首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.

Background

There is an increasing demand for accurate biomarkers for early non-invasive colorectal cancer detection. We employed a genome-scale marker discovery method to identify and verify candidate DNA methylation biomarkers for blood-based detection of colorectal cancer.

Methodology/Principal Findings

We used DNA methylation data from 711 colorectal tumors, 53 matched adjacent-normal colonic tissue samples, 286 healthy blood samples and 4,201 tumor samples of 15 different cancer types. DNA methylation data were generated by the Illumina Infinium HumanMethylation27 and the HumanMethylation450 platforms, which determine the methylation status of 27,578 and 482,421 CpG sites respectively. We first performed a multistep marker selection to identify candidate markers with high methylation across all colorectal tumors while harboring low methylation in healthy samples and other cancer types. We then used pre-therapeutic plasma and serum samples from 107 colorectal cancer patients and 98 controls without colorectal cancer, confirmed by colonoscopy, to verify candidate markers. We selected two markers for further evaluation: methylated THBD (THBD-M) and methylated C9orf50 (C9orf50-M). When tested on clinical plasma and serum samples these markers outperformed carcinoembryonic antigen (CEA) serum measurement and resulted in a high sensitive and specific test performance for early colorectal cancer detection.

Conclusions/Significance

Our systematic marker discovery and verification study for blood-based DNA methylation markers resulted in two novel colorectal cancer biomarkers, THBD-M and C9orf50-M. THBD-M in particular showed promising performance in clinical samples, justifying its further optimization and clinical testing.  相似文献   

2.

Background

Serum markers represent potential tools for the detection of colorectal cancer (CRC). The aim of this study was to obtain proteomic expression profiles and identify serum markers for the early detection of CRC.

Methods

Proteomic profiles of serum samples collected from 35 healthy volunteers, 35 patients with advanced colorectal adenoma (ACA), and 40 patients with CRC were compared using Clinprot technology. Using enzyme-linked immunosorbent assays (ELISAs), 366 sera samples were additionally analyzed, and immunohistochemistry studies of 400 tissues were used to verify the expression of kininogen-1 and its value in the early detection of CRC.

Results

Predicting models were established among the three groups, and kininogen-1 was identified as a potential marker for CRC using Clinprot technology. ELISAs also detected significantly higher serum kininogen-1 levels in ACA and CRC patients compared to controls (P<0.05). Furthermore, the area under the receiver operating characteristic curve (AUC) for serum kininogen-1 in the diagnosis of ACA was 0.635 (P = 0.003), and for serum carcinoembryonic antigen (CEA) was 0.453 (P = 0.358). The sensitivity, specificity, and accuracy of serum kininogen-1 for diagnosing Duke’s stage A and B CRC was 70.13%, 65.88%, and 67.90%, respectively, whereas serum CEA was 38.96%, 85.88%, and 63.58%, respectively. Moreover, immunohistochemistry showed that expression of kininogen-1 was significantly higher in CRC and ACA tissues than in normal mucosa (48.39% vs. 15.58% vs. 0%, P<0.05).

Conclusions

These results suggest that Clinprot technology provides a useful tool for the diagnosis of CRC, and kininogen-1 is a potential serum biomarker for the early detection of advanced colorectal adenoma and CRC.  相似文献   

3.

Background

Circulating cell-free DNA (cfDNA) in plasma has shown potential as biomarker in various cancers and could become an importance source for tumour mutation detection. The objectives of our study were to establish a normal range of cfDNA in a cohort of healthy individuals and to compare this with four cohorts of metastatic colorectal cancer (mCRC) patients. We also investigated the prognostic value of cfDNA and analysed the tumour-specific KRAS mutations in the plasma.

Methods

The study was a prospective biomarker evaluation in four consecutive Phase II trials, including 229 patients with chemotherapy refractory mCRC and 100 healthy individuals. Plasma was obtained from an EDTA blood-sample, and the total number of DNA alleles and KRAS mutated alleles were assessed using an in-house ARMS-qPCR as previously described.

