首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myosuppressin peptides dramatically diminish contractions of the gut and heart. Thus, delineating mechanisms involved in myosuppressin signaling may provide insight into peptidergic control of muscle contractility. Drosophila myosuppressin (DMS, TDVDHVFLRFamide) structure-activity relationship (SAR) was investigated to identify an antagonist and explore signaling. Alanyl-substituted, N-terminal truncated, and modified amino acid analogs identified residues and peptide length required for activity. Immunochemistry independently provided insight into myosuppressin mechanisms. DMS decreased gut motility and cardiac contractility dose dependently; the different effective concentrations at half maximal-response were indicative of tissue-specific mechanisms. Replacement of aspartic acid 2 (D2) generated an analog with different developmental- and tissue-specific effects; [A2] DMS mimicked DMS in adult gut (100% inhibition), yet decreased larval gut contractions by only 32% with increased potency in pupal heart (126% inhibition). The DMS active core differed across development and in tissues; adult (DHVFLRFamide) and larval gut (TDVDHVFLRFamide), and adult (VFLRFamide) and pupal heart (VFLRFamide). Substitution of D2 and D4 with a modified amino acid, p-benzoyl-phenylalanine, produced developmental- and tissue-specific antagonists. In the presence of protease inhibitors, DMS and VFLRFamide were more effective in adult gut, but lower or unchanged in pupal heart compared to peptide or analog alone, respectively. DMS-specific antisera stained neurons that innervated the gut or heart. This study describes novel antagonists and data to identify developmental- and tissue-specific mechanisms underlying the pleotropic effects of myosuppressin in muscle physiology.  相似文献   

2.
G-protein-coupled receptors (GPCRs) are known to exist in dynamic equilibrium between inactive- and several active-state conformations, even in the absence of a ligand. Recent experimental studies on the β2 adrenergic receptor (β2AR) indicate that structurally different ligands with varying efficacies trigger distinct conformational changes and stabilize different receptor conformations. We have developed a computational method to study the ligand-induced rotational orientation changes in the transmembrane helices of GPCRs. This method involves a systematic spanning of the rotational orientation of the transmembrane helices (TMs) that are in the vicinity of the ligand for predicting the helical rotations that occur on ligand binding. The predicted ligand-stabilized receptor conformations are characterized by a simultaneous lowering of the ligand binding energy and a significant gain in interhelical and receptor-ligand hydrogen bonds. Using the β2AR as a model, we show that the receptor conformational state depends on the structure and efficacy of the ligand for a given signaling pathway. We have studied the ligand-stabilized receptor conformations of five different ligands, a full agonist, norepinephrine; a partial agonist, salbutamol; a weak partial agonist, dopamine; a very weak agonist, catechol; and an inverse agonist, ICI-115881. The predicted ligand-stabilized receptor models correlate well with the experimentally observed conformational switches in β2AR, namely, the breaking of the ionic lock between R1313.50 at the intracellular end of TM3 (part of the DRY motif) and E2686.30 on TM6, and the rotamer toggle switch on W2866.48 on TM6. In agreement with trp-bimane quenching experiments, we found that norepinephrine and dopamine break the ionic lock and engage the rotamer toggle switch, whereas salbutamol, a noncatechol partial agonist only breaks the ionic lock, and the weak agonist catechol only engages the rotamer toggle switch. Norepinephrine and dopamine occupy the same binding region, between TM3, TM5, and TM6, whereas the binding site of salbutamol is shifted toward TM4. Catechol binds deeper into the protein cavity compared to the other ligands, making contact with TM5 and TM6. A part of the catechol binding site overlaps with those of dopamine and norepinephrine but not with that of salbutamol. Virtual ligand screening on 10,060 ligands on the norepinephrine-stabilized receptor conformation shows an enrichment of 38% compared to ligand unbound receptor conformation. These results show that ligand-induced conformational changes are important for developing functionally specific drugs that will stabilize a particular receptor conformation. These studies represent the first step toward a more universally applicable computational method for studying ligand efficacy and GPCR activation.  相似文献   

