首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Earlier, it was questioned whether gap junctions (GJs) were necessary for cell-cell communication in smooth muscle, and GJs were not seen in some smooth muscles. We reexamined this question in the myometrium and in intestinal smooth muscle, in light of current knowledge of the presence and function of GJs. In the uterus, numerous studies show that an increase in GJ number is associated with the onset of delivery and is required for effective parturition. In all cases, this increase in GJ number and the changes in uterine contractility were correlated with increased electrical and metabolic coupling. Evidence for the much smaller, but detectable, degree of electrical coupling in the preterm uterus is explained by the small (but again detectable) number of GJs present. In the intestine, GJs are readily detected in the circular muscle layer but have not been described in the adjacent longitudinal layer. While our immunohistochemical studies failed to detect GJs in the longitudinal layer, this may not be adequate to prove their absence. Therefore, current knowledge of GJ number and function is adequate to explain cell-cell coupling in the uterus. Although it remains uncertain whether GJs are absent from the longitudinal muscle of the intestine, there is no definitive evidence that cell-cell coupling can occur by means other than GJs.  相似文献   

2.
We have studied some passive electrical properties of uterine smooth muscle to determine whether a change in electrical parameters accompanies gap junction formation at delivery. The length constant of the longitudinal myometrium increased from 2.6 +/- 0.8 mm (X +/- SD) before term to 3.7 +/- 1 mm in tissues from delivering animals. The basis of the change was a 33% decrease in internal resistance and a 46% increase in membrane resistance. Axial current flow in an electrical syncytium such as myometrium is impeded by the cytoplasm of individual cells plus the junctions between cells. Measurement of the longitudinal impedance indicated that the specific resistance of the myoplasmic component was constant at 319 +/- 113 omega . cm before term and 340 +/- 93 omega . cm at delivery. However, a decrease in junctional resistance was apparent from 323 +/- 161 omega . cm to 134 +/- 64 omega . cm at delivery. 1.5-2 d after delivery, the junctional resistance was increased, as was the myoplasmic resistance. Thin-section electron microscopy of some of the same muscle samples showed that gap junctions were present in significantly greater numbers in the delivering tissues. Therefore, our results support the hypothesis that gap junction formation at delivery is associated with improved electrical coupling of uterine smooth muscle.  相似文献   

3.
Emergent properties of electrically coupled smooth muscle cells   总被引:1,自引:0,他引:1  
Asynchronous and synchronous calcium oscillations occur in a variety of cells. A well-established pathway for intercellular communication is provided by gap junctions which connect adjacent cells and can mediate electrical and chemical coupling. Several experimental studies report that cells presenting only a transient increase when freshly dispersed may oscillate when they are coupled. Such observations suggest that the role of gap junctions is not only to coordinate calcium oscillations of adjacent cells. Gap junctions may also be important to generate oscillations. Here we illustrate the emergent properties of electrically coupled smooth muscle cells using a model that we recently proposed. A bifurcation analysis in the case of two cells reveals that synchronous and asynchronous calcium oscillations can be induced by electrical coupling. In a larger population of smooth muscle cells, electrical coupling may result in the creation of groups of cells presenting synchronous calcium oscillations. The elements of one group may be distant from each other. Moreover, our results highlight a general mechanism by which gap junctional electrical coupling can give rise to out of phase calcium oscillations in smooth muscle cells that are non-oscillating when uncoupled. All these observations remain true in the case of non-identical cells, except that the solution corresponding to synchronous calcium oscillations disappears and that the formation of groups is sensitive to the degree of heterogeneity. The first two authors contributed equally to this work.  相似文献   

4.
Gap junctions are believed to be sites of metabolic and electrical coupling between cells. These contacts are present between myometrial cells immediately prior to and during parturition. We report the results of studies to investigate the control and the function of myometrial gap junctions. Injection of estradiol (500 micrograms/day) with or without progesterone into immature and ovariectomized mature rats demonstrated that estradiol stimulated whereas progesterone suppressed gap junction formation. Indomethacin treatment was also shown to potentiate the action of estradiol. Also, pregnant rats treated with oestradiol developed numerous myometrial gap junctions and aborted their fetuses. These results suggest that the steroid hormones and prostaglandins may control myometrial gap junction development. Diffusion studies of 3H-2-deoxyglucose in longitudinal myometrial strips revealed a significant increase in the diffusion coefficient in delivering versus ante-partum rat tissues. This indicates that there is increased metabolic transfer during parturition when gap junctions are present. The results of these studies show that steroid hormones and prostaglandins may regulate myometrial gap junctions and that metabolic, as well as electrical coupling, of uterine smooth muscle cells increase at parturition concomitant with the development of gap junctions.  相似文献   

