首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyzed the molecular composition of dissolved organic matter (DOM) in the lower Amazon River (ca. 850 km from Óbidos to the mouth) using ultrahigh-resolution mass spectrometry and geochemical tracers. Changes in DOM composition along this lower reach suggest a transition from higher plant-derived DOM to more algal/microbial-derived DOM. This result was likely due to a combination of autochthonous production, alteration of terrigenous DOM as it transits down the river, and increased algal inputs from floodplain lakes and clearwater tributaries during high discharge conditions. Spatial gradients in dissolved organic carbon (DOC) concentrations varied with discharge. Maximal DOC concentrations were observed near the mouth during high water, highlighting the importance of lateral inputs of DOM along the lower river. The majority of DOM molecular formulae did not change within the time it takes the water in the mainstem to be transported through the lower reach. This is indicative of molecules representing a mixture of compounds that are resistant to rapid alteration and reactive compounds that are continuously replenished by the lateral input of terrestrial organic matter from the landscape, tributaries, and floodplains. River water incubations revealed that photo- and bio-transformation alter at most 30% of the DOM molecular formulae. River discharge at the mouth differed from the sum of discharge measurements made at Óbidos and the main gauged tributaries in the lower Amazon. This indicates that changes in hydrology and associated variations in the source waters along the lower reach affected the molecular composition of the DOM that is being transported from the Amazon River to the coastal ocean.  相似文献   

2.
Headwater streams influence the biogeochemical characteristics of large rivers and play important roles in regional and global carbon budgets. The combined effects of seasonality and land use change on the biogeochemistry of headwater streams, however, are not well understood. In this study we assessed the influence of catchment land use and seasonality on the composition of dissolved organic matter (DOM) and ecosystem metabolism in headwater streams of a Kenyan river. Fifty sites in 34 streams draining a gradient of catchment land use from 100% natural forest to 100% agriculture were sampled to determine temporal and spatial variation in DOM composition. Gross primary production (GPP) and ecosystem respiration (ER) were determined in 10 streams draining primarily forest or agricultural catchments. Absorbance and fluorescence spectrophotometry of DOM reflected notable shifts in composition along the land use gradient and with season. During the dry season, forest streams contained higher molecular weight and terrestrially derived DOM, whereas agricultural streams were dominated by autochthonous production and low molecular weight DOM. During the rainy season, aromaticity and high molecular weight DOM increased in agricultural streams, coinciding with seasonal erosion of soils and inputs of organic matter from farmlands. Most of the streams were heterotrophic. However, GPP and ER were generally greater in agricultural streams, driven by higher dissolved nutrient (mainly TDN) concentrations, light availability (open canopy) and temperature compared with forest streams. There were correlations between freshly and autochthonously produced DOM, GPP and ER during both the dry and wet seasons. This is one of the few studies to link land-use with organic carbon dynamics and DOM composition. Measures of ecosystem metabolism in these streams help to affirm the role of tropical streams and rivers as important components of the global carbon cycle and demonstrate that even semi-intensive, smallholder agriculture can have measurable effects on riverine ecosystem functioning.  相似文献   

3.

Fluorescence spectroscopy is a common tool to assess optical dissolved organic matter (DOM) and a number of characteristics, including DOM biodegradability, have been inferred from these analyses. However, recent findings on soil and DOM dynamics emphasize the importance of ecosystem-scale factors, such as physical separation of substrate from soil microbial communities and soil physiochemical cycles driving DOM stability. We apply this principle to soil derived DOM and hypothesize that optical properties can only supply information on biodegradability when evaluated in the larger ecosystem because substrate composition and the activity/abundance of the microbial community ultimately drive DOM degradation. To evaluate biodegradability in this context, we assessed aqueous soil extracts for water extractable organic carbon (WEOC) content, biodegradability, microbial biomass and DOM characteristics using fluorescence spectroscopy across a range of environmental conditions (covariant with season and land use) in northern Vermont, USA. Our results indicate that changes in environmental conditions affect composition, quantity, and biodegradability of DOM. WEOC concentrations were highest in the fall and lowest in the summer, while no significant differences were found between land covers; however, DOM biodegradability was significantly higher in the agricultural site across seasons. Despite a shift in utilized substrate from less aromatic DOM in summer to more aromatic DOM in winter, biodegradability was similar for all seasons. The only exception was cold temperature incubations where microbial activity was depressed, and processing was slowed. These results provide examples on how fluorescence based metrics can be combined with context relevant environmental parameters to evaluate bioavailability in the context of the larger ecosystem.

