首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial heterogeneity in the plant species composition of tropical forests is expected to influence animal species abundance and composition because vegetation constitutes the primary habitat feature for forest animals. Floristic variation is tied to variation in soils, so edaphic properties should ultimately influence animal species composition as well. The study of covariation in floristic and faunistic turnover has been hindered by the difficulty of completing coordinated surveys in hyperdiverse tropical communities, but this can be overcome with the use of a few plant taxa that function as surrogates for general floristic turnover. We used avian and plant transect surveys and soil sampling in a western Amazonian upland (terra firme) forest landscape to test whether spatial variation in bird community composition is associated with floristic turnover and corresponding edaphic gradients. Partial Mantel tests and Non‐metric Multidimensional Scaling showed floristic distinctiveness between two forest types closely associated with differences in soil cation concentrations, and differences in both floristic composition and cation concentrations were further linked to compositional differences in avian species, independent of geographic distances among sites. Ten percent of bird species included in Indicator Species Analyses showed significant associations with one of the two forest types. The upland forest types that we sampled, each corresponding to a different geological formation, are intermediate relative to edaphically extreme environments in the region. Models of avian diversification should take into account this environmental heterogeneity, as should conservation planning approaches that aim to represent faunal diversity. Abstract in Spanish is available in the online version of this article.  相似文献   

2.
Amazonian rivers have been proposed to act as geographic barriers to species dispersal, either driving allopatric speciation or defining current distribution limits. The strength of the barrier varies according to the species’ ecological characteristics and the river's physical properties. Environmental heterogeneity may also drive compositional changes but has not been well assessed in Amazonia. Aiming to understand the contributions of riverine barriers and environmental heterogeneity in shaping compositional changes in Amazonian forest bird assemblages, we focus on the Tapajós River. We investigate how spatial variation in species composition is related to physical barriers (Tapajós and Jamanxim rivers), species’ ecological characteristics (distinct guilds), and environmental heterogeneity (canopy reflectance, soils, and elevation). We sampled birds through point-counts and mist nets on both banks of the Tapajós and Jamanxim rivers. To test for relationships between bird composition and environmental data, we used Mantel and partial Mantel tests, NMDS, and ANOVA + Tukey HSD. The Mantel tests showed that the clearest compositional changes occurred across the Tapajós River, which seems to act unequally as a significant barrier to the bird guilds. The Jamanxim River was not associated with differences in bird communities. Our results reinforce that the Tapajós River is a biogeographical boundary for birds, while environmental heterogeneity influences compositional variation within interfluves. We discuss the combined influence of geographical barriers, environmental heterogeneity, and ecological characteristics of species in shaping species distributions and community composition and the complexity of extrapolating the patterns found for birds to other Amazonian organisms. Abstract in Portuguese is available with online material.  相似文献   

3.
AIM: Conservation and land-use planning require accurate maps of patterns in species composition and an understanding of the factors that control them. Substantial doubt exists, however, about the existence and determinants of large-area floristic divisions in Amazonia. Here we ask whether Amazonian forests are partitioned into broad-scale floristic units on the basis of geological formations and their edaphic properties. LOCATION: Western and central Amazonia. METHODS: We used Landsat imagery and Shuttle Radar Topography Mission (SRTM) digital elevation data to identify a possible floristic and geological discontinuity of over 300 km in northern Peru. We then used plant inventories and soil sampling to document changes in species composition and soil properties across this boundary. Data were obtained from 138 sites distributed along more than 450 km of road and river. On the basis of our findings, we used broad-scale Landsat and SRTM mosaics to identify similar patterns across western and central Amazonia. RESULTS: The discontinuity identified in Landsat and SRTM data corresponded to a 15-fold change in soil cation concentrations and an almost total change in plant species composition. This discontinuity appears to be caused by the widespread removal of cation-poor surface sediments by river incision to expose cation-rich sediments beneath. Examination of broad-scale Landsat and SRTM mosaics indicated that equivalent processes have generated a north-south discontinuity of over 1500 km in western Brazil. Due to similarities with our study area, we suggest that this discontinuity represents a chemical and ecological limit between western and central Amazonia. MAIN CONCLUSIONS: Our findings suggest that Amazonian forests are partitioned into large-area units on the basis of geological formations and their edaphic properties. The evolution of these units through geological time may provide a general mechanism for biotic diversification in Amazonia. These compositional units, moreover, may correspond to broad-scale functional units. The existence of large-area compositional and functional units would suggest that protected-area, carbon sequestration, and other land-use strategies in Amazonia be implemented on a region-by-region basis. The methods described here can be used to map these patterns, and thus enable effective conservation and management of Amazonian forests.  相似文献   

