首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The family of hexokinases (HKs) catalyzes the first step of glycolysis, the ATP-dependent phosphorylation of glucose to glucose-6-phosphate. While HK1 and HK2 are ubiquitously expressed, the less well-studied HK3 is primarily expressed in hematopoietic cells and tissues and is highly upregulated during terminal differentiation of some acute myeloid leukemia (AML) cell line models. Here we show that expression of HK3 is predominantly originating from myeloid cells and that the upregulation of this glycolytic enzyme is not restricted to differentiation of leukemic cells but also occurs during ex vivo myeloid differentiation of healthy CD34+ hematopoietic stem and progenitor cells. Within the hematopoietic system, we show that HK3 is predominantly expressed in cells of myeloid origin. CRISPR/Cas9 mediated gene disruption revealed that loss of HK3 has no effect on glycolytic activity in AML cell lines while knocking out HK2 significantly reduced basal glycolysis and glycolytic capacity. Instead, loss of HK3 but not HK2 led to increased sensitivity to ATRA-induced cell death in AML cell lines. We found that HK3 knockout (HK3-null) AML cells showed an accumulation of reactive oxygen species (ROS) as well as DNA damage during ATRA-induced differentiation. RNA sequencing analysis confirmed pathway enrichment for programmed cell death, oxidative stress, and DNA damage response in HK3-null AML cells. These signatures were confirmed in ATAC sequencing, showing that loss of HK3 leads to changes in chromatin configuration and increases the accessibility of genes involved in apoptosis and stress response. Through isoform-specific pulldowns, we furthermore identified a direct interaction between HK3 and the proapoptotic BCL-2 family member BIM, which has previously been shown to shorten myeloid life span. Our findings provide evidence that HK3 is dispensable for glycolytic activity in AML cells while promoting cell survival, possibly through direct interaction with the BH3-only protein BIM during ATRA-induced neutrophil differentiation.Subject terms: Cell biology, Cancer  相似文献   

2.
Autophagy is an intracellular bulk degradation process involved in cell survival upon stress induction, but also with a newly identified function in myeloid differentiation. The autophagy-related (ATG)8 protein family, including the GABARAP and LC3 subfamilies, is crucial for autophagosome biogenesis. In order to evaluate the significance of the GABARAPs in the pathogenesis of acute myeloid leukemia (AML), we compared their expression in primary AML patient samples, CD34+ progenitor cells and in granulocytes from healthy donors. GABARAPL1 and GABARAPL2/GATE-16, but not GABARAP, were significantly downregulated in particular AML subtypes compared to normal granulocytes. Moreover, the expression of GABARAPL1 and GATE-16 was significantly induced during ATRA-induced neutrophil differentiation of acute promyelocytic leukemia cells (APL). Lastly, knocking down GABARAPL2/GATE-16 in APL cells attenuatedneutrophil differentiation and decreased autophagic flux. In conclusion, low GABARAPL2/GATE-16 expression is associated with an immature myeloid leukemic phenotype and these proteins are necessary for neutrophil differentiation of APL cells.  相似文献   

3.
Acute promyelocytic leukemia (APL) is characterized by the t(15;17)-associated PML-RARA fusion gene. We have previously found that MIR125B1 is highly expressed in patients with APL and may be associated with disease pathogenesis; however, the mechanism by which MIR125B1 exerts its oncogenic potential has not been fully elucidated. Here, we demonstrated that MIR125B1 abundance correlates with the PML-RARA status. MIR125B1 overexpression enhanced PML-RARA expression and inhibited the ATRA-induced degradation of the PML-RARA oncoprotein. RNA-seq analysis revealed a direct link between the PML-RARA degradation pathway and MIR125B1-arrested differentiation. We further demonstrated that the MIR125B1-mediated blockade of PML-RARA proteolysis was regulated via an autophagy-lysosomal pathway, contributing to the inhibition of APL differentiation. Furthermore, we identified DRAM2 (DNA-damage regulated autophagy modulator 2), a critical regulator of autophagy, as a novel target that was at least partly responsible for the function of MIR125B1 involved in autophagy. Importantly, the knockdown phenotypes for DRAM2 are similar to the effects of overexpressing MIR125B1 as impairment of PML-RARA degradation, inhibition of autophagy, and myeloid cell differentiation arrest. These effects of MIR125B1 and its target DRAM2 were further confirmed in an APL mouse model. Thus, MIR125B1 dysregulation may interfere with the effectiveness of ATRA-mediated differentiation through an autophagy-dependent pathway, representing a novel potential APL therapeutic target.  相似文献   

