首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vertebrates, embryonic hematopoietic stem and progenitor cells (HSPCs) are derived from a subset of endothelial cells, the hemogenic endothelium (HE), through the endothelial-to-hematopoietic transition (EHT). Notch signaling is essential for HSPC development during embryogenesis across vertebrates. However, whether and how it regulates EHT remains unclear. Here, we show that G protein-coupled receptor 183 (Gpr183) signaling serves as an indispensable switch for HSPC emergence by repressing Notch signaling before the onset of EHT. Inhibition of Gpr183 significantly upregulates Notch signaling and abolishes HSPC emergence. Upon activation by its ligand 7α-25-OHC, Gpr183 recruits β-arrestin1 and the E3 ligase Nedd4 to degrade Notch1 in specified HE cells and then facilitates the subsequent EHT. Importantly, 7α-25-OHC stimulation promotes HSPC emergence in vivo and in vitro, providing an attractive strategy for enhancing the in vitro generation of functional HSPCs.  相似文献   

2.
Mutations in BSCL2/SEIPIN cause Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2), but the mechanisms whereby Bscl2 regulates adipose tissue function are unclear. Here, we generated adipose tissue (mature) Bscl2 knockout (Ad-mKO) mice, in which Bscl2 was specifically ablated in adipocytes of adult animals, to investigate the impact of acquired Bscl2 deletion on adipose tissue function and energy balance. Ad-mKO mice displayed reduced adiposity and were protected against high fat diet-induced obesity, but not insulin resistance or hepatic steatosis. Gene expression profiling and biochemical assays revealed increased lipolysis and fatty acid oxidation in white adipose tissue (WAT) and brown adipose tissue , as well as browning of WAT, owing to induction of cAMP/protein kinase A signaling upon Bscl2 deletion. Interestingly, Bscl2 deletion reduced food intake and downregulated adipose β3-adrenergic receptor (ADRB3) expression. Impaired ADRB3 signaling partially offsets upregulated browning-induced energy expenditure and thermogenesis in Ad-mKO mice housed at ambient temperature. However, this counter-regulatory response was abrogated under thermoneutral conditions, resulting in even greater body mass loss in Ad-mKO mice. These findings suggest that Bscl2 regulates adipocyte lipolysis and β-adrenergic signaling to produce complex effects on adipose tissues and whole-body energy balance.  相似文献   

3.
Glycans occupy the critical cell surface interface between hematopoietic cells and their marrow niches. Typically, glycosyltransferases reside within the intracellular secretory apparatus, and each cell autonomously generates its own cell surface glycans. In this study, we report an alternate pathway to generate cell surface glycans where remotely produced glycosyltransferases remodel surfaces of target cells and for which endogenous expression of the cognate enzymes is not required. Our data show that extracellular ST6Gal-1 sialyltransferase, originating mostly from the liver and released into circulation, targets marrow hematopoietic stem and progenitor cells (HSPCs) and mediates the formation of cell surface α2,6-linked sialic acids on HSPCs as assessed by binding to the specific lectins Sambucus nigra agglutinin and Polysporus squamosus lectin and confirmed by mass spectrometry. Marrow HSPCs, operationally defined as the Lin−c-Kit+ and Lin−Sca-1+c-Kit+ populations, express negligible endogenous ST6Gal-1. Animals with reduced circulatory ST6Gal-1 have marrow Lin−Sca-1+c-Kit+ cells with reduced S. nigra agglutinin reactivity. Bone marrow chimeras demonstrated that α2,6-sialylation of HSPCs is profoundly dependent on circulatory ST6Gal-1 status of the recipients and independent of the ability of HSPCs to express endogenous ST6Gal-1. Biologically, HSPC abundance in the marrow is inversely related to circulatory ST6Gal-1 status, and this relationship is recapitulated in the bone marrow chimeras. We propose that remotely produced, rather than the endogenously expressed, ST6Gal-1 is the principal modifier of HSPC glycans for α2,6-sialic acids. In so doing, liver-produced ST6Gal-1 may be a potent systemic regulator of hematopoiesis.  相似文献   

4.