Results

Median cfDNA levels were higher in mCRC compared to controls (p <0.0001). ROC analysis revealed an AUC of 0.9486 (p<0.00001). Data showed impaired OS with increasing levels of baseline cfDNA both when categorising patients by quartiles of cfDNA and into low or high cfDNA groups based on the upper normal range of the control group (Median OS 10.2 (8.3–11.7) and 5.2 (4.6–5.9) months, respectively, HR 1.78, p = 0.0006). Multivariate analysis confirmed an independent prognostic value of cfDNA (HR 1.5 (95% CI 1.3–1.7) for each increase in the cfDNA quartile). The overall concordance of KRAS mutations in plasma and tissue was high (85%).

Conclusions

These data confirm the prognostic value of cfDNA measurement in plasma and utility for mutation detection with the method presented.  相似文献   

4.
Biomarkers are deemed to be potential tools in early diagnosis, therapeutic monitoring, and prognosis evaluation for cancer, with simplicity as well as economic advantages compared with computed tomography and biopsy. However, most of the current cancer biomarkers present insufficient sensitivity as well as specificity. Therefore, there is urgent requirement for the discovery of biomarkers for cancer. As one of the most exciting emerging technologies, protein array provides a versatile and robust platform in cancer proteomics research because it shows tremendous advantages of miniaturized features, high throughput, and sensitive detections in last decades. Here, we will present a relatively complete picture on the characteristics and advance of different types of protein arrays in application for biomarker discovery in cancer, and give the future perspectives in this area of research.  相似文献   

5.
Phosphorylated signaling molecules are biomarkers of cancer pathophysiology and resistance to therapy, but because phosphoprotein analytes are often labile, poorly controlled clinical laboratory practices could prevent translation of research findings in this area from the bench to the bedside. We therefore compared multiple biomarker and phosphoprotein immunohistochemistry (IHC) results in 23 clinical colorectal carcinoma samples after either a novel, rapid tissue fixation protocol or a standard tissue fixation protocol employed by clinical laboratories, and we also investigated the effect of a defined post-operative “cold” ischemia period on these IHC results. We found that a one-hour cold ischemia interval, allowed by ASCO/CAP guidelines for certain cancer biomarker assays, is highly deleterious to certain phosphoprotein analytes, specifically the phosphorylated epidermal growth factor receptor (pEGFR), but shorter ischemic intervals (less than 17 minutes) facilitate preservation of phosphoproteins. Second, we found that a rapid 4-hour, two temperature, formalin fixation yielded superior staining in several cases with select markers (pEGFR, pBAD, pAKT) compared to a standard overnight room temperature fixation protocol, despite taking less time. These findings indicate that the future research and clinical utilities of phosphoprotein IHC for assessing colorectal carcinoma pathophysiology absolutely depend upon attention to preanalytical factors and rigorously controlled tissue fixation protocols.  相似文献   

6.

Purpose

Prostate cancer is a bimodal disease with aggressive and indolent forms. Current prostate-specific-antigen testing and digital rectal examination screening provide ambiguous results leading to both under-and over-treatment. Accurate, consistent diagnosis is crucial to risk-stratify patients and facilitate clinical decision making as to treatment versus active surveillance. Diagnosis is currently achieved by needle biopsy, a painful procedure. Thus, there is a clinical need for a minimally-invasive test to determine prostate cancer aggressiveness. A blood sample to predict Gleason score, which is known to reflect aggressiveness of the cancer, could serve as such a test.

Materials and Methods

Blood mRNA was isolated from North American and Malaysian prostate cancer patients/controls. Microarray analysis was conducted utilizing the Affymetrix U133 plus 2·0 platform. Expression profiles from 255 patients/controls generated 85 candidate biomarkers. Following quantitative real-time PCR (qRT-PCR) analysis, ten disease-associated biomarkers remained for paired statistical analysis and normalization.

