首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Walnut (Juglans regia, 2n = 32, approximately 606 Mb per 1C genome) is an economically important tree crop. Resistance to anthracnose, caused by Colletotrichum gloeosporioides, is a major objective of walnut genetic improvement in China. The recently developed specific length amplified fragment sequencing (SLAF-seq) is an efficient strategy that can obtain large numbers of markers with sufficient sequence information to construct high-density genetic maps and permits detection of quantitative trait loci (QTLs) for molecular breeding.

Results

SLAF-seq generated 161.64 M paired-end reads. 153,820 SLAF markers were obtained, of which 49,174 were polymorphic. 13,635 polymorphic markers were sorted into five segregation types and 2,577 markers of them were used to construct genetic linkage maps: 2,395 of these fell into 16 linkage groups (LGs) for the female map, 448 markers for the male map, and 2,577 markers for the integrated map. Taking into account the size of all LGs, the marker coverage was 2,664.36 cM for the female map, 1,305.58 cM for the male map, and 2,457.82 cM for the integrated map. The average intervals between two adjacent mapped markers were 1.11 cM, 2.91 cM and 0.95 cM for three maps, respectively. ‘SNP_only’ markers accounted for 89.25 % of the markers on the integrated map. Mapping markers contained 5,043 single nucleotide polymorphisms (SNPs) loci, which corresponded to two SNP loci per SLAF marker. According to the integrated map, we used interval mapping (Logarithm of odds, LOD > 3.0) to detect our quantitative trait. One QTL was detected for anthracnose resistance. The interval of this QTL ranged from 165.51 cM to 176.33 cM on LG14, and ten markers in this interval that were above the threshold value were considered to be linked markers to the anthracnose resistance trait. The phenotypic variance explained by each marker ranged from 16.2 to 19.9 %, and their LOD scores varied from 3.22 to 4.04.

Conclusions

High-density genetic maps for walnut containing 16 LGs were constructed using the SLAF-seq method with an F1 population. One QTL for walnut anthracnose resistance was identified based on the map. The results will aid molecular marker-assisted breeding and walnut resistance genes identification.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1822-8) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

Ziziphus Mill. (jujube), the most valued genus of Rhamnaceae, comprises of a number of economically and ecologically important species such as Z. jujuba Mill., Z. acidojujuba Cheng et Liu and Z. mauritiana Lam. Single nucleotide polymorphism (SNP) markers and a high-density genetic map are of great benefit to the improvement of the crop, mapping quantitative trait loci (QTL) and analyzing genome structure. However, such a high-density map is still absent in the genus Ziziphus and even the family Rhamnaceae. The recently developed restriction-site associated DNA (RAD) marker has been proven to be most powerful in genetic map construction. The objective of this study was to construct a high-density linkage map using the RAD tags generated by next generation sequencing.

Results

An interspecific F1 population and their parents (Z. jujuba Mill. ‘JMS2’ × Z. acidojujuba Cheng et Liu ‘Xing 16’) were genotyped using a mapping-by-sequencing approach, to generate RAD-based SNP markers. A total of 42,784 putative high quality SNPs were identified between the parents and 2,872 high-quality RAD markers were grouped in genetic maps. Of the 2,872 RAD markers, 1,307 were linked to the female genetic map, 1,336 to the male map, and 2,748 to the integrated map spanning 913.87 centi-morgans (cM) with an average marker interval of 0.34 cM. The integrated map contained 12 linkage groups (LGs), consistent with the haploid chromosome number of the two parents.

Conclusion

We first generated a high-density genetic linkage map with 2,748 RAD markers for jujube and a large number of SNPs were also developed. It provides a useful tool for both marker-assisted breeding and a variety of genome investigations in jujube, such as sequence assembly, gene localization, QTL detection and genome structure comparison.  相似文献   

3.

Background

Oil palm is an important perennial oil crop with an extremely long selection cycle of 10 to 12 years. As such, any tool that speeds up its genetic improvement process, such as marker-assisted breeding is invaluable. Previously, genetic linkage maps based on AFLP, RFLP and SSR markers were developed and QTLs for fatty acid composition and yield components identified. High density genetic maps of crosses of different genetic backgrounds are indispensable tools for investigating oil palm genetics. They are also useful for comparative mapping analyses to identify markers closely linked to traits of interest.