Background

Hypercholesterolemia plays a critical role in atherosclerosis. CD34+ CD45dim Lineage- hematopoietic stem/progenitor cells (HSPCs) give rise to the inflammatory cells linked to atherosclerosis. In mice, high cholesterol levels mobilize HSPCs into the bloodstream, and promote their differentiation to granulocytes and monocytes. The objective of our study was to determine how cholesterol levels affect HSPC quantity in humans.

Methods

We performed a blinded, randomized hypothesis generating study in human subjects (n=12) treated sequentially with statins of differing potencies to vary lipid levels. CD34+ HSPC levels in blood were measured by flow cytometry. Hematopoietic colony forming assays confirmed the CD34+ population studied as HSPCs with multlineage differentiation potential. Mobilizing cytokine levels were measured by ELISA.

Results

The quantity of HSPCs was 0.15 ± 0.1% of buffy coat leukocytes. We found a weak, positive correlation between CD34+ HSPCs and both total and LDL cholesterol levels (r2=0.096, p < 0.025). Additionally, we tested whether cholesterol modulates CD34+ HSPCs through direct effects or on the levels of mobilizing cytokines. LDL cholesterol increased cell surface expression of CXCR4, G-CSFR affecting HSPC migration, and CD47 mediating protection from phagocytosis by immune cells. LDL cholesterol also increased proliferation of CD34+ HSPCs (28 ± 5.7%, n=6, p < 0.03). Finally, the HSPC mobilizing cytokine G-CSF (r2=0.0683, p < 0.05), and its upstream regulator IL-17 (r2=0.0891, p < 0.05) both correlated positively with LDL cholesterol, while SDF-1 levels were not significantly affected.

Conclusions

Our findings support a model where LDL cholesterol levels positively correlate with CD34+ HSPC levels in humans through effects on the levels of G-CSF via IL-17 promoting mobilization of HSPCs, and by direct effects of LDL cholesterol on HSPC proliferation. The findings are provocative of further study to determine if HSPCs, like cholesterol levels, are linked to CVD events.  相似文献   

5.
Regular exercise can protect the heart against external stimuli, but the mechanism is not well understood. We determined the role of adenosine monophosphate-activated protein kinase (AMPK) in regulating swimming exercise-mediated cardiac protection against β-adrenergic receptor overstimulation with isoproterenol (ISO) in mice. Ten-week-old AMPKα2+/+ and AMPKα2-knockout (AMPKα2-/-) littermates were subjected to 4 weeks of swimming training (50 min daily, 6 days a week) or housed under sedentary conditions. The mice received daily subcutaneous injection of ISO (5 mg/kg/d), a nonselective β-adrenergic receptor agonist, during the last 2 weeks of swimming training. Swimming training alleviated ISO-induced cardiac fibrosis in AMPKα2+/+ mice but not AMPKα2-/- mice. Swimming training activated cardiac AMPK in AMPKα2+/+ mice. Furthermore, swimming training attenuated ISO-induced production of reactive oxygen species (ROS) and expression of NADPH oxidase and promoted the expression of antioxidant enzymes in AMPKα2+/+ mice but not AMPKα2-/- mice. In conclusion, swimming training attenuates ISO-induced cardiac fibrosis by inhibiting the NADPH oxidase–ROS pathway mediated by AMPK activation. Our findings provide a new mechanism for the cardioprotective effects of exercise.  相似文献   

6.
There is considerable evidence from our lab and others for a functional link between β-adrenergic receptor and insulin receptor signaling pathways in retina. Furthermore, we hypothesize that this link may contribute to lesions similar to diabetic retinopathy in that the loss of adrenergic input observed in diabetic retinopathy may disrupt normal anti-apoptotic insulin signaling, leading to retinal cell death. Our studies included assessment of neural retina function (ERG), vascular degeneration, and Müller glial cells (which express only β1 and β2-adrenergic receptor subtypes). In the current study, we produced β2-adrenergic receptor knockout mice to examine this deletion on retinal neurons and vasculature, and to identify specific pathways through which β2-adrenergic receptor modulates insulin signaling. As predicted from our hypothesis, β2-adrenergic receptor knockout mice display certain features similar to diabetic retinopathy. In addition, loss of β2-adrenergic input resulted in an increase in TNFα, a key inhibitor of insulin receptor signaling. Increased TNFα may be associated with insulin-dependent production of the anti-apoptotic factor, Akt. Since the effects occurred in vivo under normal glucose conditions, we postulate that aspects of the diabetic retinopathy phenotype might be triggered by loss of β2-adrenergic receptor signaling.  相似文献   