5.
We investigated whether cell-to-cell coupling between myometrial cells of parturient rats is influenced by intracellular adenosine 3',5'-cyclic monophosphate (cAMP) concentration. To evaluate the coupling, we measured input resistance (Ro) and injected Lucifer Yellow (LY) using microelectrode techniques. The intercellular spread of the dye was then observed. Longitudinal muscle strips from rat myometrium were exposed to isoproterenol, forskolin, or dibutyryl cAMP (DB-cAMP) to elevate cAMP. Isoproterenol (10(-11)-10(-6) M) and DB-cAMP (10(-5)-10(-3) M) hyperpolarized the resting membrane potential (Em) and increased Ro in a dose-dependent fashion. Forskolin (10(-6) M) also hyperpolarized Em and increased Ro. When LY was injected into a single cell, LY spread rapidly and extensively to neighboring cells in parturient control tissues, while LY transfer was completely blocked by any of the three agents at high concentrations. The increased Ro and blocked transfer of LY owing to these agents indicate that the cell-to-cell coupling was decreased both electrically and metabolically. Myometrial cells of parturient rats show increased number and size of gap junctions (GJs). The rapid and reversible decrease in coupling is interpreted to reflect the reduced permeability of GJs between the muscle cells because of an elevation of cAMP. Control of GJ permeability by this second messenger may be important for the physiological regulation of intercellular coupling and the extent of synchronizing and coordinating electrical, metabolic, and contractile activity in the uterine wall during pregnancy and parturition.  相似文献   

6.
Summary Nexus (gap junctions), which are considered to contain cell-to-cell channels, are newly formed in uterine smooth muscle during parturition or in response to estrogen treatment of virginal animals. A mRNA preparation was isolated from estrogen-dominated rat myometria and was encapsulated into liposomes. Subsequently the liposomes were fused with cultured cells of a mouse cell line CL-1D. It is established that these tumor cells normally are neither electrically coupled nor do they contain nexus. The cells, however, become electrically coupled a few hours after being loaded with the mRNA preparation. This de novo expression of cell coupling persisted for a little more than 24 hr after a single loading procedure. Freeze-fracture electron microscopy revealed small nexus-like particle aggregates at the time coupling was present. In control experiments the cells remained noncoupling when the RNA preparation was pretreated with ribonuclease, when cycloheximide was applied to the cells, or when liposomes filled with buffer solution only were used. These data suggest that the de novo expression of cell-to-cell coupling is accomplished by mRNA-induced protein biosynthesis resulting in the formation of cell-to-cell channels. Presented in the symposium on Molecular Morphological Aspects of Cell-Cell Communication at the 31 st Annual Meeting of the Tissue Culture Association, St. Louis, Missouri, June 1–5, 1980. This symposium was supported in part by Contract 263-MD-025754 from the National Cancer Institute and the Fogarty International Center.  相似文献   

7.
Rhythmic coupling among cells in the suprachiasmatic nucleus   总被引:4,自引:0,他引:4  
In mammals, the part of the nervous system responsible for most circadian behavior can be localized to a pair of structures in the hypothalamus known as the suprachiasmatic nucleus (SCN). Previous studies suggest that the basic mechanism responsible for the generation of these rhythms is intrinsic to individual cells. There is also evidence that the cells within the SCN are coupled to one another and that this coupling is important for the normal functioning of the circadian system. One mechanism that mediates coordinated electrical activity is direct electrical connections between cells formed by gap junctions. In the present study, we used a brain slice preparation to show that developing SCN cells are dye coupled. Dye coupling was observed in both the ventrolateral and dorsomedial subdivisions of the SCN and was blocked by application of a gap junction inhibitor, halothane. Dye coupling in the SCN appears to be regulated by activity-dependent mechanisms as both tetrodotoxin and the GABA(A) agonist muscimol inhibited the extent of coupling. Furthermore, acute hyperpolarization of the membrane potential of the original biocytin-filled neuron decreased the extent of coupling. SCN cells were extensively dye coupled during the day when the cells exhibit synchronous neural activity but were minimally dye coupled during the night when the cells are electrically silent. Immunocytochemical analysis provides evidence that a gap-junction-forming protein, connexin32, is expressed in the SCN of postnatal animals. Together the results are consistent with a model in which gap junctions provide a means to couple SCN neurons on a circadian basis.  相似文献   

