首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A young of the year female white shark, Carcharodon carcharias, was tagged with a pop-up satellite archival tag off Southern California in early June of 2000. The tag was recovered after 28 days, and records of temperature, depth and light intensity were extracted. Depth and temperature records indicate a number of interesting behaviors, including a strong diurnal pattern. At night the shark remained in the top 50 m, often making shallow repetitive vertical excursions. Most dives below the mixed layer were observed during the day, 91% of which occurred from 05:00 to 21:00 h, with depths extending to 240 m. Many of the dives exhibited secondary vertical movements that were consistent with the shark swimming at the bottom (at depths from 9 to 165 m) where it was most likely foraging. The white shark experienced dramatic and rapid changes in temperature, and demonstrated a considerable tolerance for cold waters. Temperatures ranged from 9°C to 22°C, and although 89% of the total time was spent in waters 16–22°C, on some days the small shark spent as much as 32% of the time in 12°C waters. The deep dives into cold waters separate the white sharks from mako sharks, which share the California Bight nursery ground but appear to remain primarily in the mixed layer and thermocline. Movement information (derived from light-based geolocation, bottom depths and sea surface temperatures) indicated that the white shark spent the 28 days in the Southern California Bight, possibly moving as far south as San Diego, California. While the abundance and diversity of prey, warm water and separation from adults make this region an ideal nursery ground, the potential for interaction with the local fisheries should be examined.  相似文献   

2.
Bekker  Matthew F.  Taylor  Alan H. 《Plant Ecology》2001,155(1):15-28
Species distribution and abundance patterns in the southern Cascades are influenced by both environmental gradients and fire regimes. Little is known about fire regimes and variation in fire regimes may not be independent of environmental gradients or vegetation patterns. In this study, we analyze variation in fire regime parameters (i.e., return interval, season, size, severity, and rotation period) with respect to forest composition, elevation, and potential soil moisture in a 2042 ha area of montane forest in the southern Cascades in the Thousand Lakes Wilderness (TLW). Fire regime parameters varied with forest composition, elevation, and potential soil moisture. Median composite and point fire return intervals were shorter (4-9 yr, 14-24 yr) in low elevation and more xeric white fir (Abies concolor)-sugar pine (Pinus lambertiana) and white fir-Jeffrey pine (P. jeffreyi) and longest (20-37 yr, 20-47 yr) in mesic high elevation lodgepole pine (Pinus contorta) and red fir (Abies magnifica)-mountain hemlock (Tsuga mertensiana) forests. Values for mid-elevation red fir-white fir forests were intermediate. The pattern for fire rotation lengths across gradients was the same as for fire return intervals. The percentage of fires that occurred during the growing season was inversely related to elevation and potential soil moisture. Mean fire sizes were larger in lodgepole pine forests (405 ha) than in other forest groups (103-151 ha). In contrast to other parameters, fire severity did not vary across environmental and compositional gradients and >50% of all forests burned at high severity with most of the remainder burning at moderate severity. Since 1905, fire regimes have become similar at all gradient positions because of a policy of suppressing fire and fire regime modification will lead to shifts in landscape scale vegetation patterns.  相似文献   

3.

Background

The early stages of biological invasions are rarely observed, but can provide significant insight into the invasion process as well as the influence vectors have on invasion success or failure.

Methodology/Principal Findings

We characterized three newly discovered populations of an introduced gastropod, Littorina littorea (Linné, 1758), in California, USA, comparing them to potential source populations in native Europe and the North American East Coast, where the snail is also introduced. Demographic surveys were used to assess spatial distribution and sizes of the snail in San Francisco and Anaheim Bays, California. Mitochondrial DNA was sequenced and compared among these nascent populations, and various populations from the North American East Coast and Europe, to characterize the California populations and ascertain their likely source. Demographic and genetic data were considered together to deduce likely vectors for the California populations. We found that the three large California L. littorea populations contained only adult snails and had unexpectedly high genetic diversity rather than showing an extreme bottleneck as typically expected in recent introductions. Haplotype diversity in Californian populations was significantly reduced compared to European populations, but not compared to East Coast populations. Genetic analyses clearly suggested the East Coast as the source region for the California introductions.

