首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a first phylogenetic and temporal framework, with biogeographical insights, for the centipedes of the genus Strigamia, which are widespread predators in the forest soils of the Northern Hemisphere and comprise the evo‐devo model species Strigamia maritima. The phylogeny was estimated by different methods of maximum likelihood and Bayesian inference from sequences of two mitochondrial (16S, COI) and two nuclear (18S, 28S) genes, obtained from 16 species from all major areas of the global range of the genus and encompassing most of the overall morphological and ecological diversity. Divergence times were estimated after calibration upon the fossil record of centipedes. We found that major lineages of extant species of Strigamia separated most probably around 60 million years (Ma) ago. The two most diverse lineages diversified during the last 30 Ma and are today segregated geographically, one in Europe and another in Eastern Asia. This latter region hosts a hitherto underestimated richness and anatomical diversity of species, including three still unknown, yet morphologically well distinct species, which are here described as new: Strigamia inthanoni sp. n. from Thailand, Strigamia korsosi sp. n. from the Ryukyu Islands and Strigamia nana sp. n. from Taiwan. The northern European model species S. maritima is more strictly related to the Eastern Asian lineage, from which it most probably separated around 35 Ma ago before the major diversification of the latter.  相似文献   

2.
We show that the geophilomorph centipede Strigamia maritima possesses an XX/XY system of sex chromosomes, with males being the heterogametic sex. This is, to our knowledge, the first report of sex chromosomes in any geophilomorph centipede. Using the recently assembled Strigamia genome sequence, we identified a set of scaffolds differentially represented in male and female DNA sequence. Using quantitative real-time PCR, we confirmed that three candidate X chromosome-derived scaffolds are present at approximately twice the copy number in females as in males. Furthermore, we confirmed that six candidate Y chromosome-derived scaffolds contain male-specific sequences. Finally, using this molecular information, we designed an X chromosome-specific DNA probe and performed fluorescent in situ hybridization against mitotic and meiotic chromosome spreads to identify the Strigamia XY sex-chromosome pair cytologically. We found that the X and Y chromosomes are recognizably different in size during the early pachytene stage of meiosis, and exhibit incomplete and delayed pairing.  相似文献   

3.
There is a negative relationship between trunk segment number and latitude among geophilomorph centipedes in general. A similar relationship is known to exist within the most intensively‐studied geophilomorph species, Strigamia maritima, and also within several other species from this group. Previously, it was considered that this relationship did not involve body length; instead, individuals of S. maritima with more segments were considered to be more finely subdivided (not longer) than those with fewer segments. This incorrect interpretation arose from the difficulty of reliably separating post‐embryonic stages and thus of making a simple and direct comparison. In the present study, we build on recent work that facilitates such comparisons; and we show conclusively that individuals with more segments are longer. Our finding means that it is now possible to connect the work on S. maritima in particular, and on geophilomorph centipedes in general, with the debate about Bergmann's ‘rule’: the proposal that body size increases with increasing latitude. There is a clear ‘converse‐Bergmann’ pattern, as has been found in several other taxa. We propose an adaptive hypothesis that may explain why geophilomorphs show this pattern. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

4.
Although most arthropod species have a fixed number of body segments, one order of centipedes – the Geophilomorpha – provides an unusual opportunity to study the variation and microevolution of segment number. This is because all species in all but one family exhibit variation in the number of leg‐bearing segments (LBS) within and between natural populations. One species in particular, the coastal geophilomorph Strigamia maritima, has become a ‘model system’ for these studies, because of its high population densities and the consequent ease of collecting large samples. Previous studies on this species have examined various aspects of segment number variation. However, most studies have characterized each population by an LBS distribution and a mean LBS number that are based on data from all life‐stages. Here, we dissect the variation within as well as between populations and show that different cohorts within a population often have significantly different LBS number distributions. This is almost certainly due to developmental plasticity, probably related to the prevailing microhabitat temperature within brood chambers, but possibly related to other environmental factors too. Although we found no evidence of selection, the fact that different species of geophilomorphs have different LBS distributions suggests that, in the long term, selection may act on the developmental reaction norm of LBS number. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107 , 678–685.  相似文献   