3.
We show a sensitive and straightforward off‐line nano‐LC‐MALDI‐MS/MS workflow that allowed the first comprehensive neuropeptidomic analysis of an insect disease vector. This approach was applied to identify neuropeptides in the brain of Rhodnius prolixus, a vector of Chagas disease. This work will contribute to the annotation of genes in the ongoing R. prolixus genome sequence project. Peptides were identified by de novo sequencing and comparisons to known neuropeptides from different organisms by database search. By these means, we were able to identify 42 novel neuropeptides from R. prolixus. The peptides were classified as extended FMRF‐amide‐related peptides, sulfakinins, myosuppressins, short neuropeptide F, long neuropeptide F, SIF‐amide‐related peptides, tachykinins, orcokinins, allatostatins, allatotropins, calcitonin‐like diuretic hormones, corazonin, and pyrokinin. Some of them were detected in multiple isoforms and/or truncated fragments. Interestingly, some of the R. prolixus peptides, as myosuppressin and sulfakinins, are unique in their characteristic C‐terminal domain among insect neuropeptides identified so far.  相似文献   

4.
Activation of a number of class A G protein-coupled receptors (GPCRs) is thought to involve two molecular switches, a rotamer toggle switch within the transmembrane domain and an ionic lock at the cytoplasmic surface of the receptor; however, the mechanism by which agonist binding changes these molecular interactions is not understood. Importantly, 80% of GPCRs including free fatty acid receptor 1 (FFAR1) lack the complement of amino acid residues implicated in either or both of these two switches; the mechanism of activation of these GPCRs is therefore less clear. By homology modeling, we identified two Glu residues (Glu-145 and Glu-172) in the second extracellular loop of FFAR1 that form putative interactions individually with two transmembrane Arg residues (Arg-183(5.39) and Arg-258(7.35)) to create two ionic locks. Molecular dynamics simulations showed that binding of agonists to FFAR1 leads to breakage of these Glu-Arg interactions. In mutagenesis experiments, breakage of these two putative interactions by substituting Ala for Glu-145 and Glu-172 caused constitutive receptor activation. Our results therefore reveal a molecular switch for receptor activation present on the extracellular surface of FFAR1 that is broken by agonist binding. Similar ionic locks between the transmembrane domains and the extracellular loops may constitute a mechanism common to other class A GPCRs also.G protein-coupled receptors (GPCRs)3 are important components of signal transduction machineries that regulate many physiological processes. They are also important as targets for therapeutic agents; a large percentage of drugs in the marketplace are GPCR ligands or modulators. Knowledge of structure-function relationships of GPCRs has been gained through many pharmacological, biochemical, and biophysical studies, and has been used extensively to enhance the discovery of GPCR ligands that have been developed into therapeutically useful agents (13). Knowledge of the molecular details of ligand-receptor interaction and of the mechanism of receptor activation will also likely improve efforts to identify agonists with better potency and efficacy. Tan et al. (3) have recently reported their design of agonists with higher potency and efficacy for the trace amine receptor 1 based on the rotamer toggle switch model of receptor activation that is thought to operate in a number of class A GPCRs. The rotamer toggle switch typically involves the aromatic residues Trp and Phe within transmembrane helix 6 (TMH6) of GPCRs. During agonist-mediated receptor activation or in constitutively active receptors, the dihedral angle on the side chain of these residues is predicted to be rotated compared with the inactive state and thereby triggers a movement of TMH6 away from TMH3 (e.g. Ref. 4). It is also thought that an ionic lock between an Arg residue in TMH3 and a Glu in TMH6 near the cytoplasmic surface of some GPCRs holds the receptor in the inactive conformation and that receptor activation is accompanied by breakage of the ionic bond when agonist binds; the ionic lock may also be broken by receptor mutation (e.g. Ref. 5). Although these models of receptor activation have been proposed for a number of class A GPCRs, it is not certain how generally this hypothesis can be applied across all members of this GPCR class. From the alignment of 372 sequences of human GPCRs, we noted that about 80% of GPCRs do not have the putative residues that play a role in either the rotamer toggle switch, the ionic lock, or both. For these receptors, the interaction responsible for regulating interconversion between inactive and active receptor conformations therefore remains unknown.The free fatty acid receptor 1 (FFAR1) is a Gq-coupled, class A GPCR-activated endogenously by free fatty acids, with a preference for medium-to-long chain fatty acids (C8–12) (reviewed in Ref. 6). The receptor has been suggested to be a potential target for treatment of type 2 diabetes, as offered by the action of agonists to potentiate glucose-stimulated insulin release (reviewed in Refs. 7, 8). Several groups, including ours, have reported the discovery of novel small molecule ligands for FFAR1 (913). Most of these compounds were identified by high-throughput screening followed by chemical optimization (1012). Our group has delineated the ligand-binding pocket of FFAR1 (14, 15) and used the information as a rational approach to ligand discovery by means of virtual screening (13). The mechanism of FFAR1 activation; however, remains unknown especially because this receptor does not contain either the rotamer toggle switch or the ionic lock between TMHs 3 and 6.We have previously identified nine residues in the ligand-binding pocket of FFAR1 that are important for ligand recognition and/or receptor activation (14). In particular, two Arg residues (Arg-183(5.39)4 and Arg-258(7.35)) and an Asn residue (Asn-244(6.55)) in the TMHs coordinate the carboxylate head group of the naturally occurring agonist linoleate and the synthetic agonist GW9508. In the present study, by a collaborative effort using computational modeling and receptor mutagenesis, we report the identification of Glu-172 in the second extracellular loop (ECL2) of FFAR1 that may function together with Arg-183(5.39) and Arg-258(7.35) as locks to control activation of the receptor. Our results suggest that these ionic locks at the extracellular surface hold the receptor in an inactive state. Agonists, through interaction with the arginine residues, may break the arginine-glutamate interactions thereby allowing the receptor to adopt an active conformation. Therefore, our results have provided insights into the mechanism of activation of class A GPCRs that function in a manner not explicable by the more well-studied models.  相似文献   

