首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Haemaphysalis longicornis (Neumann), a tick of public health and veterinary importance, spend the major part of their life cycle off-host, especially the adult host-seeking period. Thus, they have to contend with prolonged starvation. Here, we investigated the underlying molecular mechanism of tick starvation endurance in the salivary glands, midguts, ovaries, and Malpighian tubules of starved H. longicornis ticks using the data-independent acquisition quantitative proteomic approach to study the proteome changes. Essential synthases such as glutamate synthase, citrate synthase, and ATP synthase were up-regulated probably due to increased proteolysis and amino acid catabolism during starvation. The up-regulation of succinate dehydrogenase, ATP synthase, cytochrome c oxidase, and ADP/ATP translocase closely fits with an increased oxidative phosphorylation function during starvation. The differential expression of superoxide dismutase, glutathione reductase, glutathione S-transferase, thioredoxin, and peroxiredoxin indicated fasting-induced oxidative stress. The up-regulation of heat shock proteins could imply the activation of a protective mechanism that checks excessive protein breakdown during starvation stress. The results of this study could provide useful information about the vulnerabilities of ticks that could aid in tick control efforts.  相似文献   

2.
To understand the growth response to drought, we performed a proteomics study in the leaf growth zone of maize (Zea mays L.) seedlings and functionally characterized the role of starch biosynthesis in the regulation of growth, photosynthesis and antioxidant capacity, using the shrunken-2 mutant (sh2), defective in ADP-glucose pyrophosphorylase. Drought altered the abundance of 284 proteins overrepresented for photosynthesis, amino acid, sugar and starch metabolism, and redox-regulation. Changes in protein levels correlated with enzyme activities (increased ATP synthase, cysteine synthase, starch synthase, RuBisCo, peroxiredoxin, glutaredoxin, thioredoxin and decreased triosephosphate isomerase, ferredoxin, cellulose synthase activities, respectively) and metabolite concentrations (increased ATP, cysteine, glycine, serine, starch, proline and decreased cellulose levels). The sh2 mutant showed a reduced increase of starch levels under drought conditions, leading to soluble sugar starvation at the end of the night and correlating with an inhibition of leaf growth rates. Increased RuBisCo activity and pigment concentrations observed in WT, in response to drought, were lacking in the mutant, which suffered more oxidative damage and recovered more slowly after re-watering. These results demonstrate that starch biosynthesis contributes to maintaining leaf growth under drought stress and facilitates enhanced carbon acquisition upon recovery.  相似文献   

3.

Background

Ulva prolifera belongs to green macroalgae and is the dominant species of green tide. It is distributed worldwide and is therefore subject to high-temperature stress during the growth process. However, the adaptation mechanisms of the response of U. prolifera to high temperatures have not been clearly investigated yet.

Methods

In this study, isobaric tags for relative and absolute quantitation (iTRAQ) labelling was applied in combination with the liquid chromatography-tandem mass spectrometry (LC-MS/MS) to conduct comparative proteomic analysis of the response of U. prolifera to high-temperature stress and to elucidate the involvement of this response in adaptation mechanisms. Differentially expressed proteins (DEPs) of U. prolifera under high temperature (denote UpHT) compared with the control (UpC) were identified. Bioinformatic analyses including GO analysis, pathway analysis, and pathway enrichment analysis was performed to analyse the key metabolic pathways that underlie the thermal tolerance mechanism through protein networks. Quantitative real-time PCR and western blot were performed to validate selected proteins.

