non-O1/non-O139 V. cholerae were confirmed by multiplex PCR and serology. Only a few of the non-O1/non-O139 V. cholerae isolates were resistant to ampicillin and/or penicillin. Most of the isolates were sensitive to all antibiotics tested, and 77 to 90% carried the El Tor variant hemolysin gene hlyAET, the actin cross-linking repeats in toxin gene rtxA, the hemagglutinin protease gene hap, and the type 6 secretion system. About 19 to 21% of the isolates carried the neuraminidase-encoding gene nanH and/or the heat-stable toxin (NAG-ST), and only 5% contained a type 3 secretion system. None of the non-O1/non-O139 V. cholerae isolates contained Vibrio pathogenicity island-associated genes. However, ctxA, ace, or zot was present in nine isolates. Fifty-five different genotypes showed up to 12 virulence factors, independent of the source of isolation, and represent the first report of both antibiotic susceptibility and virulence associated with non-O1/non-O139 V. cholerae from the Chesapeake Bay. Since these results confirm the presence of potentially pathogenic non-O1/non-O139 V. cholerae, monitoring for total V. cholerae, regardless of serotype, should be done within the context of public health.  相似文献   

13.
The Vibrio cholerae N-acetyl glucosamine-binding protein A (GbpA) is a chitin-binding protein involved in V. cholerae attachment to environmental chitin surfaces and human intestinal cells. We previously investigated the distribution and genetic variations of gbpA in a large collection of V. cholerae strains and found that the gene is consistently present and highly conserved in this species. Primers and probe were designed from the gbpA sequence of V. cholerae and a new Taq-based qPCR protocol was developed for diagnostic detection and quantification of the bacterium in environmental and stool samples. In addition, the positions of primers targeting the gbpA gene region were selected to obtain a short amplified fragment of 206 bp and the protocol was optimized for the analysis of formalin-fixed samples, such as historical Continuous Plankton Recorder (CPR) samples. Overall, the method is sensitive (50 gene copies), highly specific for V. cholerae and failed to amplify strains of the closely-related species Vibrio mimicus. The sensitivity of the assay applied to environmental and stool samples spiked with V. cholerae ATCC 39315 was comparable to that of pure cultures and was of 102 genomic units/l for drinking and seawater samples, 101 genomic units/g for sediment and 102 genomic units/g for bivalve and stool samples. The method also performs well when tested on artificially formalin-fixed and degraded genomic samples and was able to amplify V. cholerae DNA in historical CPR samples, the earliest of which date back to August 1966. The detection of V. cholerae in CPR samples collected in cholera endemic areas such as the Benguela Current Large Marine Ecosystem (BCLME) is of particular significance and represents a proof of concept for the possible use of the CPR technology and the developed qPCR assay in cholera studies.  相似文献   

14.
The distribution, characterization and function of the tcpA gene was investigated in Vibrio cholerae O1 strains of the El Tor biotype and in a newly emergent non-O1 strain classified as serogroup O139. The V. cholerae tcpA gene from the classical biotype strain O395 was used as a probe to identify a clone carrying the tcpA gene from the El Tor biotype strain E7946. The sequence of the E7946 tcpA gene revealed that the mature El Tor TcpA pilin has the same number of residues as, and is 82% identical to, TcpA of classical biotype strain O395. The majority of differences in primary structure are either conservative or clustered in a manner such that compensatory changes retain regional amino acid size, polarity and charge. In a functional analysis, the cloned gene was used to construct an El Tor mutant strain containing an insertion in tcpA. This strain exhibited a colonization defect in the infant mouse cholera model similar in magnitude to that previously described for classical biotype tcpA mutants, thus establishing an equivalent role for TCP in intestinal colonization by El Tor biotype strains. The tcpA analysis was further extended to both a prototype El Tor strain from the Peru epidemic and to the first non-O1 strain known to cause epidemic cholera, an O139 V. cholerae isolate from the current widespread Asian epidemic. These strains were shown to carry tcpA with a sequence identical to E7946. These results provide further evidence that the newly emergent non-O1 serogroup O139 strain represents a derivative of an El Tor biotype strain and, despite its different LPS structure, shares common TCP-associated antigens. Therefore, there appear to be only two related sequences associated with TCP pilin required for colonization by all strains responsible for epidemic cholera, one primary sequence associated with classical strains and one for El Tor strains and the recent O139 derivative. A diagnostic correlation between the presence of tcpA and the V. cholerae to colonize and cause clinical is now extended to strains of both O1 and non-O1 serotypes.  相似文献   

