首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Women's preference for masculine faces varies with hormonal state, sociosexuality, and relationship status, but the underlying mechanisms are poorly understood. We hypothesized that hormones and psychosexual factors (sociosexuality, sexual inhibition/excitation) mediate the perception and evaluation of male faces thereby influencing women's preferences. We used functional magnetic resonance imaging to measure brain activity in 12 women as they evaluated pictures of male faces (half 30% masculinized, half 30% feminized). Participants were heterosexual women, age 23–28 years, who were not in a committed relationship and not using hormonal contraception. Women were tested during both the follicular and luteal phase of their menstrual cycle. We found five brain regions related to face and risk processing that responded more to the masculinized than to the feminized faces, including the superior temporal gyrus, precentral gyrus, posterior cingulate cortex, inferior parietal lobule, and anterior cingulate cortex. Increased activation in the anterior cingulate cortex, specifically, may indicate that women perceive masculinized faces to be both more risky and more attractive. We did not see any areas that were more strongly activated by feminized faces. Levels of activation were influenced by hormonal and psychosexual factors. The patterns of hormonally and psychosexually mediated neural activation observed may offer insight into the cognitive processes underlying women's partner preferences.  相似文献   

2.

Background

Research suggests that altered interregional connectivity in specific networks, such as the default mode network (DMN), is associated with cognitive and psychotic symptoms in schizophrenia. In addition, frontal and limbic connectivity alterations have been associated with trauma, drug use and urban upbringing, though these environmental exposures have never been examined in relation to DMN functional connectivity in psychotic disorder.

Methods

Resting-state functional MRI scans were obtained from 73 patients with psychotic disorder, 83 non-psychotic siblings of patients with psychotic disorder and 72 healthy controls. Posterior cingulate cortex (PCC) seed-based correlation analysis was used to estimate functional connectivity within the DMN. DMN functional connectivity was examined in relation to group (familial risk), group × environmental exposure (to cannabis, developmental trauma and urbanicity) and symptomatology.

Results

There was a significant association between group and PCC connectivity with the inferior parietal lobule (IPL), the precuneus (PCu) and the medial prefrontal cortex (MPFC). Compared to controls, patients and siblings had increased PCC connectivity with the IPL, PCu and MPFC. In the IPL and PCu, the functional connectivity of siblings was intermediate to that of controls and patients. No significant associations were found between DMN connectivity and (subclinical) psychotic/cognitive symptoms. In addition, there were no significant interactions between group and environmental exposures in the model of PCC functional connectivity.

Discussion

Increased functional connectivity in individuals with (increased risk for) psychotic disorder may reflect trait-related network alterations. The within-network “connectivity at rest” intermediate phenotype was not associated with (subclinical) psychotic or cognitive symptoms. The association between familial risk and DMN connectivity was not conditional on environmental exposure.  相似文献   

3.
带状疱疹后遗神经痛(postherpetic neuralgia,PHN)是临床上一种慢性顽固性神经病理性疼痛,然而,对于其潜在的中枢机制还知之甚少.为了进一步探讨带状疱疹后遗神经痛患者的相关脑区活动,利用功能核磁共振成像低频振幅振荡(ALFF)技术观察带状疱疹后遗神经痛患者的基础脑区活动.8名带状疱疹后遗神经痛患者与8名性别、年龄相匹配的健康者行静息态功能磁共振(f MRI)成像扫描,用SPM8中的多重回归分析,在控制被试年龄、性别、教育年限的影响下,将每个体素的ALFF值同每个被试的病程、视觉模拟评分(visual analog scale,VAS)进行相关分析.与健康志愿者相比,PHN组与VAS评分相关的ALFF值增高的脑区有:右侧小脑后叶、前额叶背外侧区域(BA11/46/47)、右侧顶叶(BA40)、右侧舌回(BA17/18/19);与VAS评分相关的ALFF值降低的脑区有:右侧颞中回(BA21)、左侧舌回(BA17/18)、右侧小脑前叶、左侧后扣带回(BA30/19)和右侧中央前回(BA3/4/6);PHN组与病程相关的ALFF值增高的脑区有:右侧小脑后叶、前额叶背外侧区域(BA9/10/11/47)、左侧颞上回(BA38)、右侧顶叶和右侧舌回(BA17/18/19);与病程相关ALFF值降低的脑区有:左侧海马旁回(BA28)、右侧小脑前叶、左侧扣带回(BA24)、右侧颞上回(BA13)、左侧中央前回和右侧顶下小叶(BA39/40).研究结果提示,涉及疼痛的情绪、警觉行为、注意的脑区在带状疱疹后遗痛慢性疼痛的产生和维持中发挥重要作用.  相似文献   