Results

In the present study, 1223 DEPs were identified under high temperature compared with the control, which included 790 up-regulated and 433 down-regulated proteins. The high-temperature stimulus mainly induced the expression of glutathione S-transferase, heat shock protein, ascorbate peroxidase, manganese superoxide dismutase, ubiquitin-related protein, lhcSR, rubisco activase, serine/threonine protein kinase 2, adenylate kinase, Ca2+-dependent protein kinase (CDPK), disease resistance protein EDS1, metacaspase type II, NDPK2a, 26S proteasome regulatory subunit, ubiquinone oxidoreductase, ATP synthase subunit, SnRK2s, and cytochrome P450. The down-regulated proteins were photosynthesis-related proteins, glutathione reductase, catalase-peroxidase, thioredoxin, thioredoxin peroxidase, PP2C, and carbon fixation-related proteins. Furthermore, biological index analysis indicated that protein content and SOD activity decreased; the value of Fv/Fm dropped to the lowest point after culture for 96 h. However, APX activity and MDA content increased under high temperature.

Conclusion

The present study implied an increase in proteins that were associated with the stress response, oxidative phosphorylation, the cytokinin signal transduction pathway, the abscisic acid signal transduction pathway, and the glutathione metabolism pathway. Proteins that were associated with photosynthesis, carbon fixation in photosynthesis organisms, and the photosynthesis antenna protein pathway were decreased. These pathways played a pivotal role in high temperature regulation. These novel proteins provide a good starting point for further research into their functions using genetic or other approaches. These findings significantly improve the understanding of the molecular mechanisms involved in the tolerance of algae to high-temperature stress.
  相似文献   

4.
Proteomics were performed using highly (99.99%) purified cytotrophoblasts from six normal and six pre-eclamptic placentas. Eleven proteins were found which decreased in pre-eclampsia (actin, glutathione S-transferase, peroxiredoxin 6, aldose reductase, heat shock protein 60 (Hsp60), two molecular forms of heat shock protein 70 (Hsp70) β-tubulin, subunit proteasome, ezrin, protein disulfide isomerase, and phosphoglycerate mutase 1). Only one protein, α-2-HS-glycoprotein (fetuin), was found to increase its expression. Western blots of actin, Hsp70, ezrin, and glutatione S-transferase confirmed decrease in protein expression. Many of the proteins that decreased are consistent with a state of oxidative stress in the pre-eclamptic placenta and a decreased cytotrophoblast defense against and response to oxidative stress.  相似文献   

5.

Background

High temperature is a critical abiotic stress that reduces crop yield and quality. Rice (Oryza sativa L.) plants remodel their proteomes in response to high temperature stress. Moreover, phosphorylation is the most common form of protein post-translational modification (PTM). However, the differential expression of phosphoproteins induced by heat in rice remains unexplored.

Methods

Phosphoprotein in the leaves of rice under heat stress were displayed using two-dimensional electrophoresis (2-DE) and Pro-Q Diamond dye. Differentially expressed phosphoproteins were identified by MALDI-TOF-TOF-MS/MS and confirmed by Western blotting.

Results

Ten heat-phosphoproteins were identified from twelve protein spots, including ribulose bisphos-phate carboxylase large chain, 2-Cys peroxiredoxin BAS1, putative mRNA binding protein, Os01g0791600 protein, OSJNBa0076N16.12 protein, putative H(+)-transporting ATP synthase, ATP synthase subunit beta and three putative uncharacterized proteins. The identification of ATP synthase subunit beta was further validated by Western-blotting. Four phosphorylation site predictors were also used to predict the phosphorylation sites and the specific kinases for these 10 phosphoproteins.

Conclusion

Heat stress induced the dephosphorylation of RuBisCo and the phosphorylation of ATP-β, which decreased the activities of RuBisCo and ATP synthase. The observed dephosphorylation of the mRNA binding protein and 2-Cys peroxiredoxin may be involved in the transduction of heat-stress signaling, but the functional importance of other phosphoproteins, such as H+-ATPase, remains unknown.  相似文献   