15.
The examination of 137 non-O1/O139 Vibrio cholerae isolates from Newport Bay, California, indicated the presence of diverse genotypes and a temporal succession. Unexpectedly, the cholera toxin gene (ctxA) was found in 17% of the strains, of which one-third were also positive for the zot gene. This suggests that ctxA is prevalent in the region of nonepidemicity and is likely to have an environmental origin.  相似文献   

16.
Since Vibrio cholerae O139 first appeared in 1992, both O1 El Tor and O139 have been recognized as the epidemic serogroups, although their geographic distribution, endemicity, and reservoir are not fully understood. To address this lack of information, a study of the epidemiology and ecology of V. cholerae O1 and O139 was carried out in two coastal areas, Bakerganj and Mathbaria, Bangladesh, where cholera occurs seasonally. The results of a biweekly clinical study (January 2004 to May 2005), employing culture methods, and of an ecological study (monthly in Bakerganj and biweekly in Mathbaria from March 2004 to May 2005), employing direct and enrichment culture, colony blot hybridization, and direct fluorescent-antibody methods, showed that cholera is endemic in both Bakerganj and Mathbaria and that V. cholerae O1, O139, and non-O1/non-O139 are autochthonous to the aquatic environment. Although V. cholerae O1 and O139 were isolated from both areas, most noteworthy was the isolation of V. cholerae O139 in March, July, and September 2004 in Mathbaria, where seasonal cholera was clinically linked only to V. cholerae O1. In Mathbaria, V. cholerae O139 emerged as the sole cause of a significant outbreak of cholera in March 2005. V. cholerae O1 reemerged clinically in April 2005 and established dominance over V. cholerae O139, continuing to cause cholera in Mathbaria. In conclusion, the epidemic potential and coastal aquatic reservoir for V. cholerae O139 have been demonstrated. Based on the results of this study, the coastal ecosystem of the Bay of Bengal is concluded to be a significant reservoir for the epidemic serogroups of V. cholerae.  相似文献   

17.
Vibrio cholerae is an autochthonous inhabitant of riverine and estuarine environments and also is a facultative pathogen for humans. Genotyping can be useful in assessing the risk of contracting cholera, intestinal, or extraintestinal infections via drinking water and/or seafood. In this study, environmental isolates of V. cholerae were examined for the presence of ctxA, hlyA, ompU, stn/sto, tcpA, tcpI, toxR, and zot genes, using multiplex PCR. Based on tcpA and hlyA gene comparisons, the strains could be grouped into Classical and El Tor biotypes. The toxR, hlyA, and ompU genes were present in 100, 98.6, and 87.0% of the V. cholerae isolates, respectively. The CTX genetic element and toxin-coregulated pilus El Tor (tcpA ET) gene were present in all toxigenic V. cholerae O1 and V. cholerae O139 strains examined in this study. Three of four nontoxigenic V. cholerae O1 strains contained tcpA ET. Interestingly, among the isolates of V. cholerae non-O1/non-O139, two had tcpA Classical, nine contained tcpA El Tor, three showed homology with both biotype genes, and four carried the ctxA gene. The stn/sto genes were present in 28.2% of the non-O1/non-O139 strains, in 10.5% of the toxigenic V. cholerae O1, and in 14.3% of the O139 serogroups. Except for stn/sto genes, all of the other genes studied occurred with high frequency in toxigenic V. cholerae O1 and O139 strains. Based on results of this study, surveillance of non-O1/non-O139 V. cholerae in the aquatic environment, combined with genotype monitoring using ctxA, stn/sto, and tcpA ET genes, could be valuable in human health risk assessment.  相似文献   