Results

A 4.5 K customized oil palm SNP array was developed using the Illumina Infinium platform. The SNPs and 252 SSRs were genotyped on two mapping populations, an intraspecific cross with 87 palms and an interspecific cross with 108 palms. Parental maps with 16 linkage groups (LGs), were constructed for the three fruit forms of E. guineensis (dura, pisifera and tenera). Map resolution was further increased by integrating the dura and pisifera maps into an intraspecific integrated map with 1,331 markers spanning 1,867 cM. We also report the first map of a Colombian E. oleifera, comprising 10 LGs with 65 markers spanning 471 cM. Although not very dense due to the high level of homozygosity in E. oleifera, the LGs were successfully integrated with the LGs of the tenera map. Direct comparison between the parental maps identified 603 transferable markers polymorphic in at least two of the parents. Further analysis revealed a high degree of marker transferability covering 1,075 cM, between the intra- and interspecific integrated maps. The interspecific cross displayed higher segregation distortion than the intraspecific cross. However, inclusion of distorted markers in the genetic maps did not disrupt the marker order and no map expansion was observed.

Conclusions

The high density SNP and SSR-based genetic maps reported in this paper have greatly improved marker density and genome coverage in comparison with the first reference map based on AFLP and SSR markers. Therefore, it is foreseen that they will be more useful for fine mapping of QTLs and whole genome association mapping studies in oil palm.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-309) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Durum wheat (Triticum durum Desf.) is a tetraploid cereal grown in the medium to low-precipitation areas of the Mediterranean Basin, North America and South-West Asia. Genomics applications in durum wheat have the potential to boost exploitation of genetic resources and to advance understanding of the genetics of important complex traits (e.g. resilience to environmental and biotic stresses). A dense and accurate consensus map specific for T. durum will greatly facilitate genetic mapping, functional genomics and marker-assisted improvement.

Results

High quality genotypic data from six core recombinant inbred line populations were used to obtain a consensus framework map of 598 simple sequence repeats (SSR) and Diversity Array Technology® (DArT) anchor markers (common across populations). Interpolation of unique markers from 14 maps allowed us to position a total of 2,575 markers in a consensus map of 2,463 cM. The T. durum A and B genomes were covered in their near totality based on the reference SSR hexaploid wheat map. The consensus locus order compared to those of the single component maps showed good correspondence, (average Spearman’s rank correlation rho ρ value of 0.96). Differences in marker order and local recombination rate were observed between the durum and hexaploid wheat consensus maps. The consensus map was used to carry out a whole-genome search for genetic differentiation signatures and association to heading date in a panel of 183 accessions adapted to the Mediterranean areas. Linkage disequilibrium was found to decay below the r2 threshold = 0.3 within 2.20 cM, on average. Strong molecular differentiations among sub-populations were mapped to 87 chromosome regions. A genome-wide association scan for heading date from 27 field trials in the Mediterranean Basin and in Mexico yielded 50 chromosome regions with evidences of association in multiple environments.

Conclusions

The consensus map presented here was used as a reference for genetic diversity and mapping analyses in T. durum, providing nearly complete genome coverage and even marker density. Markers previously mapped in hexaploid wheat constitute a strong link between the two species. The consensus map provides the basis for high-density single nucleotide polymorphic (SNP) marker implementation in durum wheat.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-873) contains supplementary material, which is available to authorized users.  相似文献   

5.

Background

Sugarcane genetic mapping has lagged behind other crops due to its complex autopolyploid genome structure. Modern sugarcane cultivars have from 110-120 chromosomes and are in general interspecific hybrids between two species with different basic chromosome numbers: Saccharum officinarum (2n = 80) with a basic chromosome number of 10 and S. spontaneum (2n = 40-128) with a basic chromosome number of 8. The first maps that were constructed utilised the single dose (SD) markers generated using RFLP, more recent maps generated using AFLP and SSRs provided at most 60% genome coverage. Diversity Array Technology (DArT) markers are high throughput allowing greater numbers of markers to be generated.