6.
Stress-induced methylglyoxal (MG) functions as a toxic molecule, inhibiting plant physiological processes such as photosynthesis and antioxidant defense systems. In the present study, an attempt was made to investigate the MG detoxification through glutathione metabolism in indica rice [Oryza sativa L. ssp. indica cv. Pathumthani 1] under salt stress by exogenous foliar application of paclobutrazol (PBZ). Fourteen-day-old rice seedlings were pretreated with 15 mg L?1 PBZ foliar spray. After 7 days, rice seedlings were subsequently exposed to 0 (control) or 150 mM NaCl (salt stress) for 12 days. Prolonged salt stress enhanced the production of MG molecules and the oxidation of proteins, leading to decreased activity of glyoxalase enzymes, glyoxalase I (Gly I) and glyoxalase II (Gly II). Consequently, the decreased glyoxalase activities were also associated with a decline in reduced glutathione (GSH) content and glutathione reductase (GR) activity. PBZ pretreatment of rice seedlings under salt stress significantly lowered MG production and protein oxidation, and increased the activities of both Gly I and Gly II. PBZ also increased GSH content and GR activity along with the up-regulation of glyoxalase enzymes, under salt stress. In summary, salinity induced a high level of MG and the associated oxidative damage, while PBZ application reduced the MG toxicity by up-regulating glyoxalase and glutathione defense system in rice seedlings.  相似文献   

7.
The antioxidant systems of mitochondria are not well known. Using a proteomics-based approach, we defined these mitochondrial antioxidant systems and analyzed their response to oxidative stress. It appears that the major mitochondrial antioxidant system is made of manganese superoxide dismutase on the one hand, and of peroxiredoxin III, mitochondrial thioredoxin and mitochondrial thioredoxin reductase on the other hand. With the exception of thioredoxin reductase, all these proteins are induced by oxidative stress. In addition, a change in the peroxiredoxin III pattern can also be observed.  相似文献   

8.
The study was conducted to examine differential proteomic responses to water-deficit stress in hybrid bermudagrass [Cynodon dactylon (L.) Pers. ×Cynodon transvaalensis Burtt Davy, cv. Tifway] and common bermudagrass (C. dactylon, cv. C299). Plants were exposed to water-deficit stress for 15 days by withholding irrigation in a growth chamber. Leaf electrolyte leakage increased and photochemical efficiency and relative water content declined under water-deficit stress, but the extent of changes in each of the physiological parameters for 'Tifway' was less pronounced than those for 'C299'. Total proteins of leaves were extracted from well-watered and water-deficit plants and separated by two-dimensional gel electrophoresis. Of the 750 protein spots reproducibly detected, 32 proteins had increases in the abundance and 22 proteins exhibited decreases in the abundance in at least one genotype under water-deficit stress. A significantly higher number of proteins were found to accumulate in 'Tifway' than in 'C299' and 16 proteins with increasing abundance were detected only in 'Tifway' under water-deficit stress. All stress-responsive proteins were subjected to mass spectrometry analysis, which were mainly involved in metabolism, energy, cell growth/division, protein synthesis and stress defense. Functional analysis of differential drought-responsive proteins between the two genotypes suggests that the superior water-deficit tolerance in 'Tifway' bermudagrass could be mainly associated with less severe decline in the abundance level of proteins involved in photosynthesis (chlorophyll a-b, ATP synthase subunit alpha, phosphoribulokinase and ribulose-1,5-bisphosphate carboxylase/oxygenase) and greater increase in the abundance level of antioxidant defense proteins (superoxide dismutase, ascorbate peroxidase, dehydroascorbate reductase and peroxiredoxin), demonstrating that maintaining photosynthesis and active antioxidant defense mechanisms may play a critical role in C(4) grass adaptation to water-deficit stress.  相似文献   