5.

Rationale

There is little evidence for the efficacy of handwashing for prevention of influenza transmission in resource-poor settings. We tested the impact of intensive handwashing promotion on household transmission of influenza-like illness and influenza in rural Bangladesh.

Methods

In 2009–10, we identified index case-patients with influenza-like illness (fever with cough or sore throat) who were the only symptomatic person in their household. Household compounds of index case-patients were randomized to control or intervention (soap and daily handwashing promotion). We conducted daily surveillance and collected oropharyngeal specimens. Secondary attack ratios (SAR) were calculated for influenza and ILI in each arm. Among controls, we investigated individual risk factors for ILI among household contacts of index case-patients.

Results

Among 377 index case-patients, the mean number of days between fever onset and study enrollment was 2.1 (SD 1.7) among the 184 controls and 2.6 (SD 2.9) among 193 intervention case-patients. Influenza infection was confirmed in 20% of controls and 12% of intervention index case-patients. The SAR for influenza-like illness among household contacts was 9.5% among intervention (158/1661) and 7.7% among control households (115/1498) (SAR ratio 1.24, 95% CI 0.92–1.65). The SAR ratio for influenza was 2.40 (95% CI 0.68–8.47). In the control arm, susceptible contacts <2 years old (RRadj 5.51, 95% CI 3.43–8.85), those living with an index case-patient enrolled ≤24 hours after symptom onset (RRadj 1.91, 95% CI 1.18–3.10), and those who reported multiple daily interactions with the index case-patient (RRadj 1.94, 95% CI 1.71–3.26) were at increased risk of influenza-like illness.

Discussion

Handwashing promotion initiated after illness onset in a household member did not protect against influenza-like illness or influenza. Behavior may not have changed rapidly enough to curb transmission between household members. A reactive approach to reduce household influenza transmission through handwashing promotion may be ineffective in the context of rural Bangladesh.

Trial Registration

ClinicalTrials.gov NCT00880659  相似文献   

6.
The insect Rhodnius prolixus is responsible for the transmission of Trypanosoma cruzi, which is the etiological agent of Chagas disease in areas of Central and South America. Besides this, it can be infected by other trypanosomes such as Trypanosoma rangeli. The effects of these parasites on vectors are poorly understood and are often controversial so here we focussed on possible negative effects of these parasites on the reproductive performance of R. prolixus, specifically comparing infected and uninfected couples. While T. cruzi infection did not delay pre-oviposition time of infected couples at either temperature tested (25 and 30°C) it did, at 25°C, increase the e-value in the second reproductive cycle, as well as hatching rates. Meanwhile, at 30°C, T. cruzi infection decreased the e-value of insects during the first cycle and also the fertility of older insects. When couples were instead infected with T. rangeli, pre-oviposition time was delayed, while reductions in the e-value and hatching rate were observed in the second and third cycles. We conclude that both T. cruzi and T. rangeli can impair reproductive performance of R. prolixus, although for T. cruzi, this is dependent on rearing temperature and insect age. We discuss these reproductive costs in terms of potential consequences on triatomine behavior and survival.  相似文献   