8.
Although it has been reported that, in the uterine wall of rats at term, gap junctions between fibers of the same muscle layer are responsible for synchronized strong contractions, much less attention has been paid to the interaction between muscle layers. To learn about the relationship between the two uterine muscles of rats in late pregnancy, we developed a technique to do simultaneous monitoring of activities in two muscle layers. Using rectangular muscle strips, the electrical activity in one layer was measured with an intracellular microelectrode while the mechanical activity of the other layer was recorded through a force transducer. In some of the uterine wall strips prepared from animals on gestation day 15 and 16, interaction between longitudinal and circular muscle layers was observed. However, well coordinated activities of these two muscles did not occur until the morning of gestation day 21 and continued toward delivery. Usually, coordination presented as paired contractions, one in the circular muscle and the other in the longitudinal muscle. While these pairs of contractions appeared regularly, they also kept similar intervals. Sometimes, coordination presented as a continuous appearance of groups of three contractions, one in one layer and two in the other. Coordinating contractions of uterine muscles is considered to be beneficiary to the propelling of fetuses toward the cervix during parturition.  相似文献   

9.
Contractions of uterine smooth muscle cells consist of a chain of physiological processes. These contractions provide the required force to expel the fetus from the uterus. The inclusion of these physiological processes is, therefore, imperative when studying uterine contractions. In this study, an electro-chemo-mechanical model to replicate the excitation, activation, and contraction of uterine smooth muscle cells is developed. The presented modeling strategy enables efficient integration of knowledge about physiological processes at the cellular level to the organ level. The model is implemented in a three-dimensional finite element setting to simulate uterus contraction during labor in response to electrical discharges generated by pacemaker cells and propagated within the myometrium via gap junctions. Important clinical factors, such as uterine electrical activity and intrauterine pressure, are predicted using this simulation. The predictions are in agreement with clinically measured data reported in the literature. A parameter study is also carried out to investigate the impact of physiologically related parameters on the uterine contractility.  相似文献   

10.
In many tissues and organs, connexin proteins assemble between neighboring cells to form gap junctions. These gap junctions facilitate direct intercellular communication between adjoining cells, allowing for the transmission of both chemical and electrical signals. In rodents, gap junctions are found in differentiating myoblasts and are important for myogenesis. Although gap junctions were once believed to be absent from differentiated skeletal muscle in mammals, recent studies in teleosts revealed that differentiated muscle does express connexins and is electrically coupled, at least at the larval stage. These findings raised questions regarding the functional significance of gap junctions in differentiated muscle. Our analysis of gap junctions in muscle began with the isolation of a zebrafish motor mutant that displayed weak coiling at day 1 of development, a behavior known to be driven by slow-twitch muscle (slow muscle). We identified a missense mutation in the gene encoding Connexin 39.9. In situ hybridization found connexin 39.9 to be expressed by slow muscle. Paired muscle recordings uncovered that wild-type slow muscles are electrically coupled, whereas mutant slow muscles are not. The further examination of cellular activity revealed aberrant, arrhythmic touch-evoked Ca(2+) transients in mutant slow muscle and a reduction in the number of muscle fibers contracting in response to touch in mutants. These results indicate that Connexin 39.9 facilitates the spreading of neuronal inputs, which is irregular during motor development, beyond the muscle cells and that gap junctions play an essential role in the efficient recruitment of slow muscle fibers.  相似文献   

11.
The pregnant rat uterus contains a membrane-bound metalloendopeptidase that is biochemically and immunologically similar to kidney enkephalinase (E.C.3.4.24.11). The uterus enzyme readily cleaved specific neutral endopeptidase substrates and oxytocin as well as the synthetic elastase substrate, Suc(Ala)3-pNA, yet did not digest native elastin. Using specific inhibitors, the uterus endopeptidase was identified as a metallopeptidase and not a serine protease, having an absolute requirement for zinc and perhaps calcium for maximal activity. The uterus endopeptidase cross-reacted with polyclonal antiserum to kidney microvillar endopeptidase and a monoclonal antibody to common acute lymphocytic leukemia antigen. Immunohistochemical localization of the enzyme in a 17 day pregnant uterus indicated that the enzyme was localized on the smooth muscle bundles of the myometrium and the endometrial epithelium. Total enzyme activity was 25 times higher in the late-term pregnant uterus (17th day of pregnancy) than in the nonpregnant uterus. Enzyme levels dropped rapidly prior to parturition and within 4 days after delivery the enzyme activity had returned to control levels. Inhibition of NEP in uterine strips with phosphoramidon resulted in a marked potentiation of oxytocin-induced contractions. Our results suggest that the uterine endopeptidase may have an important role in regulating uterine smooth muscle cell contraction during the later stages of pregnancy through its action on oxytocin and perhaps other biologically active peptides.  相似文献   