Results

Progeny from a cross between a sugarcane variety Q165 and a S. officinarum accession IJ76-514 were used to generate 2467 SD markers. A genetic map of Q165 was generated containing 2267 markers, These markers formed 160 linkage groups (LGs) of which 147 could be placed using allelic information into the eight basic homology groups (HGs) of sugarcane. The HGs contained from 13 to 23 LGs and from 204 to 475 markers with a total map length of 9774.4 cM and an average density of one marker every 4.3 cM. Each homology group contained on average 280 markers of which 43% were DArT markers 31% AFLP, 16% SSRs and 6% SNP markers. The multi-allelic SSR and SNP markers were used to place the LGs into HGs.

Conclusions

The DArT array has allowed us to generate and map a larger number of markers than ever before and consequently to map a larger portion of the sugarcane genome. This larger number of markers has enabled 92% of the LGs to be placed into the 8 HGs that represent the basic chromosome number of the ancestral species, S. spontaneum. There were two HGs (HG2 and 8) that contained larger numbers of LGs verifying the alignment of two sets of S. officinarum chromosomes with one set of S. spontaneum chromosomes and explaining the difference in basic chromosome number between the two ancestral species. There was also evidence of more complex structural differences between the two ancestral species.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-152) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background

Although Daphnia is increasingly recognized as a model for ecological genomics and biomedical research, there is, as of yet, no high-resolution genetic map for the genus. Such a map would provide an important tool for mapping phenotypes and assembling the genome. Here we estimate the genome size of Daphnia magna and describe the construction of an SNP array based linkage map. We then test the suitability of the map for life history and behavioural trait mapping. The two parent genotypes used to produce the map derived from D. magna populations with and without fish predation, respectively and are therefore expected to show divergent behaviour and life-histories.

Results

Using flow cytometry we estimated the genome size of D. magna to be about 238 mb. We developed an SNP array tailored to type SNPs in a D. magna F2 panel and used it to construct a D. magna linkage map, which included 1,324 informative markers. The map produced ten linkage groups ranging from 108.9 to 203.6 cM, with an average distance between markers of 1.13 cM and a total map length of 1,483.6 cM (Kosambi corrected). The physical length per cM is estimated to be 160 kb. Mapping infertility genes, life history traits and behavioural traits on this map revealed several significant QTL peaks and showed a complex pattern of underlying genetics, with different traits showing strongly different genetic architectures.

Conclusions

The new linkage map of D. magna constructed here allowed us to characterize genetic differences among parent genotypes from populations with ecological differences. The QTL effect plots are partially consistent with our expectation of local adaptation under contrasting predation regimes. Furthermore, the new genetic map will be an important tool for the Daphnia research community and will contribute to the physical map of the D. magna genome project and the further mapping of phenotypic traits. The clones used to produce the linkage map are maintained in a stock collection and can be used for mapping QTLs of traits that show variance among the F2 clones.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1033) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background

A RIL population between Solanum lycopersicum cv. Moneymaker and S. pimpinellifolium G1.1554 was genotyped with a custom made SNP array. Additionally, a subset of the lines was genotyped by sequencing (GBS).

Results

A total of 1974 polymorphic SNPs were selected to develop a linkage map of 715 unique genetic loci. We generated plots for visualizing the recombination patterns of the population relating physical and genetic positions along the genome.This linkage map was used to identify two QTLs for TYLCV resistance which contained favourable alleles derived from S. pimpinellifolium. Further GBS was used to saturate regions of interest, and the mapping resolution of the two QTLs was improved. The analysis showed highest significance on Chromosome 11 close to the region of 51.3 Mb (qTy-p11) and another on Chromosome 3 near 46.5 Mb (qTy-p3). Furthermore, we explored the population using untargeted metabolic profiling, and the most significant differences between susceptible and resistant plants were mainly associated with sucrose and flavonoid glycosides.

Conclusions

The SNP information obtained from an array allowed a first QTL screening of our RIL population. With additional SNP data of a RILs subset, obtained through GBS, we were able to perform an in silico mapping improvement to further confirm regions associated with our trait of interest. With the combination of different ~ omics platforms we provide valuable insight into the genetics of S. pimpinellifolium-derived TYLCV resistance.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1152) contains supplementary material, which is available to authorized users.  相似文献   

8.