Conclusions and Significance

The California L. littorea populations were at an early, non-established phase of invasion with no evidence of recruitment. The live seafood trade is the most likely invasion vector for these populations, as it preferentially transports large numbers of adult L. littorea, matching the demographic structure of the introduced California L. littorea populations. Our results highlight continued operation of live seafood trade vectors and the influence of vectors on the demographic and genetic structure of the resulting populations, especially early stages of the invasion process.  相似文献   

4.
5.
Introductions of exotic species pose a significant threat to the persistence of many native populations, including many inland fishes. In 1994, piscivorous lake trout (Salvelinus namaycush) were discovered in Yellowstone Lake, Yellowstone National Park, Wyoming, USA, one of the last strongholds of the native Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri). Predation by lake trout is expected to lead to a substantial decline in the native cutthroat trout population, which may have significant negative consequences for terrestrial predators that depend on cutthroat trout for prey and for the recreational fishery of the Park. We developed a matrix demographic model for the cutthroat trout population in Yellowstone Lake to identify the life stages that are most critical for understanding population dynamics. Parameter estimates (vital rates) were manipulated to explore the possible consequences of lake trout invasion. Comparisons of our results with current estimates of population trend and age structure suggested that our model reflected current conditions of the system. Elasticity analysis of the model revealed that population growth was most sensitive to annual survival of young trout, the group that is expected to be most vulnerable to lake trout predation. Projection of our deterministic model suggested that, in addition to a decline in abundance of cutthroat trout, the effects of lake trout may be manifest as changes in age and breeding structure of the population. Simulations of a stochastic version of the model indicated that a 60% or greater decline in the cutthroat trout population could be expected within 100 years if the lake trout population were permitted to grow uncontrolled. However, an effective control strategy that prevented the establishment of a large population of lake trout substantially reduced population decline, although the reduction in the availability of adult trout to terrestrial predators and anglers may be still be substantial (20–40%). In addition to current control activities in place in the Park, we recommend a renewed emphasis on understanding and monitoring juvenile life stages of cutthroat trout. Our results demonstrate the value of existing data sets for developing models to estimate the potential impact of biological invasions on the management and conservation of native populations, especially when opportunities and resources for additional empirical studies are limited.  相似文献   

6.
7.
Four species of exotic cordgrass (Spartina sp.) occur in the San Francisco estuary in addition to the California native Spartina foliosa. Our goal was to map the location and extent of all non-native Spartina in the estuary. Hybrids of S. alterniflora and S. foliosa are by far the most numerous exotic and are spreading rapidly. Radiating from sites of deliberate introduction, S. alterniflora and hybrids now cover ca. 190 ha, mainly in the South and Central Bay. Estimates of rate of aerial increase range from a constant value to an accelerating rate of increase. This could be due to the proliferation of hybrid clones capable of rapid expansion and having superior seed set and siring abilities. The total coverage of 195 ha by hybrids and other exotic cordgrass species is slightly less than 1% of the Bay's tidal mudflats and marshes. Spartina anglica has not spread beyond its original 1970s introduction site. Spartina densiflora has spread to cover over 5 ha at 3 sites in the Central Bay. Spartina patens has expanded from 2 plants in 1970 to 42 plants at one site in Suisun Bay. Spartina seed floats on the tide, giving it the potential to export this invasion throughout the San Francisco estuary, and to estuaries outside of the Golden Gate. We found isolated plants of S. alterniflora and S. densiflora in outer coast estuaries north of the Bay suggesting the likelihood for the San Francisco Bay populations to found others on the Pacific coast.  相似文献   

8.
9.
Recent research has concluded that forest wildfires in the western United States are becoming larger and more frequent. A more significant question may be whether the ecosystem impacts of wildfire are also increasing. We show that a large area (approximately 120000 km2) of California and western Nevada experienced a notable increase in the extent of forest stand-replacing (“high severity”) fire between 1984 and 2006. High severity forest fire is closely linked to forest fragmentation, wildlife habitat availability, erosion rates and sedimentation, post-fire seedling recruitment, carbon sequestration, and various other ecosystem properties and processes. Mean and maximum fire size, and the area burned annually have also all risen substantially since the beginning of the 1980s, and are now at or above values from the decades preceding the 1940s, when fire suppression became national policy. These trends are occurring in concert with a regional rise in temperature and a long-term increase in annual precipitation. A close examination of the climate–fire relationship and other evidence suggests that forest fuels are no longer limiting fire occurrence and behavior across much of the study region. We conclude that current trends in forest fire severity necessitate a re-examination of the implications of all-out fire suppression and its ecological impacts. Author Contributions: Jay Miller designed the study, performed research, analyzed data, and wrote the article. Hugh Safford performed research, analyzed data, and wrote the article. Michael Crimmins performed research and analyzed data. Andi Thode designed the study and performed research.  相似文献   