Results

Microarray analysis was conducted to identify 85 genes differentially expressed between aggressive prostate cancer (Gleason score ≥8) and controls. Expression of these genes was qRT-PCR verified. Statistical analysis yielded a final seven-gene panel evaluated as six gene-ratio duplexes. This molecular signature predicted as aggressive (ie, Gleason score ≥8) 55% of G6 samples, 49% of G7(3+4), 79% of G7(4+3) and 83% of G8-10, while rejecting 98% of controls.

Conclusion

In this study, we have developed a novel, blood-based biomarker panel which can be used as the basis of a simple blood test to identify men with aggressive prostate cancer and thereby reduce the overdiagnosis and overtreatment that currently results from diagnosis using PSA alone. We discuss possible clinical uses of the panel to identify men more likely to benefit from biopsy and immediate therapy versus those more suited to an “active surveillance” strategy.  相似文献   

7.
8.

Introduction

For both patients and the outpatient clinic the frequent follow-up visits after a resection of colorectal cancer (CRC) are time consuming and due to large patient numbers expensive. Therefore it is important to develop an effective non-invasive test for the detection of colorectal liver metastasis (CRLM) which could be used outside the hospital. The urine proteome is known to provide detailed information for monitoring changes in the physiology of humans. Urine collection is non-invasive and urine naturally occurring peptides (NOPs) have the advantage of being easily accessible without labour-intensive sample preparation. These advantages make it potentially useful for a quick and reliable application in clinical settings. In this study, we will focus on the identification and validation of urine NOPs to discriminate patients with CRLM from healthy controls.

Materials and Methods

Urine samples were collected from 24 patients with CRLM and 25 healthy controls. In the first part of the study, samples were measured with a nano liquid chromatography (LC) system (Thermo Fisher Scientific, Germaring, Germany) coupled on-line to a hybrid linear ion trap/Orbitrap mass spectrometer (LTQ-Orbitrap-XL, Thermo Fisher Scientific, Bremen, Germany). A discovery set was used to construct the model and consecutively the validation set, being independent from the discovery set, to check the acquired model. From the peptides which were selected, multiple reaction monitoring (MRM''s) were developed on a UPLC-MS/MS system.

Results

Seven peptides were selected and applied in a discriminant analysis a sensitivity of 84.6% and a specificity of 92.3% were established (Canonical correlation:0.797, Eigenvalue:1.744, F:4.49, p:0.005). The peptides AGPP(-OH)GEAGKP(-OH)GEQGVP(-OH)GDLGA P(-OH)GP and KGNSGEP(-OH)GAPGSKGDTGAKGEP(-OH)GPVG were selected for further quantitative analysis which showed a sensitivity of 88% and a specificity of 88%.

Conclusion

Urine proteomic analysis revealed two very promising peptides, both part from collagen type 1, AGPP(-OH)GEAGKP(-OH)GEQGVP(-OH)GDLGAP(-OH)GP and KGNSGEP(-OH)GAPGSKGDTGAKGEP(-OH)GPVG which could detect CRLM in a non-invasive manner.  相似文献   