  相似文献   

4.
Reliable and inexpensive indicators of ecosystem function are essential for accurately monitoring and describing ecosystem integrity. Currently, most state and federal assessments of aquatic ecological integrity rely on structural indicators and assume tight coupling of structure and function. We used fluorescent composition of dissolved organic matter as a metric for certain ecosystem functions and compared the resulting index of autochthonous microbial dissolved organic matter (DOM) to macroinvertebrate indicators and classifications of water quality attainment reported by the Maine Department of Environmental Protection (Maine DEP) at 142 stream sites. We observed that metrics of sensitive insect orders such as relative Plecoptera generic richness, relative Ephemeroptera abundance, and generic richness of EPT (Ephemeroptera, Plecoptera, and Trichoptera) were negatively correlated with higher values of metrics based on autochthonous microbial DOM sources. At the same time we observed an increase in the Hilsenhoff Biotic Index with increasing microbial DOM. We compared the abundance of this microbial DOM component to Maine DEP measured attainment classes and found that microbial DOM generally separated sites with high biological integrity from sites where the biotic community was highly degraded. This highlights that measures of biogeochemical ecosystem function complement measures of structure in biological assessments.  相似文献   

5.
Dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) character were investigated in soil water (15 and 40 cm) and streams at eleven sites in Olympic National Park. In addition, the effect of added nitrogen on soil water DOM concentration and composition was tested. Forested plots covering a gradient of precipitation, climate, slope, and aspect in Olympic National Park were fertilized with the addition of 20, 10 and zero (control) kg urea-N ha–1 y–1. Seven sites had the two different fertilizer treatments and control plots, while the additional four sites had no fertilizer treatments. Soil water DOC concentrations ranged from 0.5 mg C/L to 54.1 mg C/L, with an average value of 14.1 mg C/L. Streams had low DOC concentrations ranging from 0.2 mg C/L to 4.4 mg C/L, with an average value of 1.2 mg C/L. DOM composition was examined with regard to molar ratios, H:C, O:C and N:C, index of unsaturation, average carbon oxidation state, and specific absorbance. Fertilizer had no consistent effect on either DOM concentration or composition across the study sites. Soil depth influenced both DOM concentration and composition. Shallow soil water DOM had greater concentrations, higher specific absorbance, a higher degree of unsaturation, and had lower molar ratios compared to deep soil water samples. Overall, changes in DOM stoichiometry and specific absorbance as a function of soil depth were consistent despite the diversity of the forested study sites sampled.  相似文献   

6.
The abundances, compositions, and activities of microbial communities were investigated at bog and fen sites in the Glacial Lake Agassiz Peatland of northwestern Minnesota. These sites contrast in the reactivity of dissolved organic matter (DOM) and the presence or absence of groundwater inputs. Microbial community composition was characterized using pyrosequencing and clone library construction of phylogenetic marker genes. Microbial distribution patterns were linked to pH, concentrations of dissolved organic carbon and nitrogen, C/N ratios, optical properties of DOM, and activities of laccase and peroxidase enzymes. Both bacterial and archaeal richness and rRNA gene abundance were >2 times higher on average in the fen than in the bog, in agreement with a higher pH, labile DOM content, and enhanced enzyme activities in the fen. Fungi were equivalent to an average of 1.4% of total prokaryotes in gene abundance assayed by quantitative PCR. Results revealed statistically distinct spatial patterns between bacterial and fungal communities. Fungal distribution did not covary with pH and DOM optical properties and was vertically stratified, with a prevalence of Ascomycota and Basidiomycota near the surface and much higher representation of Zygomycota in the subsurface. In contrast, bacterial community composition largely varied between environments, with the bog dominated by Acidobacteria (61% of total sequences), while the Firmicutes (52%) dominated in the fen. Acetoclastic Methanosarcinales showed a much higher relative abundance in the bog, in contrast to the dominance of diverse hydrogenotrophic methanogens in the fen. This is the first quantitative and compositional analysis of three microbial domains in peatlands and demonstrates that the microbial abundance, diversity, and activity parallel with the pronounced differences in environmental variables between bog and fen sites.  相似文献   