5.
The complete mitochondrial genome (mitogenome) of Pycnonotus xanthorrhous was sequenced via next generation sequencing. The full length of the circular genome is 16,952 bp. It consists of 37 typical animal mitochondrial genes including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) and 2 ribosomal RNA (rRNA) genes. P. xanthorrhous also contains one control region (CR) and one pseudo-control region, and shares the identical gene arrangements with sequenced Pycnonotus spp. which differs from the typical vertebrates gene order. Phylogenetic analyses indicates that Passerida sensu stricto contains three major clades and the core Sylvioidea form a monophyletic group. Furthermore, we investigated the evolution of control region within this lineage and revealed the multiple independent origins of duplicate control region.  相似文献   

6.
The complete mitochondrial genome (mitogenome) of Gonocephalum outreyi was determined by using next-generation sequencing approach. The full length of this mitogenome is 15,836?bp, which consists of 37 typical metazoan mitochondrial genes with an identical genome organization to ancestral insects. The majority of the protein-coding genes begin with the codon ATN, except for cox1 and cox2 with AAT and AAA, respectively. To elucidate the phylogenetic position of G. outreyi, we used various sequence coding schemes for protein-coding genes and the combined nucleotide sequences of all mitochondrial genes for tree building under the Bayesian and Maximum Likelihood inferences. The phylogenetic results consistently supported G. outreyi as a member of the family Tenebrionidae. The monophyly of both Tenebrionoidea and Tenebrionidae were strongly supported. The Scraptiidae and Melandryidae were recovered to be non-monophyletic in regards to the Osphya. Within Tenebrionidae, the subfamilies Diaperinae and Tenebrioninae were found to be non-monophyletic.  相似文献   

7.
The complete nucleotide sequences of the mitochondrial genomes were determined for the three pelagic chaetognaths, Sagitta nagae, Sagitta decipiens, and Sagitta enflata. The mitochondrial genomes of these species which were 11,459, 11,121, and 12,631 bp in length, respectively, contained 14 genes (11 protein-coding genes, one transfer RNA gene, and two ribosomal RNA genes), and were found to have lost 23 genes that are present in the typical metazoan mitochondrial genome. The same mitochondrial genome contents have been reported from the benthic chaetognaths belonging to the family Spadellidae, Paraspadella gotoi and Spadella cephaloptera. Within the phylum Chaetognatha, Sagitta and Spadellidae are distantly related, suggesting that the gene loss occurred in the ancestral species of the phylum. The gene orders of the three Sagitta species are markedly different from those of the other non-Chaetognatha metazoans. In contrast to the region with frequent gene rearrangements, no gene rearrangements were observed in the gene cluster encoding COII–III, ND1–3, srRNA, and tRNAmet. Within this conserved gene cluster, gene rearrangements were not observed in the three Sagitta species or between the Sagitta and Spadellidae species. The gene order of this cluster was also assumed to be the ancestral state of the phylum.  相似文献   

8.
We determined the complete mitochondrial genome of the Eurasian otterLutra lutra, which is an endangered species in Korea. The circle genome (16,536 bp in size) consists of 13 protein-coding, 22 tRNA, and 2 rRNA genes, and a control region, as found in other metazoan animals. Out of the 37 genes, 28 are encoded on the H-strand, and the nine (ND6 and 8 tRNA genes) on the L-strand. Three overlaps among the 13 protein-coding genes were found: ATP8-ATP6, ND4L-ND4, and ND5-ND6. A control region (1090 bp) including the origin of H-strand replication (OH), TAS (a conserved motif TACAT-16bp-ATGTA) and CSB (CSB-1, CSB-2. and CSB-3) was observed between tRNA-Pro and tRNA-Phe genes, and OL, with 36 highly conserved nucleotides between tRNA-Asn (N) and tRNA-Cys (C) within a cluster of five tRNA genes (WANCY), as typically found in vertebrates. The other important characteristics of theL. lutra mitochondrial genome were described in detail. In addition, a maximum likelihood and Bayesian trees of 9 mustelid species and 1 outgroup were reconstructed based on the nucleotide sequences of 11 protein-coding genes excluding ATP8 and ND6. It showed that Lutrinae formed a monophyletic group with Mustelinae that is not monophyletic. Within the subfamily Lutrinae,L. lutra andEnhydra lutris were grouped together and thenLontra canadentis placed as a sister of the clade. The present result is the first complete mitochondrial genome sequence reported from the genusLutra, and is applicable to molecular phylogenetic, phylogeographic, conservation biological studies for mustelid members. In particular, exploration of sequence variations of the control region may be helpful for analyzing inter-and intra-species variations in the genusLutra.  相似文献   