9.
Over the last few years, circulating microRNAs (miRNAs) have emerged as promising novel and minimally invasive markers for various diseases, including cancer. We already showed that certain miRNAs are deregulated in the plasma of breast cancer patients when compared to healthy women. Herein we have further explored their potential to serve as breast cancer early detection markers in blood plasma. Circulating miR-127-3p, miR-376a and miR-652, selected as candidates from a miRNA array-based screening, were found to be associated with breast cancer for the first time (n = 417). Further we validated our previously reported circulating miRNAs (miR-148b, miR-376c, miR-409-3p and miR-801) in an independent cohort (n = 210) as elevated in the plasma of breast cancer patients compared to healthy women. We described, for the first time in breast cancer, an over-representation of deregulated miRNAs (miR-127-3p, miR-376a, miR-376c and miR-409-3p) originating from the chromosome 14q32 region. The inclusion of patients with benign breast tumors enabled the observation that miR-148b, miR-652 and miR-801 levels are even elevated in the plasma of women with benign tumors when compared to healthy controls. Furthermore, an analysis of samples stratified by cancer stage demonstrated that miR-127-3p, miR-148b, miR-409-3p, miR-652 and miR-801 can detect also stage I or stage II breast cancer thus making them attractive candidates for early detection. Finally, ROC curve analysis showed that a panel of these seven circulating miRNAs has substantial diagnostic potential with an AUC of 0.81 for the detection of benign and malignant breast tumors, which further increased to 0.86 in younger women (up to 50 years of age).  相似文献   

10.
11.

Background

Survivin is expressed in prostate cancer (PCa), and its downregulation sensitizes PCa cells to chemotherapeutic agents in vitro and in vivo. Small membrane-bound vesicles called exosomes, secreted from the endosomal membrane compartment, contain RNA and protein that they readily transport via exosome internalization into recipient cells. Recent progress has shown that tumor-derived exosomes play multiple roles in tumor growth and metastasis and may produce these functions via immune escape, tumor invasion and angiogenesis. Furthermore, exosome analysis may provide novel biomarkers to diagnose or monitor PCa treatment.

Methods

Exosomes were purified from the plasma and serum from 39 PCa patients, 20 BPH patients, 8 prostate cancer recurrent and 16 healthy controls using ultracentrifugation and their quantities and qualities were quantified and visualized from both the plasma and the purified exosomes using ELISA and Western blotting, respectively.

Results

Survivin was significantly increased in the tumor-derived samples, compared to those from BPH and controls with virtually no difference in the quantity of Survivin detected in exosomes collected from newly diagnosed patients exhibiting low (six) or high (nine) Gleason scores. Exosome Survivin levels were also higher in patients that had relapsed on chemotherapy compared to controls.

Conclusions

These studies demonstrate that Survivin exists in plasma exosomes from both normal, BPH and PCa subjects. The relative amounts of exosomal Survivin in PCa plasma was significantly higher than in those with pre-inflammatory BPH and control plasma. This differential expression of exosomal Survivin was seen with both newly diagnosed and advanced PCa subjects with high or low-grade cancers. Analysis of plasma exosomal Survivin levels may offer a convenient tool for diagnosing or monitoring PCa and may, as it is elevated in low as well as high Gleason scored samples, be used for early detection.  相似文献   

12.
Colorectal cancer (CRC) is the second leading cause of cancer-related death in developed countries. Early detection of CRC leads to decreased CRC mortality. A blood-based CRC screening test is highly desirable due to limited invasiveness and high acceptance rate among patients compared to currently used fecal occult blood testing and colonoscopy. Here we describe the discovery and validation of a 29-gene panel in peripheral blood mononuclear cells (PBMC) for the detection of CRC and adenomatous polyps (AP). Blood samples were prospectively collected from a multicenter, case-control clinical study. First, we profiled 93 samples with 667 candidate and 3 reference genes by high throughput real-time PCR (OpenArray system). After analysis, 160 genes were retained and tested again on 51 additional samples. Low expressed and unstable genes were discarded resulting in a final dataset of 144 samples profiled with 140 genes. To define which genes, alone or in combinations had the highest potential to discriminate AP and/or CRC from controls, data were analyzed by a combination of univariate and multivariate methods. A list of 29 potentially discriminant genes was compiled and evaluated for its predictive accuracy by penalized logistic regression and bootstrap. This method discriminated AP >1cm and CRC from controls with a sensitivity of 59% and 75%, respectively, with 91% specificity. The behavior of the 29-gene panel was validated with a LightCycler 480 real-time PCR platform, commonly adopted by clinical laboratories. In this work we identified a 29-gene panel expressed in PBMC that can be used for developing a novel minimally-invasive test for accurate detection of AP and CRC using a standard real-time PCR platform.  相似文献   