10.
Peripheral populations often experience more extreme environmental conditions than those in the centre of a species'' range. Such extreme conditions include habitat loss, defined as a reduction in the amount of suitable habitat, as well as habitat fragmentation, which involves the breaking apart of habitat independent of habitat loss. The ‘threshold hypothesis’ predicts that organisms will be more affected by habitat fragmentation when the amount of habitat on the landscape is scarce (i.e., less than 30%) than when habitat is abundant, implying that habitat fragmentation may compound habitat loss through changes in patch size and configuration. Alternatively, the ‘flexibility hypothesis’ predicts that individuals may respond to increased habitat disturbance by altering their selection patterns and thereby reducing sensitivity to habitat loss and fragmentation. While the range of Canada lynx (Lynx canadensis) has contracted during recent decades, the relative importance of habitat loss and habitat fragmentation on this phenomenon is poorly understood. We used a habitat suitability model for lynx to identify suitable land cover in Ontario, and contrasted occupancy patterns across landscapes differing in cover, to test the ‘threshold hypothesis’ and ‘flexibility hypothesis’. When suitable land cover was widely available, lynx avoided areas with less than 30% habitat and were unaffected by habitat fragmentation. However, on landscapes with minimal suitable land cover, lynx occurrence was not related to either habitat loss or habitat fragmentation, indicating support for the ‘flexibility hypothesis’. We conclude that lynx are broadly affected by habitat loss, and not specifically by habitat fragmentation, although occurrence patterns are flexible and dependent on landscape condition. We suggest that lynx may alter their habitat selection patterns depending on local conditions, thereby reducing their sensitivity to anthropogenically-driven habitat alteration.  相似文献   

11.
Sardinero  Santiago 《Plant Ecology》2000,148(1):81-103
An analysis of vegetation along an altitudinal gradient on the Presidential Range, New Hampshire, USA, using the Braun–Blanquet approach followed by multivariate data analysis is presented. Twelve main plant communities have been distinguished. Floristic information is presented in twelve tables and one appendix. The relationships of the communities to complex environmental gradients are analyzed using Correspondence Analysis. Floristic composition and community structure are controlled primarily by the altitudinal gradient (temperature, precipitation), and by mesotopographic conditions (snow accumulation, exposure and cryoturbation, slope position, and soil moisture).  相似文献   

12.
This study aimed to identify dominant plant communities across five wet and mesic meadows in the Sierra Nevada Range (California, USA) and examine the impacts of environmental and grazing gradients on plant community distribution and diversity. Species composition and environmental conditions were recorded in 100 plots over two years. Classification and ordination analyses were used to classify plant communities and identify relationships between community types and both environmental and grazing gradients. We identified the following six plant community types: Carex jonesii, Carex leporinella, Carex nebrascensis, Carex utriculata, Eleocharis pauciflora, and Veratrum californicum. We found strong connections between plant communities and water table variables, with low water table (r 2?=?0.56) and mean water table (r 2?=?0.30) significantly correlated with Axis 1 while high water table (r 2?=?0.29) and elevation were correlated with Axis 3 (r 2?=?0.49). We found significant differences among community types for all three water table variables and for elevation. We found no correlation between grazing and community type classification, but there was a significant difference in grazing levels among community types. The plant communities and relationships to water table found in this work may aid managers in understanding present conditions and identifying future changes in meadow ecosystems.  相似文献   

13.
We used ultrasonic telemetry to determine the movement directions and movement rates of leopard sharks, Triakis semifasciata, in Tomales Bay, California. To analyze tide and time of day effects, we surgically implanted transmitters in the peritoneal cavities of one male and five female leopard sharks, which we located during summer for three to five sampling sessions lasting 12 to 24h each. All leopard sharks showed strong movement direction patterns with tide. During incoming tides, sharks moved significantly (p<0.0001) towards the inner bay, apparently to exploit the extensive inner bay muddy littoral zones' food resources. On outgoing tides, sharks showed significant (p<0.0001) movements towards the outer bay. During high tide, there was no discernible pattern to their movements (p=0.092). Shark movement rates were significantly (p<0.0001) greater during dark periods (mean±SE: 10.5±1.0m min–1), compared with fully lighted ones (6.7±0.5m min–1). Movement rates of longer sharks tended to be greater than those of shorter ones (range means±SE: 5.8±0.6m min–1 for the 91cm shark, to 12.8±1.6m min–1 for the 119cm shark), but the leopard sharks' overall mean movement rate (8.1±0.5m min–1) was slower than other (more pelagic) sharks.  相似文献   