4.
5.
LukS-PV, a component of Panton-Valentine leukocidin (PVL) secreted by Staphylococcus aureus, has been shown to inhibit proliferation and induce apoptosis in acute myeloid leukemia (AML) THP-1 cells. Here we investigated anti-leukemia activities of LukS-PV in HL-60 cells, using in vitro assays to assess the ability of LukS-PV to mediate cell viability, apoptosis and differentiation; and developing a Severe Combined Immunodeficiency (SCID) mouse model of disseminated AML with the HL-60 cells to examine in vivo anti-leukemia activity. LukS-PV inhibited viability and induced differentiation and apoptosis in the HL-60 AML cell line. In the SCID mice, LukS-PV potently inhibited tumor growth, decreased tumor cell infiltration into peripheral blood and tissues, and significantly increased mean survival time. No severe adverse effects, such as death, weight loss, or pathological changes in livers or spleens were observed in the toxicity test group. These results indicate that LukS-PV may be a novel and effective chemotherapeutic agent against AML.  相似文献   

6.
Abstract

Nestin is a neuroepithelial stem cell marker that is expressed in some types of tumor cells. Recent reports suggest that Nestin may be closely related to malignant cell proliferation and migration. Acute leukemia (AL) is characterized by a lack of differentiation, which results in uncontrolled proliferation in the bone marrow and accumulation of immature cells. The expression and function of Nestin in AL is unclear. We investigated Nestin immunohistochemical patterns of 87 patients that included 47 cases of acute myeloid leukemia (AML) and 40 cases of acute lymphoblastic leukemia (ALL), and 20 patients in complete remission (CR) from AML or ALL. We also investigated the clinico-pathological features of 87 cases of AL and their CR and overall survival (OS). Nestin was expressed in leukemic blasts and mature granulocytic cells in most cases (39/47) of AML. Conversely, Nestin was expressed in mature granulocytic cells in fewer cases (6/40) of ALL, but not in blasts. Nestin expression appeared in leukemic blasts of AML, but not ALL. Nestin expression in AML blast cells was not associated with CR or OS. We provide evidence that Nestin is expressed in AL and might be a useful immunohistochemical marker for identifying AML and ALL.  相似文献   

7.
The KIT gene is a receptor tyrosine kinase class III expressed by early hematopoietic progenitor cells and plays a significant role in hematopoietic stem cell proliferation, differentiation and survival which is considered to be a remarkable feature in the course of growth of acute myeloid leukaemia (AML). Owing to insufficient study of mutations in the KIT gene, the diagnosis and rate of recurrence of these mutations with divergent subtypes in AML cases in India is of concern. In order to find out the frequency of mutations of KIT gene exon 8 in 109 AML cases, we have performed polymerase chain reaction–single-strand conformation polymorphism (PCR–SSCP) followed by DNA sequencing and have identified 24 mutations in exon 8 in 13 cases, including deletions at codon 418 (n = 3), 419 (n = 11) and 420 (n = 5) as well as point mutations at codon 417 (n = 1) and 421 (n = 4). In eleven AML cases, exon 8 deletion and point mutations involved the loss at codon Asp419 immoderately conserved cross species placed in the receptor extracellular domain. Frequency elevation of the KIT proto-oncogene exon 8 deletion and point mutations in AML cases allude a crucial function for this region of the receptor extracellular domain. Thus, we report the incidence of acquired mutations in exon 8, with consistent loss at codon Asp419, in 10.09 % of AML cases in a selected Indian population.  相似文献   