Background

Lotus is a diploid plant with agricultural, medicinal, and ecological significance. Genetic linkage maps are fundamental resources for genome and genetic study, and also provide molecular markers for breeding in agriculturally important species. Genotyping by sequencing revolutionized genetic mapping, the restriction-site associated DNA sequencing (RADseq) allowed rapid discovery of thousands of SNPs markers, and a crucial aspect of the sequence based mapping strategy is the reference sequences used for marker identification.

Results

We assessed the effectiveness of linkage mapping using three types of references for scoring markers: the unmasked genome, repeat masked genome, and gene models. Overall, the repeat masked genome produced the optimal genetic maps. A high-density genetic map of American lotus was constructed using an F1 population derived from a cross between Nelumbo nucifera ‘China Antique’ and N. lutea ‘AL1’. A total of 4,098 RADseq markers were used to construct the American lotus ‘AL1’ genetic map, and 147 markers were used to construct the Chinese lotus ‘China Antique’ genetic map. The American lotus map has 9 linkage groups, and spans 494.3 cM, with an average distance of 0.7 cM between adjacent markers. The American lotus map was used to anchor scaffold sequences in the N. nucifera ‘China Antique’ draft genome. 3,603 RADseq markers anchored 234 individual scaffold sequences into 9 megascaffolds spanning 67% of the 804 Mb draft genome.

Conclusions

Among the unmasked genome, repeat masked genome and gene models, the optimal reference sequences to call RADseq markers for map construction is repeat masked genome. This high density genetic map is a valuable resource for genomic research and crop improvement in lotus.  相似文献   

9.

Background

Purple carrots accumulate large quantities of anthocyanins in their roots and leaves. These flavonoid pigments possess antioxidant activity and are implicated in providing health benefits. Informative, saturated linkage maps associated with well characterized populations segregating for anthocyanin pigmentation have not been developed. To investigate the genetic architecture conditioning anthocyanin pigmentation we scored root color visually, quantified root anthocyanin pigments by high performance liquid chromatography in segregating F2, F3 and F4 generations of a mapping population, mapped quantitative trait loci (QTL) onto a dense gene-derived single nucleotide polymorphism (SNP)-based linkage map, and performed comparative trait mapping with two unrelated populations.

Results

Root pigmentation, scored visually as presence or absence of purple coloration, segregated in a pattern consistent with a two gene model in an F2, and progeny testing of F3-F4 families confirmed the proposed genetic model. Purple petiole pigmentation was conditioned by a single dominant gene that co-segregates with one of the genes conditioning root pigmentation. Root total pigment estimate (RTPE) was scored as the percentage of the root with purple color.All five anthocyanin glycosides previously reported in carrot, as well as RTPE, varied quantitatively in the F2 population. For the purpose of QTL analysis, a high resolution gene-derived SNP-based linkage map of carrot was constructed with 894 markers covering 635.1 cM with a 1.3 cM map resolution. A total of 15 significant QTL for all anthocyanin pigments and for RTPE mapped to six chromosomes. Eight QTL with the largest phenotypic effects mapped to two regions of chromosome 3 with co-localized QTL for several anthocyanin glycosides and for RTPE. A single dominant gene conditioning anthocyanin acylation was identified and mapped.Comparative mapping with two other carrot populations segregating for purple color indicated that carrot anthocyanin pigmentation is controlled by at least three genes, in contrast to monogenic control reported previously.

Conclusions

This study generated the first high resolution gene-derived SNP-based linkage map in the Apiaceae. Two regions of chromosome 3 with co-localized QTL for all anthocyanin pigments and for RTPE, largely condition anthocyanin accumulation in carrot roots and leaves. Loci controlling root and petiole anthocyanin pigmentation differ across diverse carrot genetic backgrounds.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1118) contains supplementary material, which is available to authorized users.  相似文献   

10.

Background

Quantitative trait locus (QTL) mapping is an efficient approach to discover the genetic architecture underlying complex quantitative traits. However, the low density of molecular markers in genetic maps has limited the efficiency and accuracy of QTL mapping. In this study, specific length amplified fragment sequencing (SLAF-seq), a new high-throughput strategy for large-scale SNP discovery and genotyping based on next generation sequencing (NGS), was employed to construct a high-density soybean genetic map using recombinant inbred lines (RILs, Luheidou2 × Nanhuizao, F5:8). With this map, the consistent QTLs for isoflavone content across various environments were identified.