4.
Perception of pain in others via facial expressions has been shown to involve brain areas responsive to self-pain, biological motion, as well as both performed and observed motor actions. Here, we investigated the involvement of these different regions during emotional and motor mirroring of pain expressions using a two-task paradigm, and including both observation and execution of the expressions. BOLD responses were measured as subjects watched video clips showing different intensities of pain expression and, after a variable delay, either expressed the amount of pain they perceived in the clips (pain task), or imitated the facial movements (movement task). In the pain task condition, pain coding involved overlapping activation across observation and execution in the anterior cingulate cortex, supplementary motor area, inferior frontal gyrus/anterior insula, and the inferior parietal lobule, and a pain-related increase (pain vs. neutral) in the anterior cingulate cortex/supplementary motor area, the right inferior frontal gyrus, and the postcentral gyrus. The ‘mirroring’ response was stronger in the inferior frontal gyrus and middle temporal gyrus/superior temporal sulcus during the pain task, and stronger in the inferior parietal lobule in the movement task. These results strongly suggest that while motor mirroring may contribute to the perception of pain expressions in others, interpreting these expressions in terms of pain content draws more heavily on networks involved in the perception of affective meaning.  相似文献   

5.
Functional neuroimaging studies of epilepsy patients often show, at the time of epileptic activity, deactivation in default mode network (DMN) regions, which is hypothesized to reflect altered consciousness. We aimed to study the metabolic and electrophysiological correlates of these changes in the DMN regions. We studied six epilepsy patients that underwent scalp EEG-fMRI and later stereotaxic intracerebral EEG (SEEG) sampling regions of DMN (posterior cingulate cortex, Pre-cuneus, inferior parietal lobule, medial prefrontal cortex and dorsolateral frontal cortex) as well as non-DMN regions. SEEG recordings were subject to frequency analyses comparing sections with interictal epileptic discharges (IED) to IED-free baselines in the IED-generating region, DMN and non-DMN regions. EEG-fMRI and SEEG were obtained at rest. During IEDs, EEG-fMRI demonstrated deactivation in various DMN nodes in 5 of 6 patients, most frequently the pre-cuneus and inferior parietal lobule, and less frequently the other DMN nodes. SEEG analyses demonstrated decrease in gamma power (50–150 Hz), and increase in the power of lower frequencies (<30 Hz) at times of IEDs, in at least one DMN node in all patients. These changes were not apparent in the non-DMN regions. We demonstrate that, at the time of IEDs, DMN regions decrease their metabolic demand and undergo an EEG change consisting of decreased gamma and increased lower frequencies. These findings, specific to DMN regions, confirm in a pathological condition a direct relationship between DMN BOLD activity and EEG activity. They indicate that epileptic activity affects the DMN, and therefore may momentarily reduce the consciousness level and cognitive reserve.  相似文献   

6.
抑郁症是当今社会上造成首要危害且病因和病理机制最为复杂的精神疾病之一,寻找抑郁症的客观生物学标志物一直是精神医学研究和临床实践的重点和难点,而结合人工智能技术的磁共振影像(magnetic resonance imaging,MRI)技术被认为是目前抑郁症等精神疾病中最有可能率先取得突破进展的客观生物学标志物.然而,当前基于精神影像学的潜在抑郁症客观生物学标志物还未得到一致结论 .本文从精神影像学和以机器学习(machine learning,ML)与深度学习(deep learning, DL)等为代表的人工智能技术相结合的角度,首次从疾病诊断、预防和治疗等三大临床实践环节对抑郁症辅助诊疗的相关研究进行归纳分析,我们发现:a.具有诊断价值的脑区主要集中在楔前叶、扣带回、顶下缘角回、脑岛、丘脑以及海马等;b.具有预防价值的脑区主要集中在楔前叶、中央后回、背外侧前额叶、眶额叶、颞中回等;c.具有预测治疗反应价值的脑区主要集中在楔前叶、扣带回、顶下缘角回、额中回、枕中回、枕下回、舌回等.未来的研究可以通过多中心协作和数据变换提高样本量,同时将多元化的非影像学数据应用于数据挖掘,这将有利于提高人工智能模型的辅助分类能力,为探寻抑郁症的精神影像学客观生物学标志物及其临床应用提供科学证据和参考依据.  相似文献   