7.
Preconditioning via heat acclimation (34°C 30 d) results in neuroprotection from traumatic brain injury due to constitutive as well as dynamic changes triggered by the trauma. Among these changes is Akt phosphorylation, which decreases apoptosis and induces HIF1α. In the present study we investigated the Akt downstream GSK3β/β -catenin pathway and focused on post injury alternations of β catenin and its impact on the cellular response in preconditioned heat acclimated mice. We found that the reduction in motor disability is accompanied with attenuation of depressive like behavior in heat acclimated mice that correlates with the GSK3β phosphorylation state. Concomitantly, a robust β catenin phosphorylation is not followed by its degradation, or by reduced nuclear accumulation. Enhanced tyrosine phosphorylation of β catenin in the injured area weakens the β catenin-N cadherin complex. Membrane β catenin is transiently reduced in heat acclimated mice and its recovery 7 days post TBI is accompanied by induction of the synaptic marker synaptophysin. We suggest a set of cellular events following traumatic brain injury in heat acclimated mice that causes β catenin to participate in cell-cell adhesion alternations rather than in Wnt signaling. These events may contribute to synaptogenesis and the improved motor and cognitive abilities seen heat acclimated mice after traumatic brain injury.  相似文献   

8.
Objectives20‐hydroxyeicosatetraenoic acid (20‐HETE) is a metabolite of arachidonic acid catalysed by cytochrome P450 enzymes and plays an important role in cell death and proliferation. We hypothesized that 20‐HETE synthesis inhibition may have protective effects in traumatic brain injury (TBI) and investigated possible underlying molecular mechanisms.Materials and methodsNeurologic deficits, and lesion volume, reactive oxygen species (ROS) levels and cell death as assessed using immunofluorescence staining, transmission electron microscopy and Western blotting were used to determine post‐TBI effects of HET0016, an inhibitor of 20‐HETE synthesis, and their underlying mechanisms.ResultsThe level of 20‐HETE was found to be increased significantly after TBI in mice. 20‐HETE synthesis inhibition reduced neuronal apoptosis, ROS production and damage to mitochondrial structures after TBI. Mechanistically, HET0016 decreased the Drp1 level and increased the expression of Mfn1 and Mfn2 after TBI, indicating a reversal of the abnormal post‐TBI mitochondrial dynamics. HET0016 also promoted the restoration of SIRT1 and PGC‐1α in vivo, and a SIRT1 activator (SRT1720) reversed the downregulation of SIRT1 and PGC‐1α and the abnormal mitochondrial dynamics induced by 20‐HETE in vitro. Furthermore, plasma 20‐HETE levels were found to be higher in TBI patients with unfavourable neurological outcomes and were correlated with the GOS score.ConclusionsThe inhibition of 20‐HETE synthesis represents a novel strategy to mitigate TBI‐induced mitochondrial dysfunction and neuronal apoptosis by regulating the SIRT1/PGC‐1α pathway.  相似文献   

9.
Cyclooxygenase-2 (COX-2) and adipokines have been implicated in breast cancer. This study investigated a possible link between COX-2 and adipokines in the development of mammary tumors. A model of environmental enrichment (EE), known to reduce tumor growth was used for a syngeneic murine model of mammary carcinoma. 3-week-old, female C57BL/6 mice were housed in standard environment (SE) or EE cages for 9 weeks and transplanted orthotopically with syngeneic EO771 adenocarcinoma cells into the right inguinal mammary fat pad. EE housing influenced mammary gland development with a decrease in COX-2 expressing cells and enhanced side-branching and advanced development of alveolar structures of the mammary gland. Tumor volume and weight were decreased in EE housed mice and were associated with a reduction in COX-2 and Ki67 levels, and an increase in caspase-3 levels. In tumors of SE mice, high COX-2 expression correlated with enhanced leptin detection. Non-tumor-bearing EE mice showed a significant increase in adiponectin levels but no change in those of leptin, F2-isoprostanes, PGF, IL-6, TNF-α, PAI-1, and MCP-1 levels. Both tumor-bearing groups (SE and EE housing) had increased resistin, IL-6, TNF-α, PAI-1 and MCP-1 levels irrespective of the different housing environment demonstrating higher inflammatory response due to the presence of the tumor. This study demonstrates that EE housing influenced normal mammary gland development and inhibited mammary tumor growth resulting in a marked decrease in intratumoral COX-2 activity and an increase in the plasma ratio of adiponectin/leptin levels.  相似文献   