7.
Chagas disease is considered a public health issue in Colombia, where many regions are endemic. Triatoma dimidiata is an important vector after Rhodnius prolixus, and it is gaining importance in Boyacá, eastern Colombia. Following the recent elimination of R. prolixus in the region, it is pivotal to understand the behavior of T. dimidiata and the transmission dynamics of T. cruzi. We used qPCR and Next Generation Sequencing (NGS) to evaluate T. cruzi infection, parasite load, feeding profiles, and T. cruzi genotyping for T. dimidiata specimens collected in nine municipalities in Boyacá and explored T. dimidiata population genetics. We found that T. dimidiata populations are composed by a single population with similar genetic characteristics that present infection rates up to 70%, high parasite loads up to 1.46 × 109 parasite-equivalents/mL, a feeding behavior that comprises at least 17 domestic, synanthropic and sylvatic species, and a wide diversity of TcI genotypes even within a single specimen. These results imply that T. dimidiata behavior is similar to other successful vectors, having a wide variety of blood sources and contributing to the circulation of different genotypes of the parasite, highlighting its importance for T. cruzi transmission and risk for humans. In the light of the elimination of R. prolixus in Boyacá and the results we found, we suggest that T. dimidiata should become a new target for vector control programs. We hope this study provides enough information to enhance surveillance programs and a future effective interruption of T. cruzi vector transmission in endemic regions.  相似文献   

8.
The recently solved crystallographic structures for the A2A adenosine receptor and the β1 and β2 adrenergic receptors have shown important differences between members of the class-A G-protein-coupled receptors and their archetypal model, rhodopsin, such as the apparent breaking of the ionic lock that stabilizes the inactive structure. Here, we characterize a 1.02 μs all-atom simulation of an apo-β2 adrenergic receptor that is missing the third intracellular loop to better understand the inactive structure. Although we find that the structure is remarkably rigid, there is a rapid influx of water into the core of the protein, as well as a slight expansion of the molecule relative to the crystal structure. In contrast to the x-ray crystal structures, the ionic lock rapidly reforms, although we see an activation-precursor-like event wherein the ionic lock opens for ∼200 ns, accompanied by movements in the transmembrane helices associated with activation. When the lock reforms, we see the structure return to its inactive conformation. We also find that the ionic lock exists in three states: closed (or locked), semi-open with a bridging water molecule, and open. The interconversion of these states involves the concerted motion of the entire protein. We characterize these states and the concerted motion underlying their interconversion. These findings may help elucidate the connection between key local events and the associated global structural changes during activation.  相似文献   

9.
Structural aspects of the behaviour of prothrombin and its fragments have been examined by circulae dichroism spectroscopy. It has been noted that a correlation exists between the ellipticity of the aromatic bands and the physiological activity of partially denatured and abnormal prothrombins. The origin of these bands appears to be predominantly based in the region of one or more tyrosine residues. It is shown that whereas complexation of calcium with prothrombin causes little change in the dromatic c.d. spectrum, the effect on prothrombin fragment 1 is quite dramatic. It is concluded that the binding of calcium to the dicarboxyglutamate residues in fragment 1 causes a concomitant ionization of one or more tyrosine residues. The behaviour of fragment 1 is indicative of an intact protein with a tertiary structure which supports our previous trimodular model of prothrombin, which is activated in part by the unlocking of an ‘ionic’ lock. This lock consists of the highly negatively charged dicarboxyglutamyl patch at or near the N terminus of prothrombin and a positively charged basic patch near the C terminus.  相似文献   

10.
Progression through the eukaryotic cell cycle is characterized by specific transitions, where cells move irreversibly from stage i−1 of the cycle into stage i. These irreversible cell cycle transitions are regulated by underlying bistable switches, which share some common features. An inhibitory protein stalls progression, and an activatory protein promotes progression. The inhibitor and activator are locked in a double-negative feedback loop, creating a one-way toggle switch that guarantees an irreversible commitment to move forward through the cell cycle, and it opposes regression from stage i to stage i−1. In many cases, the activator is an enzyme that modifies the inhibitor in multiple steps, whereas the hypo-modified inhibitor binds strongly to the activator and resists its enzymatic activity. These interactions are the basis of a reaction motif that provides a simple and generic account of many characteristic properties of cell cycle transitions. To demonstrate this assertion, we apply the motif in detail to the G1/S transition in budding yeast and to the mitotic checkpoint in mammalian cells. Variations of the motif might support irreversible cellular decision-making in other contexts.  相似文献   

11.