4.
A more comprehensive understanding of the factors governing tropical tree community turnover at different spatial scales is needed to support land‐management and biodiversity conservation. We used new forest inventory data from 263 permanent plots in the Carnegie Biodiversity‐Biomass Forest Plot Network spanning the eastern Andes to the western Amazonian lowlands of Peru to examine environmental factors driving genus‐level canopy tree compositional variation at regional and landscape scales. Across the full plot network, constrained ordination analysis indicated that all environmental variables together explained 23.8% of the variation in community composition, while soil, topographic, and climatic variables each explained 15.2, 10.9, and 17.0%, respectively. A satellite‐derived metric of cloudiness was the single strongest predictor of community turnover, and constrained ordination revealed a primary gradient of environmentally‐driven community turnover spanning from cloudy, high elevation sites to warm, wet, lowland sites. For three focal landscapes within the region, local environmental variation explained 13.4–30.8% of compositional variation. Community turnover at the landscape scale was strongly driven by topo‐edaphic factors in the two lowland landscapes examined and strongly driven by potential insolation and topography in the montane landscape. At the regional scale, we found that the portion of compositional variation that was uniquely explained by spatial variation was relatively small (2.7%), and was effectively zero within the three focal landscapes. Overall, our results show strong canopy tree compositional turnover in response to environmental gradients at both regional and landscape scales, though the most important environmental drivers differed between scales and among landscapes. Our results also highlight the usefulness of key satellite‐derived environmental covariates that should be considered when conducting biodiversity analyses in tropical forests.  相似文献   

5.
The spatial heterogeneity of resource availability is a major driver of biodiversity patterns. Some environmental conditions and resources are characterized by large‐scale patterns of variation within the landscape. Clumped local discontinuities or discrete elements also increase spatial heterogeneity, promoting local ‘biodiversity hot spots’ by modifying habitat characteristics and promoting plant–animal interactions. Clay licks are faunal attractors owing to their role in the nutritional ecology of the user species; nevertheless, the effect of their presence on the surrounding vegetation has been poorly quantified. Here, we use data from 100 × 10 m transects and evaluate the effects of the presence of clay licks on forest diversity and structure at local and landscape scales. In clay lick areas, there was a higher abundance of certain species, which helps to homogenize species composition between localities counteracting the natural distance‐decay of compositional similarity between transects without clay lick influence (controls). Compared to control sites, clay lick′s forests had higher palm densities, shorter but more variable individuals in the canopy and understory, a thinner canopy layer, and denser herbaceous and ground level covers. These differences were found along the whole length of transects in both sampled areas types. These results reveal that the presence of discrete elements (i.e., clay licks) may help to explain the compositional and structural heterogeneity of Amazonian forests influencing ecological processes such as seed dispersal and trampling. These considerations may be relevant for other biomes where clay licks are present and give weight to their inclusion in conservation initiatives in tropical forests.  相似文献   

6.
? Canopy chemistry and spectroscopy offer insight into community assembly and ecosystem processes in high-diversity tropical forests, but phylogenetic and environmental factors controlling chemical traits underpinning spectral signatures remain poorly understood. ? We measured 21 leaf chemical traits and spectroscopic signatures of 594 canopy individuals on high-fertility Inceptisols and low-fertility Ultisols in a lowland Amazonian forest. The spectranomics approach, which explicitly connects phylogenetic, chemical and spectral patterns in tropical canopies, provided the basis for analysis. ? Intracrown and intraspecific variation in chemical traits varied from 1.4 to 36.7% (median 9.3%), depending upon the chemical constituent. Principal components analysis showed that 14 orthogonal combinations were required to explain 95% of the variation among 21 traits, indicating the high dimensionality of canopy chemical signatures among taxa. Inceptisols and lianas were associated with high leaf nutrient concentrations and low concentrations of defense compounds. Independent of soils or plant habit, an average 70% (maximum 89%) of chemical trait variation was explained by taxonomy. At least 10 traits were quantitatively linked to remotely sensed signatures, which provided highly accurate species classification. ? The results suggest that taxa found on fertile soils carry chemical portfolios with a deep evolutionary history, whereas taxa found on low-fertility soils have undergone trait evolution at the species level. Spectranomics provides a new connection between remote sensing and community assembly theory in high-diversity tropical canopies.  相似文献   