7.
Auditory verbal hallucinations (AVH) are not only among the most common but also one of the most distressing symptoms of schizophrenia. Despite elaborate research, the underlying brain mechanisms are as yet elusive. Functional MRI studies have associated the experience of AVH with activation of bilateral language-related areas, in particular the right inferior frontal gyrus (rIFG) and the left superior temporal gyrus (lSTG). While these findings helped to understand the neural underpinnings of hearing voices, they provide little information about possible brain mechanisms that predispose a person to experience AVH, i.e. the traits to hallucinate. In this study, we compared resting state connectivity between 49 psychotic patients with chronic AVH and 49 matched controls using the rIFG and the lSTG as seed regions, to identify functional brain systems underlying the predisposition to hallucinate. The right parahippocampal gyrus showed increased connectivity with the rIFG in patients as compared to controls. Reduced connectivity with the rIFG in patients was found for the right dorsolateral prefrontal cortex. Reduced connectivity with the lSTG in patients was identified in the left frontal operculum as well as the parietal opercular area. Connectivity between the lSTG and the left hippocampus was also reduced in patients and showed a negative correlation with the severity of hallucinations. Concluding, we found aberrant connectivity between the seed regions and medial temporal lobe structures which have a prominent role in memory retrieval. Moreover, we found decreased connectivity between language-related areas, indicating aberrant integration in this system potentially including corollary discharge mechanisms.  相似文献   

8.
Several studies demonstrated that visual filtering mechanisms might underlie both conflict resolution of the Flanker conflict and the control of the Garner effect. However, it remains unclear whether the mechanisms involved in the processing of both effects depend on similar filter mechanisms, such that especially the Garner effect is able to modulate filtering needs in the Flanker conflict. In the present experiment twenty-four subjects participated in a combined Garner and Flanker task during two runs of functional magnetic resonance imaging (fMRI) recordings. Behavioral data showed a significant Flanker but no Garner effect. A run-wise analysis, however, revealed a Flanker effect in the Garner filtering condition in the first experimental run, while we found a Flanker effect in the Garner baseline condition in the second experimental run. The fMRI data revealed a fronto-parietal network involved in the processing of both types of effects. Flanker interference was associated with activity in the inferior frontal gyrus, the anterior cingulate cortex, the precuneus as well as the inferior (IPL) and superior parietal lobule (SPL). Garner interference was associated with activation in middle frontal and middle temporal gyrus, the lingual gyrus as well as the IPL and SPL. Interaction analyses between the Garner and the Flanker effect additionally revealed differences between the two experimental runs. In the first experimental run, activity specifically related to the interaction of effects was found in frontal and parietal regions, while in the second run we found activity in the hippocampus, the parahippocampal cortex and the basal ganglia. This shift in activity for the interaction effects might be associated with a task-related learning process to control filtering demands. Especially perceptual learning mechanisms might play a crucial role in the present Flanker and Garner task design and, therefore, increased performance in the second experimental run could be the reason for the lack of behavioral Garner interference on the level of the whole experiment.  相似文献   