10.
Alzheimer''s disease (AD) is characterized by neuronal loss and accumulation of β-amyloid-protein (Aβ) in the brain parenchyma. Sleep impairment is associated with AD and affects about 25–40% of patients in the mild-to-moderate stages of the disease. Sleep deprivation leads to increased Aβ production; however, its mechanism remains largely unknown. We hypothesized that the increase in core body temperature induced by sleep deprivation may promote Aβ production. Here, we report temperature-dependent regulation of Aβ production. We found that an increase in temperature, from 37 °C to 39 °C, significantly increased Aβ production in amyloid precursor protein-overexpressing cells. We also found that high temperature (39 °C) significantly increased the expression levels of heat shock protein 90 (Hsp90) and the C-terminal fragment of presenilin 1 (PS1-CTF) and promoted γ-secretase complex formation. Interestingly, Hsp90 was associated with the components of the premature γ-secretase complex, anterior pharynx-defective-1 (APH-1), and nicastrin (NCT) but was not associated with PS1-CTF or presenilin enhancer-2. Hsp90 knockdown abolished the increased level of Aβ production and the increased formation of the γ-secretase complex at high temperature in culture. Furthermore, with in vivo experiments, we observed increases in the levels of Hsp90, PS1-CTF, NCT, and the γ-secretase complex in the cortex of mice housed at higher room temperature (30 °C) compared with those housed at standard room temperature (23 °C). Our results suggest that high temperature regulates Aβ production by modulating γ-secretase complex formation through the binding of Hsp90 to NCT/APH-1.  相似文献   

11.
Traumatic brain injury (TBI) is often caused by accidents that damage the brain. TBI can induce glutamate excitotoxicity and lead to neuronal and glial cell death. In this study, we investigated the mechanism of cell death during the secondary damage caused by TBI in vivo and in vitro, as well as the protective effect of resveratrol (RV). Here we report that glycogen synthase kinase-3β (GSK-3β) activation and microtubule-associated protein light chain 3 processing were induced in rat brains exposed to TBI. In the in vitro TBI model, apoptotic and autophagic cell death were induced through glutamate-mediated GSK-3β activation in normal CTX TNA2 astrocytes. The GSK-3β inhibitor SB216763 or transfection of GSK-3β small-interfering RNA increases cell survival. By contrast, overexpression of GSK-3β enhanced glutamate excitotoxicity. Administration of RV reduced cell death in CTX TNA2 astrocytes by suppressing reactive oxygen species (ROS)-mediated GSK-3β activation, the mechanism by which RV also exerted protective effects in vivo. Mitochondrial damages, including the opening of mitochondrial permeability transition pore (MPTP) and mitochondrial depolarization, were induced by glutamate through the ROS/GSK-3β pathway. Moreover, cyclosporine A, an MPTP inhibitor, suppressed mitochondrial damage and the percentages of cells undergoing autophagy and apoptosis and thereby increased cell survival. Taken together, our results demonstrated that cell death occurring after TBI is induced through the ROS/GSK-3β/mitochondria signaling pathway and that administration of RV can increase cell survival by suppressing GSK-3β-mediated autophagy and apoptosis. Therefore, the results indicated that resveratrol may serve as a potential therapeutic agent in the treatment of TBI.  相似文献   

12.