7.
Research to date on Amazonian swamps has reinforced the impression that tree communities there are dominated by a small, morphologically specialized subset of the regional flora capable of surviving physiologically challenging conditions. In this paper, using data from a large‐scale tree inventory in upland, floodplain, and mixed palm swamp forests in Amazonian Ecuador, we report that tree communities growing on well‐drained and saturated soils are more similar than previously appreciated. While our data support the traditional view of Amazonian swamp forests as low‐diversity tree communities dominated by palms, they also reveal four patterns that have not been well documented in the literature to date: 1) tree communities in these swamp forests are dominated by a phylogenetically diverse oligarchy of 30 frequent and common species; 2) swamp specialists account for < 10% of species and a minority of stems; 3) most tree species recorded in swamps (> 80%) also occur in adjacent well‐drained forest types; and 4) many tree species present in swamps are common in well‐drained forests (e.g. upland oligarchs account for 34.1% of all swamp stems). These observations imply that, as in the temperate zone, the composition and structure of Amazonian swamp vegetation are determined by a combination of local‐scale environmental filters (e.g. plant survival in permanently saturated soils) and landscape‐scale patterns and processes (e.g. the composition and structure of tree communities in adjacent non‐swamp habitats, the dispersal of propagules from those habitats to swamps). We conclude with suggestions for further research to quantify the relative contributions of these factors in structuring tree communities in Amazonian swamps.  相似文献   

8.
The Amazon harbours one of the richest ecosystems on Earth. Such diversity is likely to be promoted by plant specialization, associated with the occurrence of a mosaic of landscape units. Here, we integrate ecological and phylogenetic data at different spatial scales to assess the importance of habitat specialization in driving compositional and phylogenetic variation across the Amazonian forest. To do so, we evaluated patterns of floristic dissimilarity and phylogenetic turnover, habitat association and phylogenetic structure in three different landscape units occurring in terra firme (Hilly and Terrace) and flooded forests (Igapó). We established two 1-ha tree plots in each of these landscape units at the Caparú Biological Station, SW Colombia, and measured edaphic, topographic and light variables. At large spatial scales, terra firme forests exhibited higher levels of species diversity and phylodiversity than flooded forests. These two types of forests showed conspicuous differences in species and phylogenetic composition, suggesting that environmental sorting due to flood is important, and can go beyond the species level. At a local level, landscape units showed floristic divergence, driven both by geographical distance and by edaphic specialization. In terms of phylogenetic structure, Igapó forests showed phylogenetic clustering, whereas Hilly and Terrace forests showed phylogenetic evenness. Within plots, however, local communities did not show any particular trend. Overall, our findings suggest that flooded forests, characterized by stressful environments, impose limits to species occurrence, whereas terra firme forests, more environmentally heterogeneous, are likely to provide a wider range of ecological conditions and therefore to bear higher diversity. Thus, Amazonia should be considered as a mosaic of landscape units, where the strength of habitat association depends upon their environmental properties.  相似文献   

9.
Amazon forests are fire-sensitive ecosystems and consequently fires affect forest structure and composition. For instance, the legacy of past fire regimes may persist through some species and traits that are found due to past fires. In this study, we tested for relationships between functional traits that are classically presented as the main components of plant ecological strategies and environmental filters related to climate and historical fires among permanent mature forest plots across the range of local and regional environmental gradients that occur in Amazonia. We used percentage surface soil pyrogenic carbon (PyC), a recalcitrant form of carbon that can persist for millennia in soils, as a novel indicator of historical fire in old-growth forests. Five out of the nine functional traits evaluated across all 378 species were correlated with some environmental variables. Although there is more PyC in Amazonian soils than previously reported, the percentage soil PyC indicated no detectable legacy effect of past fires on contemporary functional composition. More species with dry diaspores were found in drier and hotter environments. We also found higher wood density in trees from higher temperature sites. If Amazon forest past burnings were local and without distinguishable attributes of a widespread fire regime, then impacts on biodiversity would have been small and heterogeneous. Alternatively, sufficient time may have passed since the last fire to allow for species replacement. Regardless, as we failed to detect any impact of past fire on present forest functional composition, if our plots are representative then it suggests that mature Amazon forests lack a compositional legacy of past fire.  相似文献   