9.
IntroductionPatients with schizophrenia commonly exhibit deficits of non-verbal communication in social contexts, which may be related to cognitive dysfunction that impairs recognition of biological motion. Although perception of biological motion is known to be mediated by the mirror neuron system, there have been few empirical studies of this system in patients with schizophrenia.MethodsUsing magnetoencephalography, we examined whether antipsychotic-free schizophrenia patients displayed mirror neuron system dysfunction during observation of biological motion (jaw movement of another individual).ResultsCompared with normal controls, the patients with schizophrenia had fewer components of both the waveform and equivalent current dipole, suggesting aberrant brain activity resulting from dysfunction of the right inferior parietal cortex. They also lacked the changes of alpha band and gamma band oscillation seen in normal controls, and had weaker phase-locking factors and gamma-synchronization predominantly in right parietal cortex.ConclusionsOur findings demonstrate that untreated patients with schizophrenia exhibit aberrant mirror neuron system function based on the right inferior parietal cortex, which is characterized by dysfunction of gamma-synchronization in the right parietal lobe during observation of biological motion.  相似文献   

10.
Self-awareness impairments are frequently mentioned as being responsible for the positive symptoms of schizophrenia spectrum disorders. However, the neural correlates of self-other distinction in this pathology are still poorly understood. In the present study, we developed an fMRI procedure in order to examine self-other distinction during speech exchange situations. Fifteen subjects with schizophrenia were compared to 15 matched controls. The results revealed an increased overlap between the self and non-self cortical maps in schizophrenia, in the medial frontal and medial parietal cortices, as well as in the right middle temporal cortex and the right inferior parietal lobule. Moreover, these neural structures showed less BOLD amplitude differences between the self and non-self conditions in the patients. These activation patterns were judged to be independent of mirror-like properties, familiarity or body-ownership processing. Significantly, the increase in the right IPL signal was found to correlate positively with the severity of first-rank symptoms, and thus could be considered a "state-marker" of schizophrenia, whereas temporal and medial parieto-frontal differences appear to be "trait-markers" of the disease. Such an increased overlap between self and non-self cortical maps might be considered a neuro-physiological signature of the well established self-awareness impairment in people suffering from schizophrenia.  相似文献   

11.
Previous MRI studies of functional connectivity in pre-symptomatic mutation carriers of Huntington’s disease (HD) have shown dysfunction of the Default-Mode Network (DMN). No data however are currently available on the DMN alterations in the symptomatic stages of the disease, which are characterized by cortical atrophy involving several DMN nodes. We assessed DMN integrity and its possible correlations with motor and cognitive symptoms in 26 symptomatic HD patients as compared to 22 normal volunteers, by analyzing resting state functional MRI data, using the Precuneal Cortex/Posterior Cingulate Cortices (PC/PCC) as seed, controlling at voxel level for the effect of atrophy by co-varying for gray matter volume. Direct correlation with PC/PCC was decreased, without correlation with atrophy, in the ventral medial prefrontal cortex (including anterior cingulate and subgenual cortex), right dorso-medial prefrontal cortex, and in the right inferior parietal cortex (mainly involving the angular gyrus). Negative correlations with PC/PCC were decreased bilaterally in the inferior parietal cortices, while a cluster in the right middle occipital gyrus presented increased correlation with PC/PCC. DMN changes in the ventral medial prefrontal cortex significantly correlated with the performance at the Stroop test (p = .0002). Widespread DMN changes, not correlating with the atrophy of the involved nodes, are present in symptomatic HD patients, and correlate with cognitive disturbances.  相似文献   

12.

Background

Mal de debarquement syndrome (MdDS) is a disorder of chronic self-motion perception that occurs though entrainment to rhythmic background motion, such as from sea voyage, and involves the perception of low-frequency rocking that can last for months or years. The neural basis of this persistent sensory perception abnormality is not well understood.

Methods

We investigated grey matter volume differences underlying persistent MdDS by performing voxel-based morphometry on whole brain and pre-specified ROIs in 28 individuals with MdDS and comparing them to 18 age, sex, and handedness matched controls.