12.
Gap junctions between fine unmyelinated axons can electrically couple groups of brain neurons to synchronise firing and contribute to rhythmic activity. To explore the distribution and significance of electrical coupling, we modelled a well analysed, small population of brainstem neurons which drive swimming in young frog tadpoles. A passive network of 30 multicompartmental neurons with unmyelinated axons was used to infer that: axon-axon gap junctions close to the soma gave the best match to experimentally measured coupling coefficients; axon diameter had a strong influence on coupling; most neurons were coupled indirectly via the axons of other neurons. When active channels were added, gap junctions could make action potential propagation along the thin axons unreliable. Increased sodium and decreased potassium channel densities in the initial axon segment improved action potential propagation. Modelling suggested that the single spike firing to step current injection observed in whole-cell recordings is not a cellular property but a dynamic consequence of shunting resulting from electrical coupling. Without electrical coupling, firing of the population during depolarising current was unsynchronised; with coupling, the population showed synchronous recruitment and rhythmic firing. When activated instead by increasing levels of modelled sensory pathway input, the population without electrical coupling was recruited incrementally to unpatterned activity. However, when coupled, the population was recruited all-or-none at threshold into a rhythmic swimming pattern: the tadpole “decided” to swim. Modelling emphasises uncertainties about fine unmyelinated axon physiology but, when informed by biological data, makes general predictions about gap junctions: locations close to the soma; relatively small numbers; many indirect connections between neurons; cause of action potential propagation failure in fine axons; misleading alteration of intrinsic firing properties. Modelling also indicates that electrical coupling within a population can synchronize recruitment of neurons and their pacemaker firing during rhythmic activity.  相似文献   

13.
Longitudinal body wall muscles in the third instar larva of the fruitfly,Drosophila melanogaster, were systematically examined for electrical and dye coupling. These muscle cells were found to be electrically coupled but rarely dye-coupled across the segmental boundary. The inter-segmental coupling coefficients between muscle #6s and muscle #7s across the segmental boundary were 0.33 ± 0.09 (mean ± S.D.,n = 12) and 0.43 ± 0.09 (n = 5), respectively, which are much larger than values previously reported inDrosophila but similar to those reported in the blowfly and hawkmoth. By contrast, the intra-segmental coupling coefficient between muscles #6 and #7 was smaller, 0.16 ± 0.08 (n = 28). Other muscle cells which had apparent physical contacts with these longitudinal muscles were examined but were not electrically coupled to them. Nerve-evoked as well as miniature excitatory junctional potentials were found also electrotonically spread across the segmental boundary. The inter-segmental coupling between muscle #6s was not blocked by the gap junction inhibitors halothane or 1-octanol. Functional significance of this electrical coupling is apparently in coordination of larval body movements.  相似文献   

14.
Connexin36 mediates spike synchrony in olfactory bulb glomeruli   总被引:8,自引:0,他引:8  
Neuronal synchrony is important to network behavior in many brain regions. In the olfactory bulb, principal neurons (mitral cells) project apical dendrites to a common glomerulus where they receive a common input. Synchronized activity within a glomerulus depends on chemical transmission but mitral cells are also electrically coupled. We examined the role of connexin-mediated gap junctions in mitral cell coordinated activity. Electrical coupling as well as correlated spiking between mitral cells projecting to the same glomerulus was entirely absent in connexin36 (Cx36) knockout mice. Ultrastructural analysis of glomeruli confirmed that mitral-mitral cell gap junctions on distal apical dendrites contain Cx36. Coupled AMPA responses between mitral cell pairs were absent in the knockout, demonstrating that electrical coupling, not transmitter spillover, is responsible for synchronization. Our results indicate that Cx36-mediated gap junctions between mitral cells orchestrate rapid coordinated signaling via a novel form of electrochemical transmission.  相似文献   

15.