10.
In closed‐canopy tropical forest understory, light availability is a significant determinant of habitat diversity because canopy structure is highly variable in most tropical forests. Consequently, variation in canopy cover affects the composition and distribution of plant species via creating variable light environments. Nevertheless, little is known about how variation in canopy openness structures patterns of plant–animal interactions. Because of the great diversity and dominance of ants in tropical environments, we used ant–plant interactions as a focal network to evaluate how variation in canopy cover influences patterns of plant–insect interactions in the Brazilian Amazon rain forest. We observed that small increases in canopy openness are associated with increased diversity of ant–plant interactions in our study area, and this change is independent of plant or ant species richness. Additionally, we found smaller niche overlap for both ants and plants associated with greater canopy openness. We hypothesize that enhanced light availability increases the breadth of ant foraging sources because variation in light availability gives rise to plant resources of different quality and amounts. Moreover, greater light availability promotes vegetative growth in plants, creating ant foraging ‘bridges’ between plants. In sum, our results highlight the importance of environmental heterogeneity as a determinant of ant–plant interaction diversity in tropical environments.  相似文献   

11.
We investigated how the phylogenetic structure of Amazonian plant communities varies along an edaphic gradient within the non‐inundated forests. Forty localities were sampled on three terrain types representing two kinds of soil: clayey soils of a high base cation concentration derived from the Solimões formation, and loamy soils with lower base cation concentration derived from the Içá formation and alluvial terraces. Phylogenetic community metrics were calculated for each locality for ferns and palms both with ferns as one group and for each of three fern clades with a crown group age comparable to that of palms. Palm and fern communities showed significant and contrasting phylogenetic signals along the soil gradient. Fern species richness increased but standard effect size of mean pairwise distance (SES.MPD) and variation of pairwise distances (VPD) decreased with increasing soil base cation concentration. In contrast, palm communities were more species rich on less cation‐rich soils and their SES.MPD increased with soil base cation concentration. Species turnover between the communities reflected the soil gradient slightly better when based on species occurrences than when phylogenetic distances between the species were considered. Each of the three fern subclades behaved differently from each other and from the entire fern clade. The fern clade whose phylogenetic patterns were most similar to those of palms also resembled palms in being most species‐rich on cation‐poor soils. The phylogenetic structuring of local plant communities varies along a soil base cation concentration gradient within non‐inundated Amazonian rain forests. Lineages can show either similar or different phylogenetic community structure patterns and evolutionary trajectories, and we suggest this to be linked to their environmental adaptations. Consequently, geological heterogeneity can be expected to translate into a potentially highly diverse set of evolutionarily distinct community assembly pathways in Amazonia and elsewhere.  相似文献   

12.
In a case-study from Colombian Amazonia, species information from ferns and Melastomataceae was used to explain the compositional patterns of other vascular plant species in 40 widely distributed 0.1-ha plots. Canonical correspondence analysis was applied to regress vascular plant species composition in the forests against information from these two indicator groups (summarized as axes of principal coordinate analyses), together with that from soils, landscape, and the spatial sampling design. In total, 53,941 individuals of 2480 vascular plant species were recorded. Of these, 17,473 individuals and 132 species were from ferns and Melastomataceae. In 19 well-drained upland (tierra firme) plots 19,622 vascular plant individuals and 1716 species were found, with 3793 plants and 91 species from ferns and Melastomataceae. In both the set of all landscapes and the subset of tierra firme forests the principal PCoA axes of the two indicator groups were highly related to the main patterns of forest species composition. In principle, therefore, ferns and Melastomataceae can be used to detect and forecast changes in the forest composition of the study area. However, evidence was not obtained that ferns and Melastomataceae show more potential to predict the main patterns in species composition of forests than soil, landscape, and spatial variables. The partioning of the total variation in forest composition showed that the correlation of ferns and Melastomataceae with other forest plants was quite independent from that of soil, landscape, and space. Direct effects of ferns and Melastomataceae on other plants might be obtained from experimental studies of between-plant interactions, concentrating on the seedling or juvenile stages of trees and lianas, both above-ground as well as in the rooting environment.  相似文献   

13.
Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights into the important ecological associations between understory plant community composition and heterogeneity in ecosystem properties and processes within forests dominated by a single canopy species.  相似文献   