Aims

Inhibition of β-adrenergic signalling plays a key role in treatment of heart failure. Gsα is essential for β-adrenergic signal transduction. In order to reduce side-effects of beta-adrenergic inhibition diminishing β-adrenergic signalling in the heart at the level of Gsα is a promising option.

Methods and Results

We analyzed the influence of Gsα on regulation of myocardial function and development of cardiac hypertrophy, using a transgenic mouse model (C57BL6/J mice) overexpressing a dominant negative Gsα-mutant under control of the α-MHC-promotor. Cardiac phenotype was characterized in vivo and in vitro and under acute and chronic β-adrenergic stimulation. At rest, Gsα-DN-mice showed bradycardia (602 ± 13 vs. 660 ± 17 bpm, p<0.05) and decreased dp/dtmax (5037 ± 546- vs. 6835 ± 505 mmHg/s, p = 0.02). No significant differences were found regarding ejection fraction, heart weight and cardiomyocyte size. β-blockade by propranolol revealed no baseline differences of hemodynamic parameters between wildtype and Gsα-DN-mice. Acute adrenergic stimulation resulted in decreased β-adrenergic responsiveness in Gsα-DN-mice. Under chronic adrenergic stimulation, wildtype mice developed myocardial hypertrophy associated with increase of LV/BW-ratio by 23% (4.4 ± 0.2 vs. 3.5 ± 0.1 mg/g, p<0.01) and cardiac myocyte size by 24% (14927 ± 442 px vs. 12013 ± 583 px, p<0.001). In contrast, both parameters were unchanged in Gsα-DN-mice after chronic isoproterenol stimulation.

Conclusion

Overexpression of a dominant negative mutant of Gsα leads to decreased β-adrenergic responsiveness and is protective against isoproterenol-induced hypertrophy. Thus, Gsα-DN-mice provide novel insights into β-adrenergic signal transduction and its modulation in myocardial overload and failure.  相似文献   

13.
G-protein coupled receptors (GPCRs) have long been known as receptors that activate G protein-dependent cellular signaling pathways. In addition to the G protein-dependent pathways, recent reports have revealed that several ligands called “biased ligands” elicit G protein-independent and β-arrestin-dependent signaling through GPCRs (biased agonism). Several β-blockers are known as biased ligands. All β-blockers inhibit the binding of agonists to the β-adrenergic receptors. In addition to β-blocking action, some β-blockers are reported to induce cellular responses through G protein-independent and β-arrestin-dependent signaling pathways. However, the physiological significance induced by the β-arrestin-dependent pathway remains much to be clarified in vivo. Here, we demonstrate that metoprolol, a β1-adrenergic receptor-selective blocker, could induce cardiac fibrosis through a G protein-independent and β-arrestin2-dependent pathway. Metoprolol, a β-blocker, increased the expression of fibrotic genes responsible for cardiac fibrosis in cardiomyocytes. Furthermore, metoprolol induced the interaction between β1-adrenergic receptor and β-arrestin2, but not β-arrestin1. The interaction between β1-adrenergic receptor and β-arrestin2 by metoprolol was impaired in the G protein-coupled receptor kinase 5 (GRK5)-knockdown cells. Metoprolol-induced cardiac fibrosis led to cardiac dysfunction. However, the metoprolol-induced fibrosis and cardiac dysfunction were not evoked in β-arrestin2- or GRK5-knock-out mice. Thus, metoprolol is a biased ligand that selectively activates a G protein-independent and GRK5/β-arrestin2-dependent pathway, and induces cardiac fibrosis. This study demonstrates the physiological importance of biased agonism, and suggests that G protein-independent and β-arrestin-dependent signaling is a reason for the diversity of the effectiveness of β-blockers.  相似文献   