13.
Blood-based early detection of breast cancer has recently gained novel momentum, as liquid biopsy diagnostics is a fast emerging field. In this study, we aimed to identify secreted proteins which are up-regulated both in tumour tissue and serum samples of breast cancer patients compared to normal tissue and sera. Based on two independent tissue cohorts (n = 75 and n = 229) and one serum cohort (n = 80) of human breast cancer and healthy serum samples, we characterised AGR3 as a novel potential biomarker both for breast cancer prognosis and early breast cancer detection from blood. AGR3 expression in breast tumours is significantly associated with oestrogen receptor α (P<0.001) and lower tumour grade (P<0.01). Interestingly, AGR3 protein expression correlates with unfavourable outcome in low (G1) and intermediate (G2) grade breast tumours (multivariate hazard ratio: 2.186, 95% CI: 1.008-4.740, P<0.05) indicating an independent prognostic impact. In sera analysed by ELISA technique, AGR3 protein concentration was significantly (P<0.001) elevated in samples from breast cancer patients (n = 40, mainly low stage tumours) compared to healthy controls (n = 40). To develop a suitable biomarker panel for early breast cancer detection, we measured AGR2 protein in human serum samples in parallel. The combined AGR3/AGR2 biomarker panel achieved a sensitivity of 64.5% and a specificity of 89.5% as shown by receiver operating characteristic (ROC) curve statistics. Thus our data clearly show the potential usability of AGR3 and AGR2 as biomarkers for blood-based early detection of human breast cancer.  相似文献   

14.
发展了一种可用于快速检测K-ras癌基因点突变的电化学发光PCR(ECL-PCR)分析方法,该法采用三联吡啶钌标记的上游引物和生物素标记的下游引物对目的片段进行PCR扩增;随后,采用限制性内切酶MvaI对扩增产物进行酶切,由于突变导致酶切位点的丢失,所以只有野生型样品能被切断;通过生物素与链霉亲和素包被的磁珠连接,将生物素标记的DNA片段收集到反应池中进行电化学发光检测。采用该法对20例结肠癌组织中的K-ras癌基因第12位密码子进行点突变分析,得出其中有9例存在点突变,点突变率为45%。该方法操作简便、安全、快速、灵敏,可用于快速检测K-ras癌基因点突变。  相似文献   

15.
This work outlines the synthesis of a non-emissive, cyclometalated Ir(III) complex, Ir(ppy)2(H2O)2+ (Ir1), which elicits a rapid, long-lived phosphorescent signal when coordinated to a histidine-containing protein immobilized on the surface of a magnetic particle. Synthesis of Ir1, in high yields,is complete O/N and involves splitting of the parent cyclometalated Ir(III) chloro-bridged dimer into two equivalents of the solvated complex.To confirm specificity, several amino acids were probed for coordination activity when added to the synthesized probe, and only histidine elicited a signal response. Using BNT-II, a branched peptide mimic of the malarial biomarker Histidine Rich Protein II (pfHRP-II), the iridium probe was validated as a tool for HRP-II detection. Quenching effects were noted in the BNT-II/Ir1 titration when compared to L-Histidine/Ir1, but these were attributed to steric hindrance and triplet state quenching. Biolayer interferometry was used to determine real-time kinetics of interaction of Ir1 with BNT-II. Once the system was optimized, the limit of detection of rcHRP-II using the probe was found to be 12.8 nM in solution. When this protein was immobilized on the surface of a 50 µm magnetic agarose particle, the limit of detection was 14.5 nM. The robust signal response of this inorganic probe, as well as its flexibility of use in solution or immobilized on a surface, can lend itself toward a variety of applications, from diagnostic use to imaging.  相似文献   