9.
Conversion of protein –SH groups to disulfides is an early event during protein oxidation, which has prompted great interest in the study of thiol proteins. Chemical carcinogenesis is strongly associated with the formation of reactive oxygen species (ROS). The goal of this study was to detect thiol proteins that are sensitive to ROS generated during diethylnitrosamine (DEN) metabolism in the rat liver. DEN has been widely used to induce experimental hepatocellular carcinoma. We used modified redox-differential gel electrophoresis (redox-DIGE method) and mass spectrometry MALDI-TOF/TOF to identify differential oxidation protein profiles associated with carcinogen exposure. Our analysis revealed a time-dependent increase in the number of oxidized thiol proteins after carcinogen treatment; some of these proteins have antioxidant activity, including thioredoxin, peroxirredoxin 2, peroxiredoxin 6 and glutathione S-transferase alpha-3. According to functional classifications, the identified proteins in our study included chaperones, oxidoreductases, activity isomerases, hydrolases and other protein-binding partners. This study demonstrates that oxidative stress generated by DEN tends to increase gradually through DEN metabolism, causes time-dependent necrosis in the liver and has an oxidative effect on thiol proteins, thereby increasing the number of oxidized thiol proteins. Furthermore, these events occurred during the hepatocarcinogenesis initiation period.  相似文献   

10.
Mitochondrial diseases originate from mutations in mitochondrial or nuclear genes encoding for mitochondrial proteome. Neurogenic muscle weakness, ataxia and retinitis pigmentosa (NARP) syndrome is associated with the T8993G transversion in ATP6 gene which results in substitution at the very conservative site in the subunit 6 of mitochondrial ATP synthase. Defects in the mitochondrial respiratory chain and the ATPase are considered to be accompanied by changes in the generation of reactive oxygen species (ROS). This study aimed to elucidate effects of selenium on ROS and antioxidant system of NARP cybrid cells with 98% of T8993G mutation load. We found that selenium decreased ROS generation and increased the level and activity of antioxidant enzymes such as glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). Therefore, we propose selenium to be a promising therapeutic agent not only in the case of NARP syndrome but also other diseases associated with mitochondrial dysfunctions and oxidative stress.  相似文献   

11.
Glyphosate is one of the most widely used herbicides in cereal-growing regions worldwide. In the present work, the protein expression profile of rice leaves exposed to glyphosate was analyzed in order to investigate the alternative effects of glyphosate on plants. Two-week-old rice leaves were subjected to glyphosate or a reactive oxygen species (ROS) inducing herbicide paraquat, and total soluble proteins were extracted and analyzed by two-dimensional gel electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) analysis. A total of 25 differentially expressed proteins were identified from the glyphosate treated sample, wherein 18 proteins were up-regulated and 7 proteins were down-regulated. These proteins had shown a parallel expression pattern in response to paraquat. Results from the 2-DE analysis, combined with immunoblotting, clearly revealed that ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit was significantly decreased by the treatment of both herbicides. An increased accumulation of antioxidant enzymes including ascorbate peroxidase, glutathione S-transferase, thioredoxin h-type, nucleoside diphosphate kinase 1, peroxiredoxin and a superoxide dismutase [Cu–Zn] chloroplast precursor in the glyphosate-treated sample suggests that a glyphosate treatment possibly generates oxidative stress in plants. Moreover, a gene expression analysis of five antioxidant enzymes by Northern blot confirmed their mRNA levels in the rice leaves. A histo-cytochemical investigation with DAB (3,3-diaminobenzidine) to localize H2O2 and increases of the thiobarbituric acid reactive substances (TBARS) concentration revealed that the glyphosate application generates ROS, which resulted in the peroxidation and destruction of lipids in the rice leaves.  相似文献   