9.
The maxilliped venom claw is an intriguing structure in centipedes. We address open questions concerning this structure. The maxillipeds of fossil centipedes from the Carboniferous (about 300 million years old) have been described, but not been depicted previously. Re-investigation demonstrates that they resemble their modern counterparts. A Jurassic geophilomorph centipede (about 150 million years old) was originally described as possessing a rather leg-like maxilliped. Our re-investigation shows that the maxilliped is, in fact, highly specialized as in modern Geophilomorpha. A scenario for the evolution of the centipede maxilliped is presented. It supports one of the two supposed hypotheses of centipede phylogeny, the Pleurostigmophora hypothesis. Although this hypothesis appears now well established, many aspects of character evolution resulting from this phylogeny remain to be told in detail. One such aspect is the special joint of the maxilliped in some species of Cryptops. Cryptops is an in-group of Scolopendromorpha, but its maxilliped joint can resemble that of Lithobiomorpha or even possess a mixture of characters between the both. Detailed investigation of fossils, larger sample sizes of extant species, and developmental data will be necessary to allow further improvements of the reconstruction of the evolutionary history of centipedes.  相似文献   

10.
The heart ultrastructure of 4 instars of Strigamia maritima (Myriapoda, Chilopoda, Geophilomorpha) (from 2 weeks to 5 years after hatching) is described and compared morphometrically. The single-layered, circular myofibers extend from middorsal to midventral regions, and are interconnected by short, interdigitating intercalated discs. The cardiac sarcomeres show distinct Z-, I-, and A- bands, but myofilaments do not form a well-ordered array. T-tubules originate from any part of the sarcolemma, forming a network of transverse and longitudinal tubules. The transverse tubules ramify in the heart of the foetus instar. The sarcoplasmic reticulum forms a loose sheath at Z-level, and participates in the formation of dyadic and triadic interior couplings. SR-tubules form peripheral couplings on both sides of the myocardium.Volume and length of the myofibers increase constantly during embryonic instars and the first 4 of 5 adult instars, accompanied with an increase in the volume fraction of contractile elements and mitochondria. New sarcomeres are formed abluminally and distally in the fibers, and sarcomeres increase in diameter. Myofibrils become better aligned, longitudinally in the fiber. The growth rate is reduced in the 4th adult instar, and the rough sarcoplasmic reticulum disappears in the 5th instar.  相似文献   

11.
Sequencing mitochondrial and chloroplast genomes has become an integral part in understanding the genomic machinery and the phylogenetic histories of green algae. Previously, only three chloroplast genomes (Oltmannsiellopsis viridis, Pseudendoclonium akinetum, and Bryopsis hypnoides) and two mitochondrial genomes (O. viridis and P. akinetum) from the class Ulvophyceae have been published. Here, we present the first chloroplast and mitochondrial genomes from the ecologically and economically important marine, green algal genus Ulva. The chloroplast genome of Ulva sp. was 99,983 bp in a circular-mapping molecule that lacked inverted repeats, and thus far, was the smallest ulvophycean plastid genome. This cpDNA was a highly compact, AT-rich genome that contained a total of 102 identified genes (71 protein-coding genes, 28 tRNA genes, and three ribosomal RNA genes). Additionally, five introns were annotated in four genes: atpA (1), petB (1), psbB (2), and rrl (1). The circular-mapping mitochondrial genome of Ulva sp. was 73,493 bp and follows the expanded pattern also seen in other ulvophyceans and trebouxiophyceans. The Ulva sp. mtDNA contained 29 protein-coding genes, 25 tRNA genes, and two rRNA genes for a total of 56 identifiable genes. Ten introns were annotated in this mtDNA: cox1 (4), atp1 (1), nad3 (1), nad5 (1), and rrs (3). Double-cut-and-join (DCJ) values showed that organellar genomes across Chlorophyta are highly rearranged, in contrast to the highly conserved organellar genomes of the red algae (Rhodophyta). A phylogenomic investigation of 51 plastid protein-coding genes showed that Ulvophyceae is not monophyletic, and also placed Oltmannsiellopsis (Oltmannsiellopsidales) and Tetraselmis (Chlorodendrophyceae) closely to Ulva (Ulvales) and Pseudendoclonium (Ulothrichales).  相似文献   