7.
While changes in dissolved organic matter (DOM) concentrations are expected to affect zooplankton species through attenuation of potentially damaging ultraviolet (UV) radiation, generation of potentially beneficial or harmful photoproducts, pH alteration, and microbial food web stimulation, the combined effects of such changes on zooplankton community structure have not been studied previously. Our purpose was to determine how an increase in allochthonous DOM and associated changes in pH in an initially transparent lake may affect zooplankton community structure, and how exposure to solar UV may alter these DOM and pH effects. We ran microcosm experiments manipulating UV, DOM, and pH near the surface of Lake Giles in northeastern Pennsylvania. We found that when DOM was added in the presence of ambient UV, Daphnia and copepod UV-mortality was reduced by approximately three and two times compared to UV exposure without extra DOM. When DOM was added in the absence of UV, adult Daphnia and copepods were reduced compared to no DOM addition in the absence of UV. Daphnia and cyclopoid egg production and rotifer abundance were generally higher in the presence of DOM, regardless of UV treatment. The lower abundance yet high egg production in the presence of DOM and absence of UV may be explained by higher abundance of egg-bearing adults compared to non-egg-bearers. We conclude that allochthonous DOM benefits some zooplankton in a high-UV environment, but may be detrimental under low-UV conditions. Overall, Daphnia abundance and egg production were higher than that of calanoid copepods in the DOM additions, indicating that in some lakes an increase in allochthonous DOM may lead to a zooplankton community shift favoring Daphnia over calanoid copepods.  相似文献   

8.
Dinitrogen (N2) fixation was investigated together with organic matter composition in the mesopelagic zone of the Bismarck (Transect 1) and Solomon (Transect 2) Seas (Southwest Pacific). Transparent exopolymer particles (TEP) and the presence of compounds sharing molecular formulae with saturated fatty acids and sugars, as well as dissolved organic matter (DOM) compounds containing nitrogen (N) and phosphorus (P) were higher on Transect 1 than on Transect 2, while oxygen concentrations showed an opposite pattern. N2 fixation rates (up to ~1 nmol N L-1 d-1) were higher in Transect 1 than in Transect 2, and correlated positively with TEP, suggesting a dependence of diazotroph activity on organic matter. The scores of the multivariate ordination of DOM molecular formulae and their relative abundance correlated negatively with bacterial abundances and positively with N2 fixation rates, suggesting an active bacterial exploitation of DOM and its use to sustain diazotrophic activity. Sequences of the nifH gene clustered with Alpha-, Beta-, Gamma- and Deltaproteobacteria, and included representatives from Clusters I, III and IV. A third of the clone library included sequences close to the potentially anaerobic Cluster III, suggesting that N2 fixation was partially supported by presumably particle-attached diazotrophs. Quantitative polymerase chain reaction (qPCR) primer-probe sets were designed for three phylotypes and showed low abundances, with a phylotype within Cluster III at up to 103 nifH gene copies L-1. These results provide new insights into the ecology of non-cyanobacterial diazotrophs and suggest that organic matter sustains their activity in the mesopelagic ocean.  相似文献   