Results

MdDS participants exhibited greater grey matter volume in the left inferior parietal lobule, right inferior occipital gyrus (area V3v), right temporal pole, bilateral cerebellar hemispheric lobules VIII/IX and left lobule VIIa/VIIb. Grey matter volumes were lower in bilateral inferior frontal, orbitofrontal, pregenual anterior cingulate cortex (pgACC) and left superior medial gyri (t = 3.0, p<0.005uncorr). In ROI analyses, there were no volume differences in the middle occipital gyrus (region of V5/MT) or parietal operculum 2 (region of the parietoinsular vestibular cortex). Illness duration was positively related to grey matter volume in bilateral inferior frontal gyrus/anterior insula (IFG/AI), right posterior insula, superior parietal lobule, left middle occipital gyrus (V5/MT), bilateral postcentral gyrus, anterior cerebellum, and left cerebellar hemisphere and vermian lobule IX. In contrast, illness duration was negatively related to volume in pgACC, posterior middle cingulate gyrus (MCC), left middle frontal gyrus (dorsolateral prefrontal cortex-DLPFC), and right cerebellar hemispheric lobule VIIIb (t = 3.0, p<0.005uncorr). The most significant differences were decreased volume in the pgACC and increased volume in the left IFG/AI with longer illness duration (qFDRcorr <0.05). Concurrent medication use did not correlate with these findings or have a relationship with duration of illness. MdDS participants showed positive correlations between grey matter volume in pgACC and bilateral cerebellar lobules VIII/IX, which was not seen in controls.

Conclusions

Individuals with MdDS show brain volume differences from healthy controls as well as duration of illness dependent volume changes in (a) visual-vestibular processing areas (IPL, SPL, V3, V5/MT), (b) default mode network structures (cerebellar IX, IPL, ACC), (c) salience network structures (ACC and IFG/AI) (d) somatosensory network structures (postcentral gyrus, MCC, anterior cerebellum, cerebellar lobule VIII), and (e) a structure within the central executive network (DLPFC). The identification of these associations may enhance future investigations into how exposure to oscillating environments can modulate brain function and affect motion perception as well cognitive and affective control.  相似文献   

13.
Working memory is linked to the functions of the frontal areas, in which neural activity is mediated by dopaminergic and serotonergic tones. However, there is no consensus regarding how the dopaminergic and serotonergic systems influence working memory subprocesses. The present study used an imaging genetics approach to examine the interaction between neurochemical functions and working memory performance. We focused on functional polymorphisms of the catechol-O-methyltransferase (COMT) Val158Met and serotonin 2A receptor (HTR2A) -1438G/A genes, and devised a delayed recognition task to isolate the encoding, retention, and retrieval processes for visual information. The COMT genotypes affected recognition accuracy, whereas the HTR2A genotypes were associated with recognition response times. Activations specifically related to working memory were found in the right frontal and parietal areas, such as the middle frontal gyrus (MFG), inferior frontal gyrus (IFG), anterior cingulate cortex (ACC), and inferior parietal lobule (IPL). MFG and ACC/IPL activations were sensitive to differences between the COMT genotypes and between the HTR2A genotypes, respectively. Structural equation modeling demonstrated that stronger connectivity in the ACC-MFG and ACC-IFG networks is related to better task performance. The behavioral and fMRI results suggest that the dopaminergic and serotonergic systems play different roles in the working memory subprocesses and modulate closer cooperation between lateral and medial frontal activations.  相似文献   

14.
目的:探讨精神分裂症患者暴力行为与全脑皮质厚度、甲状腺功能和辅助性T细胞17(Th17)相关炎症因子的相关性。方法:选择常德市康复医院2020年1月~2021年4月收治的精神分裂症患者82例为研究对象。采用修订版外显攻击行为量表(MOAS)评分将患者分成暴力组(n=37)与无暴力组(n=45)。比较两组全脑皮质厚度、甲状腺功能、Th17相关炎症因子水平,利用Pearson相关系数分析MOAS评分与全脑皮质厚度、甲状腺功能指标和Th17相关炎症因子的相关性。结果:暴力组左侧枕中回、顶上回、顶下角回、顶下缘上回、枕极以及右侧枕上回、顶上回、顶下角回、顶下缘上回皮质厚度低于无暴力组(P<0.05)。暴力组血清游离三碘甲状腺原氨酸(FT3)、总甲状腺激素(TT4)、游离甲状腺素(FT4)、总三碘甲状腺原氨酸(TT3)、促甲状腺激素(TSH)、白介素-17(IL-17)、白介素-23(IL-23)、转化生长因子-β1(TGF-β1)水平高于无暴力组(P<0.05)。Pearson相关性分析结果显示,精神分裂症患者MOAS评分与左侧枕中回、顶上回、顶下角回、顶下缘上回、枕极以及右侧枕上回、顶上回、顶下角回、顶下缘上回皮质厚度呈负相关,与血清FT3、TT4、FT4、TT3、TSH、IL-17、IL-23、TGF-β1水平呈正相关(P<0.05)。结论:有暴力行为的精神分裂症患者伴有明显的全脑皮质厚度降低与甲状腺功能指标、Th17相关炎症因子水平升高,这可能对此类患者暴力行为的防治有一定参考意义。  相似文献   