12.
This study determined the mitochondrial genome sequence of the stonefly, Kamimuria wangi. In order to investigate the relatedness of stonefly to other members of Neoptera, a phylogenetic analysis was undertaken based on 13 protein-coding genes of mitochondrial genomes in 13 representative insects. The mitochondrial genome of the stonefly is a circular molecule consisting of 16,179 nucleotides and contains the 37 genes typically found in other insects. A 10-bp poly-T stretch was observed in the A+T-rich region of the K. wangi mitochondrial genome. Downstream of the poly-T stretch, two regions were located with potential ability to form stem-loop structures; these were designated stem-loop 1 (positions 15848–15651) and stem-loop 2 (15965–15998). The arrangement of genes and nucleotide composition of the K. wangi mitogenome are similar to those in Pteronarcys princeps, suggesting a conserved genome evolution within the Plecoptera. Phylogenetic analysis using maximum likelihood and Bayesian inference of 13 protein-coding genes supported a novel relationship between the Plecoptera and Ephemeroptera. The results contradict the existence of a monophyletic Plectoptera and Plecoptera as sister taxa to Embiidina, and thus requires further analyses with additional mitogenome sampling at the base of the Neoptera.  相似文献   

13.
The complete mitochondrial genome is of great importance for better understanding the genome-level characteristics and phylogenetic relationships among related species. In the present study, we determined the complete mitochondrial genome DNA sequence of the mud crab (Scylla paramamosain) by 454 deep sequencing and Sanger sequencing approaches. The complete genome DNA was 15,824 bp in length and contained a typical set of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and a putative control region (CR). Of 37 genes, twenty-three were encoded by the heavy strand (H-strand), while the other ones were encoded by light strand (L-strand). The gene order in the mitochondrial genome was largely identical to those obtained in most arthropods, although the relative position of gene tRNAHis differed from other arthropods. Among 13 protein-coding genes, three (ATPase subunit 6 (ATP6), NADH dehydrogenase subunits 1 (ND1) and ND3) started with a rare start codon ATT, whereas, one gene cytochrome c oxidase subunit I (COI) ended with the incomplete stop codon TA. All 22 tRNAs could fold into a typical clover-leaf secondary structure, with the gene sizes ranging from 63 to 73 bp. The phylogenetic analysis based on 12 concatenated protein-coding genes showed that the molecular genetic relationship of 19 species of 11 genera was identical to the traditional taxonomy.  相似文献   