Background

Chronic Chagas cardiomyopathy caused by Trypanosoma cruzi is the result of a pathologic process starting during the acute phase of parasite infection. Among different factors, the specific recognition of glycan structures by glycan-binding proteins from the parasite or from the mammalian host cells may play a critical role in the evolution of the infection.

Methodology and Principal Findings

Here we investigated the contribution of galectin–1 (Gal–1), an endogenous glycan-binding protein abundantly expressed in human and mouse heart, to the pathophysiology of T. cruzi infection, particularly in the context of cardiac pathology. We found that exposure of HL–1 cardiac cells to Gal–1 reduced the percentage of infection by two different T. cruzi strains, Tulahuén (TcVI) and Brazil (TcI). In addition, Gal–1 prevented exposure of phosphatidylserine and early events in the apoptotic program by parasite infection on HL–1 cells. These effects were not mediated by direct interaction with the parasite surface, suggesting that Gal–1 may act through binding to host cells. Moreover, we also observed that T. cruzi infection altered the glycophenotype of cardiac cells, reducing binding of exogenous Gal–1 to the cell surface. Consistent with these data, Gal–1 deficient (Lgals1 -/-) mice showed increased parasitemia, reduced signs of inflammation in heart and skeletal muscle tissues, and lower survival rates as compared to wild-type (WT) mice in response to intraperitoneal infection with T. cruzi Tulahuén strain.

Conclusion/Significance

Our results indicate that Gal–1 modulates T. cruzi infection of cardiac cells, highlighting the relevance of galectins and their ligands as regulators of host-parasite interactions.  相似文献   

12.
When amino acids vary during evolution, the outcome can be functionally neutral or biologically‐important. We previously found that substituting a subset of nonconserved positions, “rheostat” positions, can have surprising effects on protein function. Since changes at rheostat positions can facilitate functional evolution or cause disease, more examples are needed to understand their unique biophysical characteristics. Here, we explored whether “phylogenetic” patterns of change in multiple sequence alignments (such as positions with subfamily specific conservation) predict the locations of functional rheostat positions. To that end, we experimentally tested eight phylogenetic positions in human liver pyruvate kinase (hLPYK), using 10–15 substitutions per position and biochemical assays that yielded five functional parameters. Five positions were strongly rheostatic and three were non‐neutral. To test the corollary that positions with low phylogenetic scores were not rheostat positions, we combined these phylogenetic positions with previously‐identified hLPYK rheostat, “toggle” (most substitution abolished function), and “neutral” (all substitutions were like wild‐type) positions. Despite representing 428 variants, this set of 33 positions was poorly statistically powered. Thus, we turned to the in vivo phenotypic dataset for E. coli lactose repressor protein (LacI), which comprised 12–13 substitutions at 329 positions and could be used to identify rheostat, toggle, and neutral positions. Combined hLPYK and LacI results show that positions with strong phylogenetic patterns of change are more likely to exhibit rheostat substitution outcomes than neutral or toggle outcomes. Furthermore, phylogenetic patterns were more successful at identifying rheostat positions than were co‐evolutionary or eigenvector centrality measures of evolutionary change.  相似文献   

13.
Staphylococcus aureus clonal complex 398 (CC398) isolates colonize livestock and can spread to human contacts. Genetic analysis of isolates epidemiologically associated with human-to-human, but not livestock, transmission in multiple countries and continents identified a common clade that was negative for tet(M) and positive for bacteriophage ϕ3. Another group of human-to-human-transmitted isolates belonged to the common livestock-associated clade but had acquired a unique ϕ7 bacteriophage.  相似文献   