Results

In total, 23 Gb of data containing 87,604,858 pair-end reads were obtained. The average coverage for each SLAF marker was 11.20-fold for the female parent, 12.51-fold for the male parent, and an average of 3.98-fold for individual RILs. Among the 116,216 high-quality SLAFs obtained, 9,948 were polymorphic. The final map consisted of 5,785 SLAFs on 20 linkage groups (LGs) and spanned 2,255.18 cM in genome size with an average distance of 0.43 cM between adjacent markers. Comparative genomic analysis revealed a relatively high collinearity of 20 LGs with the soybean reference genome. Based on this map, 41 QTLs were identified that contributed to the isoflavone content. The high efficiency and accuracy of this map were evidenced by the discovery of genes encoding isoflavone biosynthetic enzymes within these loci. Moreover, 11 of these 41 QTLs (including six novel loci) were associated with isoflavone content across multiple environments. One of them, qIF20-2, contributed to a majority of isoflavone components across various environments and explained a high amount of phenotypic variance (8.7% - 35.3%). This represents a novel major QTL underlying isoflavone content across various environments in soybean.

Conclusions

Herein, we reported a high-density genetic map for soybean. This map exhibited high resolution and accuracy. It will facilitate the identification of genes and QTLs underlying essential agronomic traits in soybean. The novel major QTL for isoflavone content is useful not only for further study on the genetic basis of isoflavone accumulation, but also for marker-assisted selection (MAS) in soybean breeding in the future.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1086) contains supplementary material, which is available to authorized users.  相似文献   

11.

Background

It is well known that genetic components play an important role in the etiology of mandibular prognathism, but few susceptibility loci have been mapped.

Methodology

In order to identify linkage regions for mandibular prognathism, we analyzed two Chinese pedigrees with 6,090 genome-wide single-nucleotide polymorphism (SNP) markers from Illumina Linkage-12 DNA Analysis Kit (average spacing 0.58 cM). Multipoint parametric and non-parametric (model-free) linkage analyses were used for the pedigrees.

Principal Finding

The most statistically significant linkage results were with markers on chromosome 4 (LOD  = 3.166 and NPL = 3.65 with rs 875864, 4p16.1, 8.38 cM). Candidate genes within the 4p16.1 include EVC, EVC2.

Conclusion

We detected a novel suggestive linkage locus for mandibular prognathism in two Chinese pedigrees, and this linkage region provides target for susceptibility gene identification, a process that will provide important insights into the molecular and cellular basis of mandibular prognathism.  相似文献   

12.

Background

The Eastern honey bee, Apis cerana Fabricius, is distributed in southern and eastern Asia, from India and China to Korea and Japan and southeast to the Moluccas. This species is also widely kept for honey production besides Apis mellifera. Apis cerana is also a model organism for studying social behavior, caste determination, mating biology, sexual selection, and host-parasite interactions. Few resources are available for molecular research in this species, and a linkage map was never constructed. A linkage map is a prerequisite for quantitative trait loci mapping and for analyzing genome structure. We used the Chinese honey bee, Apis cerana cerana to construct the first linkage map in the Eastern honey bee.

Results

F2 workers (N = 103) were genotyped for 126,990 single nucleotide polymorphisms (SNPs). After filtering low quality and those not passing the Mendel test, we obtained 3,000 SNPs, 1,535 of these were informative and used to construct a linkage map. The preliminary map contains 19 linkage groups, we then mapped the 19 linkage groups to 16 chromosomes by comparing the markers to the genome of A. mellfiera. The final map contains 16 linkage groups with a total of 1,535 markers. The total genetic distance is 3,942.7 centimorgans (cM) with the largest linkage group (180 loci) measuring 574.5 cM. Average marker interval for all markers across the 16 linkage groups is 2.6 cM.