14.
The only fully coupled land-atmosphere global climate model predicts a widespread dieback of Amazonian forest cover through reduced precipitation. Although these predictions are controversial, the structural and compositional resilience of Amazonian forests may also have been overestimated, as current vegetation models fail to consider the potential role of fire in the degradation of forest ecosystems. We examine forest structure and composition in the Arapiuns River basin in the central Brazilian Amazon, evaluating post-fire forest recovery and the consequences of recurrent fires for the patterns of dominance of tree species. We surveyed tree plots in unburned and once-burned forests examined 1, 3 and 9 years after an unprecedented fire event, in twice-burned forests examined 3 and 9 years after fire and in thrice-burned forests examined 5 years after the most recent fire event. The number of trees recorded in unburned primary forest control plots was stable over time. However, in both once- and twice-burned forest plots, there was a marked recruitment into the 10-20cm diameter at breast height tree size classes between 3 and 9 years post-fire. Considering tree assemblage composition 9 years after the first fire contact, we observed (i) a clear pattern of community turnover among small trees and the most abundant shrubs and saplings, and (ii) that species that were common in any of the four burn treatments (unburned, once-, twice- and thrice-burned) were often rare or entirely absent in other burn treatments. We conclude that episodic wildfires can lead to drastic changes in forest structure and composition, with cascading shifts in forest composition following each additional fire event. Finally, we use these results to evaluate the validity of the savannization paradigm.  相似文献   

15.
Higher trophic level interactions are key mediators of ecosystem functioning in tropical forests. A rich body of theory has been developed to predict the effects of plant diversity on communities at higher trophic levels and the mechanisms underlying such effects. The 'enemies hypothesis’ states that predators exert more effective top–down control of herbivorous insects with increasing plant diversity. Support for this hypothesis has been found in temperate forests and agroecosystems, but remains understudied in tropical forests. We compared incidence of attacks of different natural enemies using artificial caterpillars in a tropical forest landscape and investigated the role of plant community structure (i.e. species richness, composition and density), and the role of forest fragmentation (i.e. patch size, edge distance and canopy openness) on predation intensity. Plant community effects were tested with respect to three vegetation strata: trees, saplings and herbs. Observed predation was substantially due to ants. Predation rates increased with plant species richness for trees and herbs. Density of saplings, herb cover and herb species composition were important factors for predation. No significant patterns were found for fragmentation parameters, suggesting that forest fragmentation has not altered predation intensity. We conclude that in tropical forests, top–down control of herbivorous insects in the understory vegetation is affected by a combination of plant diversity, plant species composition and structural features of the plant community.  相似文献   

16.
Most plant species feature similar biochemical compositions and thus similar spectral signals. Still, empirical evidence suggests that the spectral discrimination of species and plant assemblages is possible. Success depends on the presence or absence of faint but detectable differences in biochemical (e.g., pigments, leaf water and dry matter content) and structural properties (e.g., leaf area, angle, and leaf structure), i.e., optical traits. A systematic analysis of the contributions and spatio-temporal variability of optical traits for the remote sensing of organismic vegetation patterns has not yet been conducted. We thus use time series of optical trait values retrieved from the reflectance signal using physical models (optical trait indicators, OTIs) to answer the following questions: How are optical traits related among patterns of floristic composition and reflectance? How variable are these relations in space and time? Are OTIs suitable predictors of plant species composition?We conducted a case study of three temperate open study sites with semi-natural vegetation. The canopy reflectance of permanent vegetation plots was measured on multiple dates over the vegetation period using a field spectrometer. We recorded the cover fractions of all plant species found in the vegetation plots and extracted gradients of species composition from these data. The physical PROSAIL leaf and canopy optical properties model was inverted with random forest regression models to retrieve time series of OTIs for each plot from the reflectance spectra. We analyzed these data sets using correlation analyses. This approach allowed us to assess the distribution of optical traits across gradients of species composition. The predictive performance of OTIs was tested in relation to canopy reflectance using random forest models.OTIs showed pronounced relationships with floristic patterns in all three study sites. These relationships were subject to considerable temporal variability. Such variability was driven by short-term vegetation dynamics introduced by local resource stress. In 72% of all cases OTIs out-performed the original canopy reflectance spectra as indicators of plant species composition. OTIs are also easier to interpret in an ecological sense than spectral bands or features. We thus conclude that optical traits retrieved from reflectance data have a high indicative value for ecological research and applications.  相似文献   