9.
Stream bacteria may be influenced by the composition and availability of dissolved organic matter (DOM) and inorganic nutrients, but knowledge about how individual phylogenetic groups in biofilm are affected is still limited. In this study, the influence of DOM and inorganic nutrients on stream biofilm bacteria was examined. Biofilms were developed on artificial substrates (unglazed ceramic tiles) for 21 days in a northeastern Ohio (USA) stream for five consecutive seasons. Then, the developed biofilm assemblages were exposed, in the laboratory, to DOM (glucose, leaf leachate, and algal exudates) and inorganic nutrients (nitrate, phosphate, and nitrate and phosphate in combination) amendments for 6 days. Bacterial numbers in the biofilms were generally higher in response to the DOM treatments than to the inorganic nutrient treatments. There were also apparent seasonal variations in the response patterns of the individual bacterial taxa to the nutrient treatments; an indication that limiting resources to bacteria in stream biofilms may change over time. Overall, in contrast to the other treatments, bacterial abundance was generally highest in response to the low-molecular-weight DOM (i.e., glucose) treatment. These results further suggest that there are interactions among the different bacterial groups in biofilms that are impacted by the associated nutrient dynamics among seasons in stream ecosystems.  相似文献   

10.
11.
In lake ecosystems, changes in eukaryotic and prokaryotic microbes and the concentration and availability of dissolved organic matter (DOM) produced within or supplied to the system by allochthonous sources are components that characterize complex processes in the microbial loop. We address seasonal changes of microbial communities and DOM in the largest Croatian lake, Vrana. This shallow lake is connected to the Adriatic Sea and is impacted by agricultural activity. Microbial community and DOM structure were driven by several environmental stressors, including drought, seawater intrusion and heavy precipitation events. Bacterial composition of different lifestyles (free-living and particle-associated) differed and only a part of the particle-associated bacteria correlated with microbial eukaryotes. Oscillations of cyanobacterial relative abundance along with chlorophyll a revealed a high primary production season characterized by increased levels of autochthonous DOM that promoted bacterial processes of organic matter degradation. From our results, we infer that in coastal freshwater lakes dependent on precipitation-evaporation balance, prolonged dry season coupled with heavy irrigation impact microbial communities at different trophic levels even if salinity increases only slightly and allochthonous DOM inputs decrease. These pressures, if applied more frequently or at higher concentrations, could have the potential to overturn the trophic state of the lake.  相似文献   

12.
Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) has proven to be a powerful technique revealing complexity and diversity of natural DOM molecules, but its application to DOM analysis in grazing-impacted agricultural systems remains scarce. In the present study, we presented a case study of using ESI-FTICR-MS in analyzing DOM from four headwater streams draining forest- or pasture-dominated watersheds in Virginia, USA. In all samples, most formulas were CHO compounds (71.8–87.9%), with other molecular series (CHOS, CHON, CHONS, and CHOP (N, S)) accounting for only minor fractions. All samples were dominated by molecules falling in the lignin-like region (H/C = 0.7–1.5, O/C = 0.1–0.67), suggesting the predominance of allochthonous, terrestrial plant-derived DOM. Relative to the two pasture streams, DOM formulas in the two forest streams were more similar, based on Jaccard similarity coefficients and nonmetric multidimensional scaling calculated from Bray-Curtis distance. Formulas from the pasture streams were characterized by lower proportions of aromatic formulas and lower unsaturation, suggesting that the allochthonous versus autochthonous contributions of organic matter to streams were modified by pasture land use. The number of condensed aromatic structures (CAS) was higher for the forest streams, which is possibly due to the controlled burning in the forest-dominated watersheds and suggests that black carbon was mobilized from soils to streams. During 15-day biodegradation experiments, DOM from the two pasture streams was altered to a greater extent than DOM from the forest streams, with formulas with H/C and O/C ranges similar to protein (H/C = 1.5–2.2, O/C = 0.3–0.67), lipid (H/C = 1.5–2.0, O/C = 0–0.3), and unsaturated hydrocarbon (H/C = 0.7–1.5, O/C = 0–0.1) being the most bioreactive groups. Aromatic compound formulas including CAS were preferentially removed during combined light+bacterial incubations, supporting the contention that black carbon is labile to light alterations. Collectively, our data demonstrate that headwater DOM composition contains integrative information on watershed sources and processes, and the application of ESI-FTICR-MS technique offers additional insights into compound composition and reactivity unrevealed by fluorescence and stable carbon isotopic measurements.  相似文献   