Conclusion

We constructed a high density linkage map for A. c. cerana with 1,535 markers. Because the map is based on SNP markers, it will enable easier and faster genotyping assays than randomly amplified polymorphic DNA or microsatellite based maps used in A. mellifera.  相似文献   

13.

Background

A high-throughput genotyping platform is needed to enable marker-assisted breeding in the allo-octoploid cultivated strawberry Fragaria × ananassa. Short-read sequences from one diploid and 19 octoploid accessions were aligned to the diploid Fragaria vesca ‘Hawaii 4’ reference genome to identify single nucleotide polymorphisms (SNPs) and indels for incorporation into a 90 K Affymetrix® Axiom® array. We report the development and preliminary evaluation of this array.

Results

About 36 million sequence variants were identified in a 19 member, octoploid germplasm panel. Strategies and filtering pipelines were developed to identify and incorporate markers of several types: di-allelic SNPs (66.6%), multi-allelic SNPs (1.8%), indels (10.1%), and ploidy-reducing “haploSNPs” (11.7%). The remaining SNPs included those discovered in the diploid progenitor F. iinumae (3.9%), and speculative “codon-based” SNPs (5.9%). In genotyping 306 octoploid accessions, SNPs were assigned to six classes with Affymetrix’s “SNPolisher” R package. The highest quality classes, PolyHigh Resolution (PHR), No Minor Homozygote (NMH), and Off-Target Variant (OTV) comprised 25%, 38%, and 1% of array markers, respectively. These markers were suitable for genetic studies as demonstrated in the full-sib family ‘Holiday’ × ‘Korona’ with the generation of a genetic linkage map consisting of 6,594 PHR SNPs evenly distributed across 28 chromosomes with an average density of approximately one marker per 0.5 cM, thus exceeding our goal of one marker per cM.

Conclusions

The Affymetrix IStraw90 Axiom array is the first high-throughput genotyping platform for cultivated strawberry and is commercially available to the worldwide scientific community. The array’s high success rate is likely driven by the presence of naturally occurring variation in ploidy level within the nominally octoploid genome, and by effectiveness of the employed array design and ploidy-reducing strategies. This array enables genetic analyses including generation of high-density linkage maps, identification of quantitative trait loci for economically important traits, and genome-wide association studies, thus providing a basis for marker-assisted breeding in this high value crop.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1310-1) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background

Genotyping-by-sequencing (GBS) is a high-throughput genotyping approach that is starting to be used in several crop species, including bread wheat. Anchoring GBS tags on chromosomes is an important step towards utilizing them for wheat genetic improvement. Here we use genetic linkage mapping to construct a consensus map containing 28644 GBS markers.

Results

Three RIL populations, PBW343 × Kingbird, PBW343 × Kenya Swara and PBW343 × Muu, which share a common parent, were used to minimize the impact of potential structural genomic variation on consensus-map quality. The consensus map comprised 3757 unique positions, and the average marker distance was 0.88 cM, obtained by calculating the average distance between two adjacent unique positions. Significant variation of segregation distortion was observed across the three populations. The consensus map was validated by comparing positions of known rust resistance genes, and comparing them to wheat reference genome sequences recently published by the International Wheat Genome Sequencing Consortium, Rye and Ae. tauschii genomes. Three well-characterized rust resistance genes (Sr58/Lr46/Yr29, Sr2/Yr30/Lr27, and Sr57/Lr34/Yr18) and 15 published QTLs for wheat rusts were validated with high resolution. Fifty-two per cent of GBS tags on the consensus map were successfully aligned through BLAST to the right chromosomes on the wheat reference genome sequence.

Conclusion

The consensus map should provide a useful basis for analyzing genome-wide variation of complex traits. The identified genes can then be explored as genetic markers to be used in genomic applications in wheat breeding.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1424-5) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background

Single nucleotide polymorphism (SNP) markers have a wide range of applications in crop genetics and genomics. Due to their polyploidy nature, many important crops, such as wheat, cotton and rapeseed contain a large amount of repeat and homoeologous sequences in their genomes, which imposes a huge challenge in high-throughput genotyping with sequencing and/or array technologies. Allotetraploid Brassica napus (AACC, 2n = 4x = 38) comprises of two highly homoeologous sub-genomes derived from its progenitor species B. rapa (AA, 2n = 2x = 20) and B. oleracea (CC, 2n = 2x = 18), and is an ideal species to exploit methods for reducing the interference of extensive inter-homoeologue polymorphisms (mHemi-SNPs and Pseudo-simple SNPs) between closely related sub-genomes.