16.
Hyaluronan-linked protein 1 (HAPLN1) which has been shown to be highly expressed in malignant pleural mesotheliomas (MPM), was detected in serum using an electrochemical surface-imprinting method. First, the detection method was optimized using Bovine serum albumin (BSA) as a model protein to mimic the optimal conditions required to imprint the similar molecular weight protein HAPLN1. BSA was imprinted on the gold electrode with hydroxyl terminated alkane thiols, which formed a self-assembled monolayer (SAM) around BSA. The analyte (BSA) was then washed away and its imprint (empty cavity with shape-memory) was used for detection of BSA in a solution, using electrochemical open-circuit potential method, namely potentiometry. Factors considered to optimize the conditions include incubation time, protein concentration, limit of detection and size of electrode. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was used to confirm selectivity of imprints. With the obtained imprinting control parameters, HAPLN1 was imprinted in duplicate and the detection of spiked HAPLN1 was successfully conducted in serum.  相似文献   

17.
Background:Colorectal cancer (CRC) is still considered one of the prevalent cancers worldwide. Investigation of potential biomarkers for early detection of CRC is essential for the effective management of patients using therapeutic strategies. Considering that, this study was aimed to examine the changes in lncRNA FOXD2-AS1 expression through colorectal tumorigenesis. Methods:Fifty CRC tumor tissues and fifty adjacent normal tissue samples were prepared and involved in the current study. Total RNA was extracted from the samples and then reverse transcribed to complementary DNA. Next, the expression levels of lncRNA FOXD2-AS1 were evaluated using real-time PCR in CRC samples compared to normal ones. Also, receiver operating characteristic curve analysis was used to evaluate the diagnostic value of FOXD2-AS1 for CRC.Results:The obtained results showed that the expression level of FOXD2-AS1 gene was significantly (p<0.0001) up-regulated in tumor tissues compared to normal marginal tissues. Also, a significant correlation was observed between higher the expression of FOXD2-AS1and the differentiation of tumor cells. Furthermore, ROC curve analysis estimated an AUC value of 0.59 for FOXD2-AS1, suggesting its potential as a diagnostic target.Conclusion:Taken together, the current study implied that tissue-specific upregulation of lncRNA FOXD2-AS1 might be appropriate diagnostic biomarkers for CRC. Nonetheless, more studies are needed to validate these results and further illustrate FOXD2-AS1 function through colorectal tumorigenesis.Key Words: Biomarker, Colorectal cancer, FOXD2-AS1, lncRNA, qRT-PC  相似文献   

18.
19.
Solid tumors exist in a hypoxic microenvironment, and possess high-glycolytic metabolites. To avoid the acidosis, tumor cells must exhibit a dynamic cytosolic pH regulation mechanism(s). The voltage-gated proton channel Hv1 mediates NADPH oxidase function by compensating cellular loss of electrons with protons. Here, we showed for the first time, that Hv1 expression is increased in colorectal tumor tissues and cell lines, associated with poor prognosis. Immunohistochemistry showed that Hv1 is strongly expressed in adenocarcinomas but not or lowly expressed in normal colorectal or hyperplastic polyps. Hv1 expression in colorectal cancer is significantly associated with the tumor size, tumor classification, lymph node status, clinical stage and p53 status. High Hv1 expression is associated significantly with shorter overall and recurrence-free survival. Furthermore, real-time RT-PCR and immunocytochemistry showed that Hv1 is highly expressed in colorectal cancer cell lines, SW620, HT29, LS174T and Colo205, but not in SW480. Inhibitions of Hv1 expression and activity in the highly metastatic SW620 cells by small interfering RNA (siRNA) and Zn2+ respectively, markedly decrease the cell invasion and migration, restraint proton extrusion and the intracellular pH recovery. Our results suggest that Hv1 may be used as a potential biomarker for diagnosis and prognosis of colorectal carcinoma, and a potential target for anticancer drugs in colorectal cancer therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号