Background  

Gap junctions increase in size and abundance coincident with parturition, forming an intercellular communication network that permits the uterus to develop the forceful, coordinated contractions necessary for delivery of the fetus. Lindane, a pesticide used in the human and veterinary treatment of scabies and lice as well as in agricultural applications, inhibits uterine contractions in vitro, inhibits myometrial gap junctions, and has been associated with prolonged gestation length in rats. The aim of the present study was to investigate whether brief exposures to lindane would elicit sustained inhibition of rat uterine contractile activity and myometrial gap junction intercellular communication.  相似文献   

16.
A Robert  A Strambi  C Strambi  J Gonella 《Life sciences》1986,39(26):2617-2622
In order to examine the possible effects of ecdysteroids on parturition, we studied in vitro the influence of ecdysone and 20-hydroxyecdysone on the motility of isolated uterus from virgin and pregnant female tsetse fly (Glossina fuscipes). Ecdysone initiates phasic uterine contractions or enhances the frequency of preexisting contractile activity. In contrast, uterine contractions are decreased or abolished by 20-hydroxyecdysone. Pharmacological data indicate that tsetse fly uterus exhibits myogenic and nerve-evoked contractions. Ecdysteroids mainly act on nervous structures that control muscle contractions. Our results provide evidence for a specific action of ecdysteroids on a nerve-muscle target involved in female reproduction.  相似文献   

17.
We have investigated synchronization and propagation of calcium oscillations, mediated by gap junctional excitation transmission. For that purpose we used an experimentally based model of normal rat kidney (NRK) cells, electrically coupled in a one-dimensional configuration (linear strand). Fibroblasts such as NRK cells can form an excitable syncytium and generate spontaneous inositol 1,4,5-trisphosphate (IP(3))-mediated intracellular calcium waves, which may spread over a monolayer culture in a coordinated fashion. An intracellular calcium oscillation in a pacemaker cell causes a membrane depolarization from within that cell via calcium-activated chloride channels, leading to an L-type calcium channel-based action potential (AP) in that cell. This AP is then transmitted to the electrically connected neighbor cell, and the calcium inflow during that transmitted AP triggers a calcium wave in that neighbor cell by opening of IP(3) receptor channels, causing calcium-induced calcium release (CICR). In this way the calcium wave of the pacemaker cell is rapidly propagated by the electrically transmitted AP. Propagation of APs in a strand of cells depends on the number of terminal pacemaker cells, the L-type calcium conductance of the cells, and the electrical coupling between the cells. Our results show that the coupling between IP(3)-mediated calcium oscillations and AP firing provides a robust mechanism for fast propagation of activity across a network of cells, which is representative for many other cell types such as gastrointestinal cells, urethral cells, and pacemaker cells in the heart.  相似文献   

18.
In addition to chemical synaptic transmission, neurons that are connected by gap junctions can also communicate rapidly via electrical synaptic transmission. Increasing evidence indicates that gap junctions not only permit electrical current flow and synchronous activity between interconnected or coupled cells, but that the strength or effectiveness of electrical communication between coupled cells can be modulated to a great extent1,2. In addition, the large internal diameter (~1.2 nm) of many gap junction channels permits not only electric current flow, but also the diffusion of intracellular signaling molecules and small metabolites between interconnected cells, so that gap junctions may also mediate metabolic and chemical communication. The strength of gap junctional communication between neurons and its modulation by neurotransmitters and other factors can be studied by simultaneously electrically recording from coupled cells and by determining the extent of diffusion of tracer molecules, which are gap junction permeable, but not membrane permeable, following iontophoretic injection into single cells. However, these procedures can be extremely difficult to perform on neurons with small somata in intact neural tissue.Numerous studies on electrical synapses and the modulation of electrical communication have been conducted in the vertebrate retina, since each of the five retinal neuron types is electrically connected by gap junctions3,4. Increasing evidence has shown that the circadian (24-hour) clock in the retina and changes in light stimulation regulate gap junction coupling3-8. For example, recent work has demonstrated that the retinal circadian clock decreases gap junction coupling between rod and cone photoreceptor cells during the day by increasing dopamine D2 receptor activation, and dramatically increases rod-cone coupling at night by reducing D2 receptor activation7,8. However, not only are these studies extremely difficult to perform on neurons with small somata in intact neural retinal tissue, but it can be difficult to adequately control the illumination conditions during the electrophysiological study of single retinal neurons to avoid light-induced changes in gap junction conductance.Here, we present a straightforward method of determining the extent of gap junction tracer coupling between retinal neurons under different illumination conditions and at different times of the day and night. This cut-loading technique is a modification of scrape loading9-12, which is based on dye loading and diffusion through open gap junction channels. Scrape loading works well in cultured cells, but not in thick slices such as intact retinas. The cut-loading technique has been used to study photoreceptor coupling in intact fish and mammalian retinas7, 8,13, and can be used to study coupling between other retinal neurons, as described here.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号