12.
Possible target proteins of cytosolic thioredoxin in higher plants have been investigated in the cell lysate of dark-grown Arabidopsis thaliana whole tissues. We immobilized a mutant of cytosolic thioredoxin, in which an internal cysteine at the active site was substituted with serine, on CNBr activated resin, and used the resin for the thioredoxin-affinity chromatography. By using this resin, the target proteins for thioredoxin in the higher plant cytosol were efficiently acquired. The obtained proteins were separated by two-dimensional gel electrophoresis and analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Thus we have identified proteins of the anti-oxidative stress system proteins (ascorbate peroxidase, germin-like protein, and monomeric type II peroxiredoxin), proteins involved in protein biosynthesis (elongation factor-2 and eukaryotic translation initiation factor 4A), proteins involved in protein degradation (the regulatory subunit of 26S proteasome), and several metabolic enzymes (alcohol dehydrogenase, fructose 1,6-bis phosphate aldolase-like protein, cytosolic glyceraldehyde 3-phosphate dehydrogenase, cytosolic malate dehydrogenase, and vitamin B(12)-independent methionine synthase) together with some chloroplast proteins (chaperonin 60-alpha and 60-beta, heat shock protein 70, and glutamine synthase). The results in this study and recent proteomics studies on the target proteins of chloroplast thioredoxin indicate the versatility and the physiological significance of thioredoxin as reductant in plant cell.  相似文献   

13.
Wen XJ  Hao CY  Pu W  Liu X  Zhang XY 《遗传》2011,33(1):88-94
F-box蛋白是E3泛素连接酶SCF复合体的重要亚基, 通过底物蛋白的特异识别发挥功能。TaFRA是在盐胁迫差异表达片段基础上通过RACE方法获得的一个基因, 编码F-box蛋白。文章利用TaFRA基因构建诱饵表达载体, 直接用cDNA+pGAD+pBD共转化酵母双杂交的方法筛选相互作用的候选蛋白。通过对阳性克隆的鉴定和测序分析, 共获得44个与TaFRA相互作用的候选蛋白, 其中32个为已知蛋白, 包括硫氧还蛋白、金属硫蛋白、ATP合成酶及丝氨酸/苏氨酸蛋白激酶等多种逆境胁迫反应蛋白及转录因子蛋白, 说明TaFRA与胁迫反应相关, 可能通过对上述蛋白编码基因的调控参与了植物的胁迫反应过程, 为进一步阐明TaFRA的功能及作用机制奠定了理论基础。  相似文献   

14.
15.
Salinity stress is a major abiotic stress that affects plant growth and limits crop production. Roots are the primary site of salinity perception, and salt sensitivity in roots limits the productivity of the entire plant. To better understand salt stress responses in canola, we performed a comparative proteomic analysis of roots from the salt-tolerant genotype Safi-7 and the salt-sensitive genotype Zafar. Plants were exposed to 0, 150, and 300 mM NaCl. Our physiological and morphological observations confirmed that Safi-7 was more salt-tolerant than Zafar. The root proteins were separated by two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry was applied to identify proteins regulated in response to salt stress. We identified 36 and 25 protein spots whose abundance was significantly affected by salt stress in roots of plants from the tolerant and susceptible genotype, respectively. Functional classification analysis revealed that the differentially expressed proteins from the tolerant genotype could be assigned to 14 functional categories, while those from the susceptible genotype could be classified into 9 functional categories. The most significant differences concerned proteins involved in glycolysis (Glyceraldehyde-3-phosphate dehydrogenase, Fructose-bisphosphate aldolase, Phosphoglycerate kinase 3), stress (heat shock proteins), Redox regulation (Glutathione S-transferase DHAR1, L-ascorbate peroxidase), energy metabolism (ATP synthase subunit B), and transport (V-type proton ATPase subunit B1) which were increased only in the tolerant line under salt stress. Our results provide the basis for further elucidating the molecular mechanisms of salt-tolerance and will be helpful for breeding salt-tolerant canola cultivars.  相似文献   