17.
Rates of tree growth in tropical forests reflect variation in life history strategies, contribute to the determination of species' distributional limits, set limits to timber harvesting and control the carbon balance of the stands. Here, we review the resources that limit tree growth at different temporal and spatial scales, and the different growth rates and responses of functional groups defined on the basis of regeneration strategy, maximum size, and species' associations with particular edaphic and climatic conditions.Variation in soil water availability determines intra- and inter-annual patterns of growth within seasonal forests, whereas irradiance may have a more important role in aseasonal forests. Nutrient supply limits growth rates in montane forests and may determine spatial variation in growth of individual species in lowland forests. However, its role in determining spatial variation in stand-level growth rates is unclear. In terms of growth rate, we propose a functional classification of tropical tree species which contrasts inherently fast-growing, responsive species (pioneer, large-statured species), from slow-growing species that are less responsive to increasing resource availability (shade-bearers, small-statured species). In a semi-deciduous forest in Ghana, pioneers associated with high-rainfall forests with less fertile soils, had significantly lower growth rates than pioneers that are more abundant in low-rainfall forests with more fertile soils. These results match patterns found in seedling trials and suggest for pioneers that species' associations with particular environmental conditions are useful indicators of maximum growth rate.The effects of variation in resource availability and of inherent differences between species on stand-level patterns of growth will not be independent if the functional group composition of tropical forests varies along resource gradients. We find that there is increasing evidence of such spatial shifts at both small and large scales in tropical forests. Quantifying these gradients is important for understanding spatial patterns in forest growth rates.  相似文献   

18.
Wildfire is the dominant disturbance in boreal forests and fire activity is increasing in these regions. Soil fungal communities are important for plant growth and nutrient cycling postfire but there is little understanding of how fires impact fungal communities across landscapes, fire severity gradients, and stand types in boreal forests. Understanding relationships between fungal community composition, particularly mycorrhizas, and understory plant composition is therefore important in predicting how future fire regimes may affect vegetation. We used an extreme wildfire event in boreal forests of Canada's Northwest Territories to test drivers of fungal communities and assess relationships with plant communities. We sampled soils from 39 plots 1 year after fire and 8 unburned plots. High‐throughput sequencing (MiSeq, ITS) revealed 2,034 fungal operational taxonomic units. We found soil pH and fire severity (proportion soil organic layer combusted), and interactions between these drivers were important for fungal community structure (composition, richness, diversity, functional groups). Where fire severity was low, samples with low pH had higher total fungal, mycorrhizal, and saprotroph richness compared to where severity was high. Increased fire severity caused declines in richness of total fungi, mycorrhizas, and saprotrophs, and declines in diversity of total fungi and mycorrhizas. The importance of stand age (a surrogate for fire return interval) for fungal composition suggests we could detect long‐term successional patterns even after fire. Mycorrhizal and plant community composition, richness, and diversity were weakly but significantly correlated. These weak relationships and the distribution of fungi across plots suggest that the underlying driver of fungal community structure is pH, which is modified by fire severity. This study shows the importance of edaphic factors in determining fungal community structure at large scales, but suggests these patterns are mediated by interactions between fire and forest stand composition.  相似文献   

19.

Background

Strong patterns of habitat association are frequent among tropical forest trees and contribute to the maintenance of biodiversity. The relation of edaphic differentiation to tradeoffs among leaf functional traits is less clear, but may provide insights into mechanisms of habitat partitioning in these species rich assemblages.

Methodology/Principal Findings

We quantify the leaf economics spectrum (LES) for 16 tree species within a Bornean forest characterized by highly pronounced habitat specialization. Our findings suggest that the primary axis of trait variation in light-limited, lowland tropical forests was identical to the LES and corresponds with the shade tolerance continuum. There was no separation with respect to edaphic variation along this primary axis of trait variation. However, a second orthogonal axis determined largely by foliar P concentrations resulted in a near-perfect separation of species occupying distinct soil types within the forest.

Conclusions/Significance

We suggest that this second axis of leaf trait variation represents a “leaf edaphic habitat spectrum” related to foliar P and potentially other nutrients closely linked to geological substrate, and may generally occur in plant communities characterized by strong edaphic resource gradients.  相似文献   

20.
We studied the ecological distribution of pteridophytes (ferns and fern allies) along eight 8-km transects covering 12.7 ha in Peruvian Amazonia. Subunits of 200 m2 of the transects have previously been classified into four different forest types, and here we document and quantify the floristic differences among these forest types. Pteridophytes have been suggested as an indicator group to classify rain forest habitats, but this requires that the ecological preferences of the species are well documented and consistent across geographic regions. Here we analyzed in detail the distribution and diversity patterns of 130 species across the four rain forest types. Relative species abundance and species diversity were similar among some of the forest types and differed among others, but the species composition differed markedly. Our results largely confirmed the earlier interpretation of the edaphic preferences of the pteridophyte species in western Amazonia. This supports the proposition that deterministic processes have an important role in influencing the floristic composition of Amazonian forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号