13.
溶解有机质(DOM)作为土壤中最活跃的有机组分,在土壤生物地球化学过程中起着关键作用,探讨植被演替过程中DOM的来源、组成、环境响应与累积规律,对预测土壤碳循环过程具有重要意义。本研究从海螺沟冰川退缩区植被原生演替序列选取演替年龄分别为12、30、40、50、80、120年的样地采集表层和亚表层土壤样本,测定DOM浓度并进行紫外-可见光光谱和三维荧光光谱分析,研究原生演替过程中DOM含量和组成的变化特征及其影响因素。结果表明: 土壤DOM浓度随演替年龄的增加而显著增加。土壤DOM中类蛋白组分、荧光指数和生物指数随演替时间的增加而减小,类腐殖质组分和腐殖化程度随演替过程不断增加,土壤DOM芳香化程度先增加后减小。pH值、铵态氮含量解释了62.2%的表层土壤DOM组分变异,土壤含水率和pH值解释了64.3%的亚表层土壤DOM组分变异,说明环境因素是影响海螺沟冰川退缩区原生演替过程中土壤DOM数量和组成的重要因子。  相似文献   

14.
Understanding the quantity and quality of dissolved organic matter (DOM) in potential watershed sources is critical for explaining and quantifying the exports of DOM in stream runoff. Here, we examined the concentration and quality of DOM for ten watershed sources in a 12?ha forested catchment over a two-year period. DOM composition was evaluated for: throughfall, litter leachate, soil water (zero and tension), shallow and deep groundwater, stream water, hyporheic zone, and groundwater seeps. DOM quality was measured using a suite of optical indices including UV–visible absorbance and PARAFAC modeling of fluorescence excitation-emission matrices (EEMs). DOM concentrations and quality displayed a pronounced trend across watershed sources. Surficial watershed sources had higher DOM concentrations and more humic-like DOM with higher molecular weight whereas deeper groundwater sources were rich in % protein-like fluorescence. The greater % contribution of protein-like fluorescence in groundwater suggested that a larger fraction of groundwater DOM may be bioavailable. DOM for wetland groundwater was more aromatic and humic-like than that at the well-drained riparian location. Principal component analyses (PCA) revealed that the differences in surficial watershed compartments were dictated by humic-like components while groundwater sources separated out by % protein-like fluorescence. Observations from optical indices did not provide any conclusive evidence for preferential association of dissolved organic carbon (DOC) or dissolved organic nitrogen (DON) with any particular DOM quality pools.  相似文献   

15.
The partitioning of organic matter (OM) between dissolved and particulate phases is an important factor in determining the fate of organic carbon in the ocean. Dissolved organic matter (DOM) release by phytoplankton is a ubiquitous process, resulting in 2–50% of the carbon fixed by photosynthesis leaving the cell. This loss can be divided into two components: passive leakage by diffusion across the cell membrane and the active exudation of DOM into the surrounding environment. At present there is no method to distinguish whether DOM is released via leakage or exudation. Most explanations for exudation remain hypothetical; as while DOM release has been measured extensively, there has been relatively little work to determine why DOM is released. Further research is needed to determine the composition of the DOM released by phytoplankton and to link composition to phytoplankton physiological status and environmental conditions. For example, the causes and physiology of phytoplankton cell death are poorly understood, though cell death increases membrane permeability and presumably DOM release. Recent work has shown that phytoplankton interactions with bacteria are important in determining both the amount and composition of the DOM released. In response to increasing CO2 in the atmosphere, climate change is creating increasingly stressful conditions for phytoplankton in the surface ocean, including relatively warm water, low pH, low nutrient supply and high light. As ocean physics and chemistry change, it is hypothesized that a greater proportion of primary production will be released directly by phytoplankton into the water as DOM. Changes in the partitioning of primary production between the dissolved and particulate phases will have bottom-up effects on ecosystem structure and function. There is a need for research to determine how these changes affect the fate of organic matter in the ocean, particularly the efficiency of the biological carbon pump.  相似文献   