14.
Dong Y  Sun H  Guo H  Pan D  Qian C  Hao S  Zhou K 《Gene》2012,505(1):57-65
Myriapods are among the earliest arthropods and may have evolved to become part of the terrestrial biota more than 400 million years ago. A noticeable lack of mitochondrial genome data from Pauropoda hampers phylogenetic and evolutionary studies within the subphylum Myriapoda. We sequenced the first complete mitochondrial genome of a microscopic pauropod, Pauropus longiramus (Arthropoda: Myriapoda), and conducted comprehensive mitogenomic analyses across the Myriapoda. The pauropod mitochondrial genome is a circular molecule of 14,487 bp long and contains the entire set of thirty-seven genes. Frequent intergenic overlaps occurred between adjacent tRNAs, and between tRNA and protein-coding genes. This is the first example of a mitochondrial genome with multiple intergenic overlaps and reveals a strategy for arthropods to effectively compact the mitochondrial genome by overlapping and truncating tRNA genes with neighbor genes, instead of only truncating tRNAs. Phylogenetic analyses based on protein-coding genes provide strong evidence that the sister group of Pauropoda is Symphyla. Additionally, approximately unbiased (AU) tests strongly support the Progoneata and confirm the basal position of Chilopoda in Myriapoda. This study provides an estimation of myriapod origins around 555 Ma (95% CI: 444-704 Ma) and this date is comparable with that of the Cambrian explosion and candidate myriapod-like fossils. A new time-scale suggests that deep radiations during early myriapod diversification occurred at least three times, not once as previously proposed. A Carboniferous origin of pauropods is congruent with the idea that these taxa are derived, rather than basal, progoneatans.  相似文献   

15.
16.
The mitochondrial genome is a significant tool for investigating the evolutionary history of metazoan animals. The currently available mitochondrial genome data in GenBank is limited to understand the detail evolutionary relationship among the metazoan animals, especially in the phylum Annelida. Here we present the mitochondrial gene organization, gene order and codon usage of the leech Whitmania pigra (Annelida), which is the first representative from the class Hirudinea. It is a circular molecule of 14,426bp, and encodes 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. All 37 genes of W. pigra mitochondrial genome are transcribed from the same strand, which is identical to studied annelids, two echiurans, two sipunculans and many other lophotrochozoans. Five conserved gene clusters can be found in mitochondrial genomes of nine studied annelids, including (1) cox1-N-cox2; (2) cox3-Q-nad6-cob-W-atp6; (3) H-nad5-F-E-P-T-nad4L-nad4; (4) srRNA-V-lrRNA; and (5) nad3-S(1)-nad2. Compared with that of other studied annelids, translocations of transfer RNAs were found in the gene arrangement of W. pigra mitochondrial genome. Phylogenetic analysis strongly support that the species from Hirudinina and Oligochaeta form a monophyletic group Clitellata (BPM=100, BPP=100), which is consistent with previous research based on morphological and other molecular data. Both gene order data and amino acid sequences reveal that echiurans are derived annelids and sipunculans should be clustered with annelids and echiurans.  相似文献   

17.
Horseshoe crabs (order Xiphosura) are often referred to as an ancient order of marine chelicerates and have been considered as keystone taxa for the understanding of chelicerate evolution. However, the mitochondrial genome of this order is only available from a single species, Limulus polyphemus. In the present study, we analyzed the complete mitochondrial genomes from two Asian horseshoe crabs, Carcinoscorpius rotundicauda and Tachypleus tridentatus to offer novel data for the evolutionary relationship within Xiphosura and their position in the chelicerate phylogeny. The mitochondrial genomes of C. rotundicauda (15,033 bp) and T. tridentatus (15,006 bp) encode 13 protein-coding genes, two ribosomal RNA (rRNA) genes, and 22 transfer RNA (tRNA) genes. Overall sequences and genome structure of two Asian species were highly similar to that of Limulus polyphemus, though clear differences among three were found in the stem-loop structure of the putative control region. In the phylogenetic analysis with complete mitochondrial genomes of 43 chelicerate species, C. rotundicauda and T. tridentatus were recovered as a monophyly, while L. polyphemus solely formed an independent clade. Xiphosuran species were placed at the basal root of the tree, and major other chelicerate taxa were clustered in a single monophyly, clearly confirming that horseshoe crabs composed an ancestral taxon among chelicerates. By contrast, the phylogenetic tree without the information of Asian horseshoe crabs did not support monophyletic clustering of other chelicerates. In conclusion, our analyses may provide more robust and reliable perspective on the study of evolutionary history for chelicerates than earlier analyses with a single Atlantic species.  相似文献   

18.
Ding  Jiayu  Lan  Hong  Xu  Wei  Chen  Yining  Wu  Han  Jiang  Haoming  Wang  Jiachen  Wu  Yongbo  Liu  Hongyi 《Molecular biology reports》2022,49(7):6173-6180
Background

Centipedes are one of the oldest terrestrial arthropods belonging to the sub phylum Myriapoda. With the expansion of our understanding of the application of the two centipedes Scolopendra morsitans and Scolopendra hainanum, belonging to the order Scolopendromorpha, an exhaustive classification was required. Although consensus has been reached on the phylogeny of Chilopoda based on morphological traits, recent analyses based on molecular data exhibited differences in results.