14.
Contacts between hosts are essential for transmission of many infectious agents. Understanding how contacts, and thus transmission rates, occur in space and time is critical to effectively responding to disease outbreaks in free-ranging animal populations. Contacts between animals in the wild are often difficult to observe or measure directly. Instead, one must infer contacts from metrics such as proximity in space and time. Our objective was to examine how contacts between white-tailed deer (Odocoileus virginianus) vary in space and among seasons. We used GPS movement data from 71 deer in central New York State to quantify potential direct contacts between deer and indirect overlap in space use across time and space. Daily probabilities of direct contact decreased from winter (0.05–0.14), to low levels post-parturition through summer (0.00–0.02), and increased during the rut to winter levels. The cumulative distribution for the spatial structure of direct and indirect contact probabilities around a hypothetical point of occurrence increased rapidly with distance for deer pairs separated by 1,000 m – 7,000 m. Ninety-five percent of the probabilities of direct contact occurred among deer pairs within 8,500 m of one another, and 99% within 10,900 m. Probabilities of indirect contact accumulated across greater spatial extents: 95% at 11,900 m and 99% at 49,000 m. Contacts were spatially consistent across seasons, indicating that although contact rates differ seasonally, they occur proportionally across similar landscape extents. Distributions of contact probabilities across space can inform management decisions for assessing risk and allocating resources in response.  相似文献   

15.
We have created a hybrid i-motif composed of two DNA and two peptide nucleic acid (PNA) strands from an equimolar mixture of a C-rich DNA and analogous PNA sequence. Nano-electrospray ionization mass spectrometry confirmed the formation of a tetrameric species, composed of PNA–DNA heteroduplexes. Thermal denaturation and CD experiments revealed that the structure was held together by C-H+-C base pairs. High resolution NMR spectroscopy confirmed that PNA and DNA form a unique complex comprising five C-H+-C base pairs per heteroduplex. The imino protons are protected from D2O exchange suggesting intercalation of the heteroduplexes as seen in DNA4 i-motifs. FRET established the relative DNA and PNA strand polarities in the hybrid. The DNA strands were arranged antiparallel with respect to one another. The same topology was observed for PNA strands. Fluorescence quenching revealed that both PNA–DNA parallel heteroduplexes are intercalated, such that both DNA strands occupy one of the narrow grooves. H1′–H1′ NOEs show that both heteroduplexes are fully intercalated and that both DNA strands are disposed towards a narrow groove, invoking sugar–sugar interactions as seen in DNA4 i-motifs. The hybrid i-motif shows enhanced thermal stability, intermediate pH dependence and forms at relatively low concentrations making it an ideal nanoscale structural element for pH-based molecular switches. It also serves as a good model system to assess the contribution of sugar–sugar contacts in i-motif tetramerization.  相似文献   

16.
Sos-1, a guanine nucleotide exchange factor (GEF), eps8 and Abi1, two signaling proteins, and the lipid kinase phosphoinositide 3-kinase (PI3-K), assemble in a multimolecular complex required for Rac activation leading to actin cytoskeletal remodeling. Consistently, eps8 –/– fibroblasts fail to form membrane ruffles in response to growth factor stimulation. Surprisingly, eps8 null mice are healthy, fertile, and display no overt phenotype, suggesting the existence of functional redundancy within this pathway. Here, we describe the identification and characterization of a family of eps8-related proteins, comprising three novel gene products, named eps8L1, eps8L2, and eps8L3. Eps8Ls display collinear topology and 27–42% identity to eps8. Similarly to eps8, eps8Ls interact with Abi1 and Sos-1; however, only eps8L1 and eps8L2 activate the Rac-GEF activity of Sos-1, and bind to actin in vivo. Consistently, eps8L1 and eps8L2, but not eps8L3, localize to PDGF-induced, F-actin–rich ruffles and restore receptor tyrosine kinase (RTK)-mediated actin remodeling when expressed in eps8 –/– fibroblasts. Thus, the eps8Ls define a novel family of proteins responsible for functional redundancy in the RTK-activated signaling pathway leading to actin remodeling. Finally, the patterns of expression of eps8 and eps8L2 in mice are remarkably overlapping, thus providing a likely explanation for the lack of overt phenotype in eps8 null mice.  相似文献   