Results

Based on a recent B. napus 6K SNP array, we developed a bi-filtering procedure to identify unauthentic lines in a DH population, and mHemi-SNPs and Pseudo-simple SNPs in an array data matrix. The procedure utilized both monomorphic and polymorphic SNPs in the DH population and could effectively distinguish the mHemi-SNPs and Pseudo-simple SNPs that resulted from superposition of the signals from multiple SNPs. Compared with conventional procedure for array data processing, the bi-filtering method could minimize the pseudo linkage relationship caused by the mHemi-SNPs and Pseudo-simple SNPs, thus improving the quality of SNP genetic map. Furthermore, the improved genetic map could increase the accuracies of mapping of QTLs as demonstrated by the ability to eliminate non-real QTLs in the mapping population.

Conclusions

The bi-filtering analysis of the SNP array data represents a novel approach to effectively assigning the multi-loci SNP genotypes in polyploid B. napus and may find wide applications to SNP analyses in polyploid crops.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1559-4) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.

Background

Cultivated peanut, or groundnut (Arachis hypogaea L.), is an important oilseed crop with an allotetraploid genome (AABB, 2n = 4x = 40). In recent years, many efforts have been made to construct linkage maps in cultivated peanut, but almost all of these maps were constructed using low-throughput molecular markers, and most show a low density, directly influencing the value of their applications. With advances in next-generation sequencing (NGS) technology, the construction of high-density genetic maps has become more achievable in a cost-effective and rapid manner. The objective of this study was to establish a high-density single nucleotide polymorphism (SNP)-based genetic map for cultivated peanut by analyzing next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq) reads.

Results

We constructed reduced representation libraries (RRLs) for two A. hypogaea lines and 166 of their recombinant inbred line (RIL) progenies using the ddRADseq technique. Approximately 175 gigabases of data containing 952,679,665 paired-end reads were obtained following Solexa sequencing. Mining this dataset, 53,257 SNPs were detected between the parents, of which 14,663 SNPs were also detected in the population, and 1,765 of the obtained polymorphic markers met the requirements for use in the construction of a genetic map. Among 50 randomly selected in silico SNPs, 47 were able to be successfully validated. One linkage map was constructed, which was comprised of 1,685 marker loci, including 1,621 SNPs and 64 simple sequence repeat (SSR) markers. The map displayed a distribution of the markers into 20 linkage groups (LGs A01–A10 and B01–B10), spanning a distance of 1,446.7 cM. The alignment of the LGs from this map was shown in comparison with a previously integrated consensus map from peanut.

Conclusions

This study showed that the ddRAD library combined with NGS allowed the rapid discovery of a large number of SNPs in the cultivated peanut. The first high density SNP-based linkage map for A. hypogaea was generated that can serve as a reference map for cultivated Arachis species and will be useful in genetic mapping. Our results contribute to the available molecular marker resources and to the assembly of a reference genome sequence for the peanut.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-351) contains supplementary material, which is available to authorized users.  相似文献   

18.

Background

Numerous efforts have been made to elucidate the etiology and improve the treatment of lung cancer, but the overall five-year survival rate is still only 15%. Although cigarette smoking is the primary risk factor for lung cancer, only 7% of female lung cancer patients in Taiwan have a history of smoking. Since cancer results from progressive accumulation of genetic aberrations, genomic rearrangements may be early events in carcinogenesis.

Results

In order to identify biomarkers of early-stage adenocarcinoma, the genome-wide DNA aberrations of 60 pairs of lung adenocarcinoma and adjacent normal lung tissue in non-smoking women were examined using Affymetrix Genome-Wide Human SNP 6.0 arrays. Common copy number variation (CNV) regions were identified by ≥30% of patients with copy number beyond 2 ± 0.5 of copy numbers for each single nucleotide polymorphism (SNP) and at least 100 continuous SNP variant loci. SNPs associated with lung adenocarcinoma were identified by McNemar’s test. Loss of heterozygosity (LOH) SNPs were identified in ≥18% of patients with LOH in the locus. Aberration of SNP rs10248565 at HDAC9 in chromosome 7p21.1 was identified from concurrent analyses of CNVs, SNPs, and LOH.