14.
Tumor xenografts in immunodeficient mice, while routinely used in cancer research, preclude studying interactions of immune and cancer cells or, if humanized by allogeneic immune cells, are of limited use for tumor-immunological questions. Here, we explore a novel way to generate cancer models with an autologous humanized immune system. We demonstrate that hematopoietic stem and progenitor cells (HSPCs) from bone marrow aspirates of non-metastasized carcinoma patients, which are taken at specialized centers for diagnostic purposes, can be used to generate a human immune system in NOD-scid IL2rγ(null) (NSG) and HLA-I expressing NSG mice (NSG-HLA-A2/HHD) comprising both, lymphoid and myeloid cell lineages. Using NSG-HLA-A2/HHD mice, we show that responsive and self-tolerant human T cells develop and human antigen presenting cells can activate human T cells. As critical factors we identified the low potential of bone marrow HSPCs to engraft, generally low HSPC numbers in patient-derived bone marrow samples, cryopreservation and routes of cell administration. We provide here an optimized protocol that uses a minimum number of HSPCs, preselects high-quality bone marrow samples defined by the number of initially isolated leukocytes and intra-femoral or intra-venous injection. In conclusion, the use of diagnostic bone marrow aspirates from non-metastasized carcinoma patients for the immunological humanization of immunodeficient mice is feasible and opens the chance for individualized analyses of anti-tumoral T cell responses.  相似文献   

15.
We have recently shown that genetic replacement of VE-cadherin by a VE-cadherin–α-catenin fusion construct strongly impairs opening of endothelial cell contacts during leukocyte extravasation and induction of vascular permeability in adult mice. Here we show that this mutation leads to lethality at midgestation on a clean C57BL/6 background. Investigating the reasons for embryonic lethality, we observed a lack of fetal liver hematopoiesis and severe lymphedema but no detectable defects in blood vessel formation and remodeling. As for the hematopoiesis defect, VE-cadherin–α-catenin affected neither the generation of hematopoietic stem and progenitor cells (HSPCs) from hemogenic endothelium nor their differentiation into multiple hematopoietic lineages. Instead, HSPCs accumulated in the fetal circulation, suggesting that their entry into the fetal liver was blocked. Edema formation was caused by disturbed lymphatic vessel development. Lymphatic progenitor cells of VE-cadherin–α-catenin-expressing embryos were able to leave the cardinal vein and migrate to the site of the first lymphatic vessel formation, yet subsequently, these cells failed to form large lumenized lymphatic vessels. Thus, stabilizing endothelial cell contacts by a covalent link between VE-cadherin and α-catenin affects recruitment of hematopoietic progenitors into the fetal liver and the development of lymph but not blood vessels.  相似文献   

16.
Following traumatic brain injury (TBI) neuroinflammatory processes promote neuronal cell loss. Alpha-melanocyte-stimulating hormone (α-MSH) is a neuropeptide with immunomodulatory properties, which may offer neuroprotection. Due to short half-life and pigmentary side-effects of α-MSH, the C-terminal tripeptide α-MSH(11–13) may be an anti-inflammatory alternative. The present study investigated the mRNA concentrations of the precursor hormone proopiomelanocortin (POMC) and of melanocortin receptors 1 and 4 (MC1R/MC4R) in naive mice and 15 min, 6, 12, 24, and 48 h after controlled cortical impact (CCI). Regulation of POMC and MC4R expression did not change after trauma, while MC1R levels increased over time with a 3-fold maximum at 12 h compared to naive brain tissue. The effect of α-MSH(11–13) on secondary lesion volume determined in cresyl violet stained sections (intraperitoneal injection 30 min after insult of 1 mg/kg α-MSH(11–13) or 0.9% NaCl) showed a considerable smaller trauma in α-MSH(11–13) injected mice. The expression of the inflammatory markers TNF-α and IL-1β as well as the total amount of Iba-1 positive cells were not reduced. However, cell branch counting of Iba-1 positive cells revealed a reduced activation of microglia. Furthermore, tripeptide injection reduced neuronal apoptosis analyzed by cleaved caspase-3 and NeuN staining. Based on the results single α-MSH(11–13) administration offers a promising neuroprotective property by modulation of inflammation and prevention of apoptosis after traumatic brain injury.  相似文献   