18.
The genomes of Vibrio cholerae O1 Matlab variant MJ-1236, Mozambique O1 El Tor variant B33, and altered O1 El Tor CIRS101 were sequenced. All three strains were found to belong to the phylocore group 1 clade of V. cholerae, which includes the 7th-pandemic O1 El Tor and serogroup O139 isolates, despite displaying certain characteristics of the classical biotype. All three strains were found to harbor a hybrid variant of CTXΦ and an integrative conjugative element (ICE), leading to their establishment as successful clinical clones and the displacement of prototypical O1 El Tor. The absence of strain- and group-specific genomic islands, some of which appear to be prophages and phage-like elements, seems to be the most likely factor in the recent establishment of dominance of V. cholerae CIRS101 over the other two hybrid strains.Vibrio cholerae, a bacterium autochthonous to the aquatic environment, is the causative agent of cholera, a life-threatening disease that causes severe, watery diarrhea. Cholera bacteria are serogrouped based on their somatic O antigens, with more than 200 serogroups identified to date (6). Only toxigenic strains of serogroups O1 and O139 have been identified as agents of cholera epidemics and pandemics; serogroups other than O1 and O139 have the potential to cause mild gastroenteritis or, rarely, local outbreaks. Genes coding for cholera toxin (CTX), ctxAB, and other virulence factors have been shown to reside in bacteriophages and various mobile genetic elements. In addition, V. cholerae serogroup O1 is differentiated into two biotypes, classical and El Tor, by a combination of biochemical traits, by sensitivity to biotype-specific bacteriophages, and more recently by nucleotide sequencing of specific genes and by molecular typing (5, 17, 19).There have been seven pandemics of cholera recorded throughout human history. The seventh and current pandemic began in 1961 in the Indonesian island of Sulawesi and subsequently spread to Asia, Africa, and Latin America; the six previous pandemics are believed to have originated in the Indian subcontinent. Isolates of the sixth pandemic were almost exclusively of the O1 classical biotype, whereas the current (seventh) pandemic is dominated by the V. cholerae O1 El Tor biotype as the causative agent, a transition occurring between 1923 and 1961. Today, the disease continues to remain a scourge in developing countries, confounded by the fact that V. cholerae is native to estuaries and river systems throughout the world (8).Over the past 20 years, several new epidemic lineages of V. cholerae O1 El Tor have emerged (or reemerged). For example, in 1992, a new serogroup, namely, O139 of V. cholerae, was identified as the cause of epidemic cholera in India and Bangladesh (25). The initial concern was that a new pandemic was beginning; however, the geographic range of V. cholerae O139 is currently restricted to Asia. Additionally, V. cholerae O1 hybrids and altered El Tor variants have been isolated repeatedly in Bangladesh (Matlab) (23, 24) and Mozambique (1). Altered V. cholerae O1 El Tor isolates produce cholera toxin of the classical biotype but can be biotyped as El Tor by conventional phenotypic assays, whereas V. cholerae O1 hybrid variants cannot be biotyped based on phenotypic tests and can produce cholera toxin of either biotype. These new variants have subsequently replaced the prototype seventh-pandemic V. cholerae O1 El Tor strains in Asia and Africa, with respect to frequency of isolation from clinical cases of cholera (27).Here, we report the genome sequence of three V. cholerae O1 variants, MJ-1236, a Matlab type I hybrid variant from Bangladesh that cannot be biotyped by conventional methods, CIRS101, an altered O1 El Tor isolate from Bangladesh which harbors ctxB of classical origin, and B33, an altered O1 El Tor isolate from Mozambique which harbors classical CTXΦ, and we compare their genomes with prototype El Tor and classical genomes. From an epidemiological viewpoint, among the three variants characterized in this study, V. cholerae CIRS101 is currently the most “successful” in that strains belonging to this type have virtually replaced the prototype El Tor in Asia and many parts of Africa, notably East Africa. This study, therefore, gives us a unique opportunity to understand why V. cholerae CIRS101 is currently the most successful El Tor variant.  相似文献   

19.
New data were obtained concerning cell sensitivity of pathogenic strains of cholera vibrions, which belong to the serogroup O1 of classical biovar, to the temperate bacteriophage 139, the native host of which is Vibrio cholerae O139. Molecular–genetic and biochemical studies showed that phage 139 integrated into the chromosome of strains V. cholerae O1 can change their toxigenic properties. A change in the production of cholera toxin (CT) in lysogens is associated both with an increase in the activity of the toxR regulatory gene and with an alteration of the structure of a chromosomal DNA region that contains a copy of the operon ctxAB encoding CT biosynthesis.  相似文献   

20.
Vibrio cholerae O1 and V. cholerae non-O1 strains isolated from environmental samples collected in São Paulo, Brazil, during cholera epidemics and pre-epidemic periods were examined for the presence of toxin genes. V. cholerae O1 strains isolated from clinical samples in Peru and Mexico, and V. cholerae O139 strains from India were also examined for the presence of ctx (cholera toxin gene) and zot (zonula occludens toxin gene) by polymerase chain reaction (PCR). A modified DNA-extraction method applied in this study yielded satisfactory recovery of genomic DNA from vibrios. Results showed that strains of V. cholerae O1 isolated during the preepidemic period were ctx -/zot - whereas strains isolated during the epidemic were ctx +/zot +. All V. cholerae non-O1 strains tested in the study were ctx -/zot -, whereas all V. cholerae O139 strains were ctx +/zot +. Rapid detection of the virulence genes (ctx and zot) can be achieved by PCR and this can serve as an important tool in the epidemiology and surveillance of V. cholerae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号