14.
Summary We studied habitat and morphological relationships of nine species of birds comprising a groundforaging guild within four distinct locations in northern California. Although the nine species overlapped extensively in habitat use, we observed subtle differences among species in specific characteristics of the habitats they used. About 40% of all cases were classified to the correct species based on a discriminant analysis (DA) of habitats across all study areas. Classification success from DAs on habitats within study areas ranged from 42 to 66%. Morphologies of species differed to varying degrees as 91% of all cases were classified to correct species by a DA of morphological variables. This morphological separation suggested that each species used different modes of obtaining resources. We found only weak relationships between habitat use and morphology. Morphology predicted from 13.6 to 19.0% of the variation in habitat use within each study area and only 13.9% of the habitat variation across all study areas. Habitat predicted from 6.2 to 14.6% of the morphological variation within each study area and 6.9% across all study areas. We suggest that complimentary relationships of habitat and morphology enabled species within this guild to use unique sets of resources.  相似文献   

15.
In order to establish a new biological method of treating sewage waste, mass cultures of the polychaete annelids, Neanthes japonica and Perinereis nuntia var. vallata, were employed. These species are known to ingest a large quantity of sewage sludge extracted from domestic sewage treatment plants. During this study, laboratory experiments were carried out to determine the effects of changes in various environmental factors on sludge consumption and growth. A pilot plant with an artificial tidal flat simulating natural estuarine tidal flat conditions was constructed and operated as a habitat for the polychaetes. The suitability of this artificial tidal flat for the treatment of sewage waste was discussed.  相似文献   

16.

Background and Aims

Soil chronosequences on marine terraces along the Pacific Coast of California and Oregon show evidence of podzolization, though soils ultimately evolve to Ultisols. It is not clear if this pathway of soil evolution can be extended to the humid, inland Oregon Coast Range.

Methods

We analyzed soil properties for a fluvial terrace chronosequence sampled along the Siuslaw River (Oregon, USA) about 50 km from the Pacific coast. The seven terraces ranged in age from <3.5 ky to nearly 1,000 ky.

Results

There was no evidence of early podsolization. Instead, evidence was found that andisolization starts early and occurs even in older soils when pedogenic iron accumulation and clay synthesis and illuviation dominate. Soils develop the morphology characteristic of Ultisols sometime between 20 and 70 ky, but high levels of oxalate extractable iron and aluminum satisfy criteria of an andic subgroup. Alfisols are not formed as an intermediary stage.

Conclusions

The lack of Spodosols inland is due to the inland shift from udic to ustic or xeric moisture regime, which favors summer drying and ripening of short-range order minerals rather than deep leaching or translocation. Other factors are higher pH, different organic chemistry and faster calcium cycling under the Douglas fir inland when compared to the Sitka spruce of the coastal terraces.  相似文献   

17.
Re-establishing plant cover is essential for restoring ecosystem functions, but revegetation can be difficult in severe sites, such as salt marshes that experience hypersalinity and sedimentation. We tested three treatments (adding tidal creeks, planting seedlings in tight clusters, and rototilling kelp compost into the soil) in a site that was excavated to reinstate tidal flows and restore salt marsh. The magnitude of responses was the reverse of expectations, with tidal creeks having the least effect and kelp compost the most. On the marsh plain, kelp compost significantly increased soil organic matter (by 17% at 0–5 cm; p = 0.026 and 11.5% at 5–20 cm; p = 0.083), total Kjeldahl nitrogen (45% at 5–8 cm; p < 0.001) and inorganic nitrogen (35% at 5–8 cm; p < 0.006), and decreased bulk density (16% at 0–5 cm; p < 0.001 and 21% at 5–8 cm depth; p < 0.001) compared to control plots. Survivorship of kelp compost treated plantings increased, along with growth (> 50% increase in a growth index at 20 months after planting; p < 0.0001). In Spartina foliosa plots, kelp compost did not affect soil organic matter, but plants were taller (by ~11 cm; p = 0.003) and denser (47% more stems; p = 0.003). Planting seedlings 10-cm apart in tight clusters on the marsh plain increased survivorship by 18% (compared to 90-cm apart in loose clusters; p = 0.053), but not growth. Tidal creek networks increased survivorship of Batis maritima and Jaumea carnosa by ≥20% (p = 0.060 and 0.077, respectively). Kelp compost had a strong, positive influence on vegetation establishment by ameliorating some of the abiotic stress.  相似文献   