15.
The neural bases of imitation learning are virtually unknown. In the present study, we addressed this issue using an event-related fMRI paradigm. Musically naive participants were scanned during four events: (1) observation of guitar chords played by a guitarist, (2) a pause following model observation, (3) execution of the observed chords, and (4) rest. The results showed that the basic circuit underlying imitation learning consists of the inferior parietal lobule and the posterior part of the inferior frontal gyrus plus the adjacent premotor cortex (mirror neuron circuit). This circuit, known to be involved in action understanding, starts to be active during the observation of the guitar chords. During pause, the middle frontal gyrus (area 46) plus structures involved in motor preparation (dorsal premotor cortex, superior parietal lobule, rostral mesial areas) also become active. Given the functional properties of area 46, a model of imitation learning is proposed based on interactions between this area and the mirror neuron system.  相似文献   

16.
Major depressive disorder (MDD) is accompanied by atypical brain structure. This study first presents the alterations in the cortical surface of patients with MDD using multidimensional structural patterns that reflect different neurodevelopment. Sixteen first-episode, untreated patients with MDD and 16 matched healthy controls underwent a magnetic resonance imaging (MRI) scan. The cortical maps of thickness, surface area, and gyrification were examined using the surface-based morphometry (SBM) approach. Increase of cortical thickness was observed in the right posterior cingulate region and the parietal cortex involving the bilateral inferior, left superior parietal and right paracentral regions, while decreased thickness was noted in the parietal cortex including bilateral pars opercularis and left precentral region, as well as the left rostral-middle frontal regions in patients with MDD. Likewise, increased or decreased surface area was found in five sub-regions of the cingulate gyrus, parietal and frontal cortices (e.g., bilateral inferior parietal and superior frontal regions). In addition, MDD patients exhibited a significant hypergyrification in the right precentral and supramarginal region. This integrated structural assessment of cortical surface suggests that MDD patients have cortical alterations of the frontal, parietal and cingulate regions, indicating a vulnerability to MDD during earlier neurodevelopmental process.  相似文献   

17.
目的:评估汉字字形刺激源在汉字认知fMRI研究中的有效性,并对参与汉字处理的脑皮层区域进行定位及初步的量化分析。方法:选择母语为汉语、经利手测试后为右利手且裸眼视力正常(大于等于1.0)的在校大学生10例(男6例,女4例)作为被试。试验任务采用组块设计,将汉字(非字、假字、真字)投射到屏幕上,受试者接受汉字字形图片的视觉刺激,按非字-假字-真字-非字-假字-真字顺序呈现,共6个block。数据处理及统计分析采用国际通用的AFNI软件。结果:左额叶上、中、下回(包括Broca's area)、左中央前回(BA6)、左顶上小叶及顶下小叶(包括缘上回及角回)及双侧枕叶、楔前叶显著激活;左颞叶梭状回(BA37)、右额下回及双侧颞中、上回及扣带回显著激活,左大脑半球的激活体积明显大于右侧大脑半球。结论:本研究设计的汉字字形刺激源结合功能磁共振成像技术可以对汉字处理的相关大脑皮层区域进行定位,为研究人脑加工处理汉字的神经机制提供了一种有效的无创性影像学方法,并应用fMRI技术进一步证实其优势半球为左半球,且需要多种脑区共同参与完成。本试验模式可望成为一种对语言障碍病人进行脑功能检查的有效手段,从而为指导临床治疗和评价预后提供更丰富的信息。  相似文献   