17.
18.
Endocannabinoids are lipid signaling molecules that act via G-coupled receptors, CB1 and CB2. The endocannabinoid system is capable of activation of distinct signaling pathways on demand in response to pathogenic events or stimuli, hereby enhancing cell survival and promoting tissue repair. However, the role of endocannabinoids in hematopoietic stem and progenitor cells (HSPCs) and their interaction with hematopoietic stem cells (HSC) niches is not known. HSPCs are maintained in the quiescent state in bone marrow (BM) niches by intrinsic and extrinsic signaling. We report that HSPCs express the CB1 receptors and that BM stromal cells secrete endocannabinoids, anandamide (AEA) (35 pg/107 cells), and 2-AG (75.2 ng/107 cells). In response to the endotoxin lipopolysaccharide (LPS), elevated levels of AEA (75.6 pg/107 cells) and 2-AG (98.8 ng/107 cells) were secreted from BM stromal cells, resulting in migration and trafficking of HSPCs from the BM niches to the peripheral blood. Furthermore, administration of exogenous cannabinoid CB1 agonists in vivo induced chemotaxis, migration, and mobilization of human and murine HSPCs. Cannabinoid receptor knock-out mice Cnr1−/− showed a decrease in side population (SP) cells, whereas fatty acid amide hydrolase (FAAH)−/− mice, which have elevated levels of AEA, yielded increased colony formation as compared with WT mice. In addition, G-CSF-induced mobilization in vivo was modulated by endocannabinoids and was inhibited by specific cannabinoid antagonists as well as impaired in cannabinoid receptor knock-out mice Cnr1−/−, as compared with WT mice. Thus, we propose a novel function of the endocannabinoid system, as a regulator of HSPC interactions with their BM niches, where endocannabinoids are expressed in HSC niches and under stress conditions, endocannabinoid expression levels are enhanced to induce HSPC migration for proper hematopoiesis.  相似文献   

19.
We investigated the effects of high calorie and low calorie diets on skeletal integrity, and whether β-adrenergic blockade (BB) attenuates bone loss induced by dietary calorie alteration. Male 6-week-old C57BL/6 mice were assigned to either an ad-lib fed control diet (CON), a high calorie diet (HIGH), or a low calorie diet (LOW) group. In each diet group, mice were treated with either vehicle (VEH) or propranolol, a β-adrenergic antagonist. Over 12-weeks, β-blockade mitigated body weight and fat mass increases induced by the high calorie diet. Femoral trabecular bone mineral density and the expression levels of osteogenic marker genes in bone marrow cells were reduced in HIGHVEH and LOWVEH mice, and BB significantly attenuated this decline only in HIGH mice. In summary, the magnitude of bone loss induced by low calorie diet was greater than that caused by high calorie diet in growing mice, and β-blockade mitigated high calorie diet-induced bone loss. [BMB Reports 2014; 47(9): 506-511]  相似文献   

20.
Traumatic brain injury (TBI) has become a signature wound of the wars in Iraq and Afghanistan. Many American soldiers, even those undiagnosed but likely suffering from mild TBI, display Alzheimer''s disease (AD)-like cognitive impairments, suggesting a pathological overlap between TBI and AD. This study examined the cognitive and neurohistological effects of TBI in presymptomatic APP/PS1 AD-transgenic mice. AD mice and non-transgenic (NT) mice received an experimental TBI on the right parietal cortex using the controlled cortical impact model. Animals were trained in a water maze task for spatial memory before TBI, and then reevaluated in the same task at two and six weeks post-TBI. The results showed that AD mice with TBI made significantly more errors in the task than AD mice without TBI and NT mice regardless of TBI. A separate group of AD mice and NT mice were evaluated neurohistologically at six weeks after TBI. The number of extracellular beta-amyloid (Aβ)-deposits significantly increased by at least one fold in the cortex of AD mice that received TBI compared to the NT mice that received TBI or the AD and NT mice that underwent sham surgery. A significant decrease in MAP2 positive cells, indicating neuronal loss, was observed in the cortex of both the AD and NT mice that received TBI compared to the AD and NT mice subjected to sham surgery. Similar changes in extracellular Aβ deposits and MAP2 positive cells were also seen in the hippocampus. These results demonstrate for the first time that TBI precipitates cognitive impairment in presymptomatic AD mice, while also confirming extracellular Aβ deposits following TBI. The recognition of this pathological link between TBI and AD should aid in developing novel treatments directed at abrogating cellular injury and extracellular Aβ deposition in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号