18.
Ecological responses to 50-year old manipulations of snow depth and melt timing were assessed using snow fences arrayed across 50 km of a shrub–conifer landscape mosaic in eastern California, USA. We compared how increased, decreased, and ambient snow depth affected patterns of vegetation community composition, fire fuel accumulation, and annual tree ring growth. We also tested the effect of snow depth on soil carbon storage based on total C content under the two co-dominant shrub species (Artemisia tridentata and Purshia tridentata) in comparison with open, intershrub sites. Increased snow depth reduced the cover of the N-fixing shrub P. tridentata but not the water-redistributing shrub A. tridentata. Annual ring growth was greater on +snow plots and lower on ?snow plots for the conifer Pinus jeffreyi but not for Pinus contorta. Graminoid cover and aboveground biomass indicated higher fire fuel accumulation where snow depth was increased. Dead shrub stem biomass was greater regardless of whether snow depth was increased or decreased. Results demonstrate community shifts, altered tree growth, feedbacks on carbon storage, and altered fire fuel accumulation as a result of changes in snow depth and melt timing for this high-elevation, snow-dominated ecotone under future climate scenarios that envision increased or decreased snow depth.  相似文献   

19.
Zodletone spring in Oklahoma is a unique environment with high concentrations of dissolved-sulfide (10 mm) and short-chain gaseous alkanes, exhibiting characteristics that are reminiscent of conditions that are thought to have existed in Earth's history, in particular the late Archean and early-to-mid Proterozoic. Here, we present a process-oriented investigation of the microbial community in two distinct mat formations at the spring source, (1) the top of the sediment in the source pool and (2) the purple streamers attached to the side walls. We applied a combination of pigment and lipid biomarker analyses, while functional activities were investigated in terms of oxygen production (microsensor analysis) and carbon utilization ((13)C incorporation experiments). Pigment analysis showed cyanobacterial pigments, in addition to pigments from purple sulfur bacteria (PSB), green sulfur bacteria (GSB) and Chloroflexus-like bacteria (CLB). Analysis of intact polar lipids (IPLs) in the source sediment confirmed the presence of phototrophic organisms via diacylglycerol phospholipids and betaine lipids, whereas glyceroldialkylglyceroltetraether additionally indicated the presence of archaea. No archaeal IPLs were found in the purple streamers, which were strongly dominated by betaine lipids. (13)C-bicarbonate- and -acetate-labeling experiments indicated cyanobacteria as predominant phototrophs in the source sediment, carbon was actively fixed by PSB/CLB/GSB in purple streamers by using near infrared light. Despite the presence of cyanobacteria, no oxygen could be detected in the presence of light, suggesting anoxygenic photosynthesis as the major metabolic process at this site. Our investigations furthermore indicated photoheterotrophy as an important process in both habitats. We obtained insights into a syntrophically operating phototrophic community in an ecosystem that bears resemblance to early Earth conditions, where cyanobacteria constitute an important contributor to carbon fixation despite the presence of high sulfide concentrations.  相似文献   

20.
Out-migrating juvenile Chinook Salmon Oncorhynchus tshawytscha in California’s Central Valley lack frequent access to historical off-channel habitats such as floodplains. However, many regions have agricultural floodplains that may provide habitat value to young salmon. To determine the suitability of agricultural floodplain, this study tested whether winter-inundated rice fields in a historic flood basin in California’s Central Valley could provide adequate food resources for rearing juvenile Chinook Salmon. We examined the suitability of flooded rice fields for three post-harvest habitat types: stubble, fallow, and disced. Soil emergent and pelagic zooplankton communities were compared to determine colonization sources. Winter-inundated rice fields had high densities of zooplankton, which increased over the course of the study. Daphnia pulex, a large-bodied cladoceran and an excellent forage species of juvenile Chinook Salmon, was abundant in our study. Cladocerans colonized via source water while ostracods likely colonized from a soil egg bank. Overall, there was no discernable effect of habitat type on zooplankton community structure or density, except for D. pulex. Our results suggest that flooded agricultural rearing habitat can support juvenile Chinook Salmon based on high densities of zooplankton and other suitable habitat conditions have the potential to support a robust aquatic food web.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号