16.
Concentrations of terrestrially derived dissolved organic matter (DOM) have been increasing in many north temperate and boreal lakes for over two decades. The concentration of DOM in lakes is influenced by a number of environmental factors, but there is still considerable debate about how the availability of terrestrial DOM, and associated dissolved nitrogen and phosphorus, may be affected by drivers of climatic change. Using experimental and observational methods, we considered how changes in soil temperature and moisture affected the composition of carbon, nitrogen, and phosphorus entering freshwater lakes. In our experiment, organic soil cores were collected from the wetland shoreline of a darkly-stained seepage lake in northern Wisconsin, USA and manipulated in laboratory with temperature and moisture treatments. During the 28-day study, soil leachate was sampled and analyzed for optical properties of DOM via UV/Vis absorbance, as well as concentrations of dissolved organic carbon (DOC), total dissolved nitrogen, and total dissolved phosphorus (TDP). DOM optical properties were particularly sensitive to moisture, with drier scenarios resulting in DOM of lower molecular weight and aromaticity. Warmer temperatures led to lower DOC and TDP concentrations. To consider long-term relationships between climate and lake chemical properties, we analyzed long-term water chemistry data from two additional Wisconsin lakes from the long term ecological research (LTER) project in a cross correlation analysis with Palmer drought severity index data. Analysis of the LTER data supported our experimental results that soil moisture has a significant effect on the quality of DOM entering lakes and that climate may significantly affect lake chemical properties. Although unexpected in terms of DOM loading for climate change scenarios, these results are consistent with patterns of decomposition in organic soils and may be attributed to an increase in soil DOM processing.  相似文献   

17.
1. We investigated the seasonal variation of biological traits and the influence of interannual rainfall variability on this pattern. Using long‐term survey data (6–19 years) from an intermittent and a perennial stream in the Mediterranean‐climate region of northern California, we examined 16 fuzzy‐coded biological traits (e.g. maximum size, life cycle duration, and mode of respiration). 2. Seasonal habitat variability is higher in the intermittent stream than in the perennial stream. During the winter and spring wet‐season both streams flood; however, during the summer dry‐season, the intermittent stream forms isolated pools in (occasionally drying completely). 3. Seasonal habitat variability influenced both taxonomic and biological trait composition. Distinct taxonomic communities were present in each season, particularly in the intermittent stream. The intermittent stream also exhibited more seasonal variation in biological traits than the perennial stream. 4. Despite statistically significant seasonal variation, trait composition was relatively stable among seasons in comparison with taxonomic composition and abundance. Taxonomic composition varied considerably between seasons, because of high seasonal and interannual replacement of taxa resulting from seasonal habitat changes. 5. The seasonality of taxonomic composition and abundance was sensitive to interannual rainfall variability. In dry years, the taxonomic composition of communities was more similar between seasons than in wet years, while trait composition was relatively insensitive to rainfall variability. 6. Despite high seasonal variation in abundance and taxonomic composition, biological traits of aquatic macroinvertebrates varied less and exhibited seasonal stability, which may be a result of the unpredictability and harshness of stream environments.  相似文献   