18.
Impaired proteasome function in Alzheimer's disease   总被引:9,自引:0,他引:9  
Inhibition of proteasome activity is sufficient to induce neuron degeneration and death; however, altered proteasome activity in a neurodegenerative disorder has not been demonstrated. In the present study, we analyzed proteasome activity in short-postmortem-interval autopsied brains from 16 Alzheimer's disease (AD) and nine age- and sex-matched controls. A significant decrease in proteasome activity was observed in the hippocampus and parahippocampal gyrus (48%), superior and middle temporal gyri (38%), and inferior parietal lobule (28%) of AD patients compared with controls. In contrast, no significant decrease in proteasome activity was observed in either the occipital lobe or the cerebellum. The loss of proteasome activity was not associated with a decrease in proteasome expression, suggesting that the proteasome may become inhibited in AD by a posttranslational modification. Together, these data indicate a possible role for proteasome inhibition in the neurodegeneration associated with AD.  相似文献   

19.

Objective

Although extensive resting-state functional connectivity (rsFC) changes have been reported in schizophrenia, rsFC changes of the frontal pole (FP) remain unclear. The FP contains several subregions with different connection patterns; however, it is unknown whether the FP subregions are differentially affected in schizophrenia. To explore this possibility, we compared rsFC differences of the FP subregions between schizophrenia patients and healthy controls.

Method

One hundred healthy controls and 91 patients with schizophrenia underwent resting-state functional MRI with a sensitivity-encoded spiral-in (SENSE-SPIRAL) imaging sequence to reduced susceptibility-induced signal loss and distortion. The FP was subdivided into the orbital (FPo), medial (FPm), and lateral (FPl) subregions. Mean fMRI time series were extracted for each FP subregion and entered into a seed-based rsFC analysis.

Results

The FP subregions exhibited differential rsFC patterns in both healthy controls and schizophrenia patients. Direct comparison between groups revealed reduced rsFCs between the bilateral FPl and several cognitive-related regions, including the dorsolateral prefrontal cortex, medial prefrontal cortex, anterior cingulate cortex, posterior cingulate cortex/precuneus, temporal cortex and inferior parietal lobule in schizophrenia. Although the FPl exhibited obvious atrophy, rsFC changes were unrelated to volumetric atrophy in the FPl, to duration of illness, and to antipsychotic medication dosage. No significant differences were observed in the rsFCs of other FP subregions.

Conclusion

These findings suggest a selective (the lateral subregion) functional disconnection of the FP subregions in schizophrenia.  相似文献   

20.
Liang P  Wang Z  Yang Y  Jia X  Li K 《PloS one》2011,6(7):e22153
The known regional abnormality of the dorsolateral prefrontal cortex (DLPFC) and its role in various neural circuits in mild cognitive impairment (MCI) has given prominence to its importance in studies on the disconnection associated with MCI. The purpose of the current study was to examine the DLPFC functional connectivity patterns during rest in MCI patients and the impact of regional grey matter (GM) atrophy on the functional results. Structural and functional MRI data were collected from 14 MCI patients and 14 age, gender-matched healthy controls. We found that both the bilateral DLPFC showed reduced functional connectivity with the inferior parietal lobule (IPL), superior/medial frontal gyrus and sub-cortical regions (e.g., thalamus, putamen) in MCI patients when compared with healthy controls. Moreover, the DLPFC connectivity with the IPL and thalamus significantly correlated with the cognitive performance of patients as measured by mini-mental state examination (MMSE), clock drawing test (CDT), and California verbal learning test (CVLT) scores. When taking GM atrophy as covariates, these results were approximately consistent with those without correction, although there may be a decrease in the statistical power. These results suggest that the DLPFC disconnections may be the substrates of cognitive impairments in MCI patients. In addition, we also found enhanced functional connectivity between the left DLPFC and the right prefrontal cortex in MCI patients. This is consistent with previous findings of MCI-related increased activation during cognitive tasks, and may represent a compensatory mechanism in MCI patients. Together, the present study demonstrated the coexistence of functional disconnection and compensation in MCI patients using DLPFC functional connectivity analysis, and thus might provide insights into biological mechanism of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号