Methods and results

The mitochondrial genome sequences of S. morsitans and S. hainanum were obtained by next-generation sequencing. S. morsitans contains 13 PCGs, two rRNAs, 11 tRNAs, and one CR. whereas S. hainanum contains 12 PCGs, of which ATP8 remains unpredicted, two rRNAs, 14 tRNAs, and one CR. An obvious tRNA rearrangement was found in the genus Scolopendra. S. morsitans exhibited a loss of trnW, trnC, trnI, trnK, trnD, trnA, trnN, trnQ, trnF, trnT, trnS, trnL, and trnV, and a repeat of trnR and trnL. S. hainanum exhibited a loss of trnQ, trnC, trnW, trnI, trnD, trnQ, trnP, and trnV. Phylogenetic analyses of centipedes based on 12 PCGs supported the sister relationship between the orders Geophilomorpha and Lithobiomorpha and a close relationship between Scolopendra dehaani and S. hainanum.

Conclusions

The new mitogenomes determined in this study provide new genomic resources for gene rearrangements and contribute to the understanding of the evolution of gene rearrangement in Chilopoda.

  相似文献   

19.
The complete mitochondrial genome (mitogenome) of the Ailanthus silkmoth, Samia cynthia cynthia (Lepidoptera: Saturniidae) was determined. The circular genome is 15,345 bp long, and presents a typical gene organization and order for sequenced mitogenomes of Bombycidea species. The nucleotide composition of the genome is highly A+T biased, accounting for 79.86%. The AT skew of the genome is slightly negative, indicating the occurrence of more Ts than As, as found in other Saturniidae species. All protein-coding genes (PCGs) are initiated by ATN codons, except for COI and COII, which are tentatively designated by CGA and GTG, respectively, as observed in other insects. Four of 13 PCGs, including COI, COII, ATP6, and ND3, harbor the incomplete termination codons, T or TA. With an exception for tRNASer(AGN), all other tRNAs can form a typical clover-leaf structure of mitochondrial tRNA. The 359 bp A+T-rich region of S. c. cynthia contains non-repetitive sequences, but harbors several features common to the Bombycidea insects, including the motif ATAGA followed by a poly-T stretch of 19 bp, a microsatellite-like (AT)7 element preceded by the ATTTA motif, and a poly-A element upstream tRNAMet. The phylogenetic analyses support the morphology-based current hypothesis that Bombycidae and Saturniidae are monophyletic. Our result confirms that Saturniini and Attacini form a reciprocal monophyletic group within Saturniidae.  相似文献   

20.
The mitochondrial genome (mitogenome) can provide important information for understanding molecular evolution and phylogenetic analyses. The complete mitogenome of Spodoptera frugiperda (Lepidoptera:Noctuidae) was determined to be 15,365 bp in length and has the typical gene order found in Noctuidae mitogenomes, it includes 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and a A+T-rich region. The nucleotide composition was biased toward A+T nucleotides (81.09 %) and the AT skew of this mitogenome was slightly positive (0.004). All PCGs were initiated by ATN codons, except for cytochrome c oxidase subunit 1 (cox1) gene which was initiated by CGA. Eight of the 13 PCGs have the incomplete termination codon, T or TA. All the tRNA genes displayed the typical clover-leaf structure of mitochondrial tRNAs, with the exception of trnS1 (AGN). The A+T-rich region was 328 bp in length and consisted of several features common to the Noctuidae insects. Phylogenetic analysis showed that the S. frugiperda was within the Noctuidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号