18.
Mangroves represent a major environment of tropical coasts. They are highly productive, and act both as a source and a sink of organic carbon. Concentrations and characteristics (fluorescence and hydrophobic–hydrophilic fractions) of dissolved organic matter (DOM) were investigated in relation to the organic content of sediments and to the chemistry of pore waters along the coastline of French Guiana. The pore waters studied were extracted (centrifugation, soil moisture sampler) from sediments cored beneath A. germinans mangrove stands representative of development stages: pioneer, mature and senescent. In order to asses the effects of seasonal changes, two cores were performed in each location, just after dry and wet seasons, respectively. Dissolved organic carbon (DOC) concentrations in pore waters of the upper sediment were found to increase, from 0.7 mmol l−1 under the pioneers to 9 under senescent mangroves. The evolution of sedimentary organic carbon (SedOC) in the same sediment paralleled that of DOC, increasing from 0.7 to 28%. On the contrary, in the lower parts of sediment cores SedOC and DOC displayed contrasting vertical trends: SedOC decreased sharply with depth while DOC increased, reaching concentrations up to 30 mmol l−1 at 50 cm in the older, senescent mangroves. In addition, the Fluorescence/DOC ratios and the hydrophobic contents of DOC were higher at greater depths in most cores, expressing changes in the DOC composition. These results suggest that the DOC of the upper layers originated directly from the SedOC of the enclosing sediment, while the hydrophobic and fluorescent DOC accumulated in the anoxic bottom layer. The mechanisms responsible for this accumulation at depth requires additional research to be fully understood. However, the anoxic conditions and high pH values prevailing in the lower sediment, by lessening DOM sorption and enhancing SedOC dissolution, may be partly responsible for the high DOC concentrations and fluorescences at depth. In addition, seasonal variation may be involved. During the rainy season, water sources were mixed resulting in lower DOC concentrations in the upper sediment, whereas during the dry season, increased evapotranspiration concentrate salts and DOC, which are transported vertically with percolating water.  相似文献   

19.
Dissolved organic matter (DOM) is an essential component of the carbon cycle and a critical driver in controlling variety of biogeochemical and ecological processes in wetlands. The quality of this DOM as it relates to composition and reactivity is directly related to its sources and may vary on temporal and spatial scales. However, large scale, long-term studies of DOM dynamics in wetlands are still scarce in the literature. Here we present a multi-year DOM characterization study for monthly surface water samples collected at 14 sampling stations along two transects within the greater Everglades, a subtropical, oligotrophic, coastal freshwater wetland-mangrove-estuarine ecosystem. In an attempt to assess quantitative and qualitative variations of DOM on both spatial and temporal scales, we determined dissolved organic carbon (DOC) values and DOM optical properties, respectively. DOM quality was assessed using, excitation emission matrix (EEM) fluorescence coupled with parallel factor analysis (PARAFAC). Variations of the PARAFAC components abundance and composition were clearly observed on spatial and seasonal scales. Dry versus wet season DOC concentrations were affected by dry-down and re-wetting processes in the freshwater marshes, while DOM compositional features were controlled by soil and higher plant versus periphyton sources respectively. Peat-soil based freshwater marsh sites could be clearly differentiated from marl-soil based sites based on EEM–PARAFAC data. Freshwater marsh DOM was enriched in higher plant and soil-derived humic-like compounds, compared to estuarine sites which were more controlled by algae- and microbial-derived inputs. DOM from fringe mangrove sites could be differentiated between tidally influenced sites and sites exposed to long inundation periods. As such coastal estuarine sites were significantly controlled by hydrology, while DOM dynamics in Florida Bay were seasonally driven by both primary productivity and hydrology. This study exemplifies the application of long term optical properties monitoring as an effective technique to investigate DOM dynamics in aquatic ecosystems. The work presented here also serves as a pre-restoration condition dataset for DOM in the context of the Comprehensive Everglades Restoration Plan (CERP).  相似文献   

20.
Acid N depositions in the Bohemian Forest during the second half of the last century caused enormous soil acidification which led to the leaching of essential nutrients including nitrates. We investigated the effect of dissolved organic matter (DOM) and pH on the abundance of 16S RDNA, nirK and nirS gene copies in four spruce forest sites. Soil samples for molecular based quantification (qPCR) were taken from the organic litter and humus layers. The amounts of dissolved organic carbon (DOC) and dissolved nitrogen (DN) were much lower in highly acidified soils. We found a strong correlation between nirK denitrifiers and the amount of available P (r = 0.83, p < 0.001), which suggested a higher nutrient sensitivity of this group of denitrifying bacteria. Additionally, we found that correlations between the amount of nirK denitrifiers and DOC and pH are exponentional showing two important threshold values, being 4.8 mol kg?1 and 5, respectively. The amount of nirK denitrifiers rapidly decreased below these values. The amount of nirK and nirS denitrifiers was higher in the organic litter horizon than the organic humus horizon at all sampling sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号