Conclusion

The results elucidate the genetic etiology of lung adenocarcinoma by demonstrating that SNP rs10248565 may be a potential biomarker of cancer susceptibility.  相似文献   

19.

Background

One of the reasons hard red winter wheat cultivar ‘Duster’ (PI 644016) is widely grown in the southern Great Plains is that it confers a consistently high level of resistance to biotype GP of Hessian fly (Hf). However, little is known about the genetic mechanism underlying Hf resistance in Duster. This study aimed to unravel complex structures of the Hf region on chromosome 1AS in wheat by using genotyping-by-sequencing (GBS) markers and single nucleotide polymorphism (SNP) markers.

Results

Doubled haploid (DH) lines generated from a cross between two winter wheat cultivars, ‘Duster’ and ‘Billings’ , were used to identify genes in Duster responsible for effective and consistent resistance to Hf. Segregation in reaction of the 282 DH lines to Hf biotype GP fit a one-gene model. The DH population was genotyped using 2,358 markers developed using the GBS approach. A major QTL, explaining 88% of the total phenotypic variation, was mapped to a chromosome region that spanned 178 cM and contained 205 GBS markers plus 1 SSR marker and 1 gene marker, with 0.86 cM per marker in genetic distance. The analyses of GBS marker sequences and further mapping of SSR and gene markers enabled location of the QTL-containing linkage group on the short arm of chromosome 1A. Comparative mapping of the common markers for the gene for QHf.osu-1Ad in Duster and the Hf-resistance gene for QHf.osu-1A74 in cultivar ‘2174’ showed that the two Hf resistance genes are located on the same chromosome arm 1AS, only 11.2 cM apart in genetic distance. The gene at QHf.osu-1Ad in Duster has been delimited within a 2.7 cM region.

Conclusion

Two distinct resistance genes exist on the short arm of chromosome 1A as found in the two hard red winter cultivars, 2174 and Duster. Whereas the Hf resistance gene in 2174 is likely allelic to one or more of the previously mapped resistance genes (H9, H10, H11, H16, or H17) in wheat, the gene in Duster is novel and confers a more consistent phenotype than 2174 in response to biotype GP infestation in controlled-environment assays.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1297-7) contains supplementary material, which is available to authorized users.  相似文献   

20.

Background and Aims

Catharanthus roseus is a plant of great medicinal importance, yet inadequate knowledge of its genome structure and the unavailability of genomic resources have been major impediments in the development of improved varieties. The aims of this study were to develop co-dominant sequence-tagged microsatellite sites (STMS) and gene-targeted markers (GTMs) and utilize them for the construction of a framework intraspecific linkage map of C. roseus.

Methods

For simple sequence repeat (SSR) isolation, a genomic library enriched for (GA)n repeats was constructed from C. roseus ‘Nirmal’ (CrN1). In addition, GTMs were also designed from 12 genes of the TIA (terpenoid indole alkaloid) pathway – the medicinally most significant pathway in C. roseus. An F2 mapping population was also generated by crossing two diverse accessions of C. roseus CrN1 (Nirmal)×CrN82 (Kew).

Key Results

A new set of 314 STMS markers and 64 GTMs were developed in this study. A segregating F2 mapping population consisting of 111 F2 individuals was generated. For generating the linkage map, a set of 423 co-dominant markers (378 newly developed and 45 published earlier) were screened for polymorphism between the parental genotypes, of which 134 were identified to be polymorphic. A total of 114 markers were mapped on eight linkage groups that spanned a 632·7 cM region of the genome with an average marker distance of 5·55 cM. Further, the mechanism of hypervariability at the gene-targeted loci was investigated at the sequence level.

Conclusions

For the first time, a large array of STMS markers and GTMs was generated in the model medicinal plant C. roseus. Moreover, the first microsatellite marker-based linkage map was described in this study. Together, these will serve as a foundation for future genomics studies related to quantitative trait loci analysis and molecular breeding in C. roseus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号