17.
18.
Anthracnose, caused by Colletotrichum lindemuthianum, is an important fungal disease of common bean (Phaseolus vulgaris). Alleles at the Co–4 locus confer resistance to a number of races of C. lindemuthianum. A population of 94 F4:5 recombinant inbred lines of a cross between resistant black bean genotype B09197 and susceptible navy bean cultivar Nautica was used to identify markers associated with resistance in bean chromosome 8 (Pv08) where Co–4 is localized. Three SCAR markers with known linkage to Co–4 and a panel of single nucleotide markers were used for genotyping. A refined physical region on Pv08 with significant association with anthracnose resistance identified by markers was used in BLAST searches with the genomic sequence of common bean accession G19833. Thirty two unique annotated candidate genes were identified that spanned a physical region of 936.46 kb. A majority of the annotated genes identified had functional similarity to leucine rich repeats/receptor like kinase domains. Three annotated genes had similarity to 1, 3-β-glucanase domains. There were sequence similarities between some of the annotated genes found in the study and the genes associated with phosphoinositide-specific phosphilipases C associated with Co-x and the COK–4 loci found in previous studies. It is possible that the Co–4 locus is structured as a group of genes with functional domains dominated by protein tyrosine kinase along with leucine rich repeats/nucleotide binding site, phosphilipases C as well as β-glucanases.  相似文献   

19.
The endothelium is morphologically and functionally adapted to meet the unique demands of the underlying tissue. At the present time, little is known about the molecular basis of endothelial cell diversity. As one approach to this problem, we have chosen to study the mechanisms that govern differential expression of the endothelial cell–restricted von Willebrand factor (vWF) gene. Transgenic mice were generated with a fragment of the vWF gene containing 2,182 bp of 5′ flanking sequence, the first exon and first intron coupled to the LacZ reporter gene. In multiple independent lines of mice, β-galactosidase expression was detected within endothelial cells in the brain, heart, and skeletal muscle. In isogeneic transplantation models, LacZ expression in host-derived auricular blood vessels was specifically induced by the microenvironment of the heart. In in vitro coculture assays, expression of both the transgene and the endogenous vWF gene in cardiac microvascular endothelial cells (CMEC) was upregulated in the presence of cardiac myocytes. In contrast, endothelial cell levels of thrombomodulin protein and mRNA were unchanged by the addition of ventricular myocytes. Moreover, CMEC expression of vWF was not influenced by the addition of 3T3 fibroblasts or mouse hepatocytes. Taken together, the results suggest that the vWF gene is regulated by vascular bed–specific pathways in response to signals derived from the local microenvironment.  相似文献   

20.
Competition may lead to changes in a species’ environmental niche in areas of sympatry and shifts in the niche of weaker competitors to occupy areas where stronger ones are rarer. Although mainland Mediterranean (Rhinolophus euryale) and Mehely’s (R. mehelyi) horseshoe bats mitigate competition by habitat partitioning, this may not be true on resource-limited systems such as islands. We hypothesize that Sardinian R. euryale (SAR) have a distinct ecological niche suited to persist in the south of Sardinia where R. mehelyi is rarer. Assuming that SAR originated from other Italian populations (PES) – mostly allopatric with R. mehelyi – once on Sardinia the former may have undergone niche displacement driven by R. mehelyi. Alternatively, its niche could have been inherited from a Maghrebian source population. We: a) generated Maxent Species Distribution Models (SDM) for Sardinian populations; b) calibrated a model with PES occurrences and projected it to Sardinia to see whether PES niche would increase R. euryale’s sympatry with R. mehelyi; and c) tested for niche similarity between R. mehelyi and PES, PES and SAR, and R. mehelyi and SAR. Finally we predicted R. euryale’s range in Northern Africa both in the present and during the Last Glacial Maximum (LGM) by calibrating SDMs respectively with SAR and PES occurrences and projecting them to the Maghreb. R. mehelyi and PES showed niche similarity potentially leading to competition. According to PES’ niche, R. euryale would show a larger sympatry with R. mehelyi on Sardinia than according to SAR niche. Such niches have null similarity. The current and LGM Maghrebian ranges of R. euryale were predicted to be wide according to SAR’s niche, negligible according to PES’ niche. SAR’s niche allows R. euryale to persist where R. mehelyi is rarer and competition probably mild. Possible explanations may be competition-driven niche displacement or Maghrebian origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号