16.
17.
Growth and productivity of rice (Oryza sativa L.) are severely affected by salinity. Understanding the mechanisms that protect rice and other important cereal crops from salt stress will help in the development of salt‐stress‐tolerant strains. In this study, rice seedlings of the same genetic species with various salt tolerances were studied. We first used 2DE to resolve the expressed proteome in rice roots and leaves and then used nanospray liquid chromatography/tandem mass spectrometry to identify the differentially expressed proteins in rice seedlings after salt treatment. The 2DE assays revealed that there were 104 differentially expressed protein spots in rice roots and 59 in leaves. Then, we identified 83 proteins in rice roots and 61 proteins in rice leaves by MS analysis. Functional classification analysis revealed that the differentially expressed proteins from roots could be classified into 18 functional categories while those from leaves could be classified into 11 functional categories. The proteins from rice seedlings that most significantly contributed to a protective effect against increased salinity were cysteine synthase, adenosine triphosphate synthase, quercetin 3‐O‐methyltransferase 1, and lipoxygenase 2. Further analysis demonstrated that the primary mechanisms underlying the ability of rice seedlings to tolerate salt stress were glycolysis, purine metabolism, and photosynthesis. Thus, we suggest that differentially expressed proteins may serve as marker group for the salt tolerance of rice.  相似文献   

18.
19.
Thioredoxins (TRXs) mediate light‐dependent activation of primary photosynthetic reactions in plant chloroplasts by reducing disulphide bridges in redox‐regulated enzymes. Of the two plastid TRX systems, the ferredoxin‐TRX system consists of ferredoxin‐thioredoxin reductase (FTR) and multiple TRXs, while the NADPH‐dependent thioredoxin reductase (NTRC) contains a complete TRX system in a single polypeptide. Using Arabidopsis plants overexpressing or lacking a functional NTRC, we have investigated the redundancy and interaction between the NTRC and Fd‐TRX systems in regulation of photosynthesis in vivo. Overexpression of NTRC raised the CO2 fixation rate and lowered non‐photochemical quenching and acceptor side limitation of PSI in low light conditions by enhancing the activation of chloroplast ATP synthase and TRX‐regulated enzymes in Calvin–Benson cycle (CBC). Overexpression of NTRC with an inactivated NTR or TRX domain partly recovered the phenotype of knockout plants, suggesting crosstalk between the plastid TRX systems. NTRC interacted in planta with fructose‐1,6‐bisphosphatase, phosphoribulokinase and CF1γ subunit of the ATP synthase and with several chloroplast TRXs. These findings indicate that NTRC‐mediated regulation of the CBC and ATP synthesis occurs both directly and through interaction with the ferredoxin‐TRX system and is crucial when availability of light is limiting photosynthesis.  相似文献   

20.
Two antioxidant proteins, SLL1621 and SLR1198, were captured in the cyanobacteria Synechocystis sp. PCC 6803 using thioredoxin affinity chromatography, which was first applied to the survey of thioredoxin target proteins in chloroplasts (Motohashi, K., Kondoh, A., Stumpp, M. T., and Hisabori, T. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 11224-11229). They are annotated as AhpC/TSA family protein (SLL1621) and antioxidant protein (SLR1198) in CyanoBase (Nakamura, Y., Kaneko, T., Hirosawa, M., Miyajima, N., and Tabata, S. (1998) Nucleic Acids Res. 26, 63-67). Based on sequence homology analysis SLL1621 and SLR1198 are categorized into type II peroxiredoxin and 1-Cys type peroxiredoxin, respectively. In vitro interaction between SLL1621 and thioredoxin was confirmed using the recombinant proteins expressed in Escherichia coli. Furthermore, we found that SLL1621 shows remarkable glutathione-dependent peroxidase activity. Disruption of the sll1621 gene had a dramatic effect on the viability of the cyanobacterial cells even under weak light conditions (50 micromol.m(-2).s(-1)), suggesting this peroxiredoxin is essential for this cyanobacterium. In contrast, although the peroxidase activity of SLR1198 was scarcely detected, disruption of the gene, slr1198, certainly affected the growth rate of the cells. The results indicate the physiological significance of two different peroxiredoxins as an anti-oxidative stress system in cyanobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号