8.
9.
Extensive molecular profiling of leukemias and preleukemic diseases has revealed that distinct clinical entities, like acute myeloid (AML) and T-lymphoblastic leukemia (T-ALL), share similar pathogenetic mutations. It is not well understood how the cell of origin, accompanying mutations, extracellular signals or structural differences in a mutated gene determine the phenotypic identity of leukemias. We dissected the functional aspects of different protein regions of the MN1 oncogene and their effect on the leukemic phenotype, building on the ability of MN1 to induce leukemia without accompanying mutations. We found that the most C-terminal region of MN1 was required to block myeloid differentiation at an early stage, and deletion of an extended C-terminal region resulted in loss of myeloid identity and cell differentiation along the T-cell lineage in vivo. Megakaryocytic/erythroid lineage differentiation was blocked by the N-terminal region. In addition, the N-terminus was required for proliferation and leukemogenesis in vitro and in vivo through upregulation of HoxA9, HoxA10 and Meis2. Our results provide evidence that a single oncogene can modulate cellular identity of leukemic cells based on its active gene regions. It is therefore likely that different mutations in the same oncogene may impact cell fate decisions and phenotypic appearance of malignant diseases.  相似文献   

10.
MicroRNAs have been extensively studied as regulators of hematopoiesis and leukemogenesis. We identified miR-638 as a novel regulator in myeloid differentiation and proliferation of leukemic cells. We found that miR-638 was developmentally up-regulated in cells of myeloid but not lymphoid lineage. Furthermore, significant miR-638 down-regulation was observed in primary acute myeloid leukemia (AML) blasts, whereas miR-638 expression was dramatically up-regulated in primary AML blasts and leukemic cell lines undergoing forced myeloid differentiation. These observations suggest that miR-638 might play a role in myeloid differentiation, and its dysregulation may contribute to leukemogenesis. Indeed, ectopic expression of miR-638 promoted phorbol 12-myristate 13-acetate- or all-trans-retinoic acid-induced differentiation of leukemic cell lines and primary AML blasts, whereas miR-638 inhibition caused an opposite phenotype. Consistently, miR-638 overexpression induced G1 cell cycle arrest and reduced colony formation in soft agar. Cyclin-dependent kinase 2 (CDK2) was found to be a target gene of miR-638. CDK2 inhibition phenotypically mimicked the overexpression of miR-638. Moreover, forced expression of CDK2 restored the proliferation and the colony-forming ability inhibited by miR-638. Our data suggest that miR-638 regulates proliferation and myeloid differentiation by targeting CDK2 and may serve as a novel target for leukemia therapy or marker for AML diagnosis and prognosis.  相似文献   

11.
12.
13.
14.
Adoptive natural killer (NK) cell therapy relies on the acquisition of large numbers of NK cells that are cytotoxic but not exhausted. NK cell differentiation from hematopoietic stem cells (HSC) has become an alluring option for NK cell therapy, with umbilical cord blood (UCB) and mobilized peripheral blood (PBCD34+) being the most accessible HSC sources as collection procedures are less invasive. In this study we compared the capacity of frozen or freshly isolated UCB hematopoietic stem cells (CBCD34+) and frozen PBCD34+ to generate NK cells in vitro. By modifying a previously published protocol, we showed that frozen CBCD34+ cultures generated higher NK cell numbers without loss of function compared to fresh CBCD34+ cultures. NK cells generated from CBCD34+ and PBCD34+ expressed low levels of killer-cell immunoglobulin-like receptors but high levels of activating receptors and of the myeloid marker CD33. However, blocking studies showed that CD33 expression did not impact on the functions of the generated cells. CBCD34+-NK cells exhibited increased capacity to secrete IFN-γ and kill K562 in vitro and in vivo as compared to PBCD34+-NK cells. Moreover, K562 killing by the generated NK cells could be further enhanced by IL-12 stimulation. Our data indicate that the use of frozen CBCD34+ for the production of NK cells in vitro results in higher cell numbers than PBCD34+, without jeopardizing their functionality, rendering them suitable for NK cell immunotherapy. The results presented here provide an optimal strategy to generate NK cells in vitro for immunotherapy that exhibit enhanced effector function when compared to alternate sources of HSC.  相似文献   

15.
《Cytotherapy》2020,22(3):127-134
Enhanced interleukin-1β (IL-1β) signaling is a common event in patients with acute myeloid leukemia (AML). It was previously demonstrated that chronic IL-1β exposure severely impaired hematopoietic stem cell (HSC) self-renewal capability in mice and promoted leukemia cell growth in primary AML cells. However, the role of IL-1β in the murine bone marrow (BM) niche remains unclear. Here, we explored the role of IL-1β in the BM niche in Il-1r1−/− mice, chronic IL-1β exposure mice and mixed lineage leukemia-AF9 fusion gene (MLL-AF9)–induced AML mice models. We demonstrated that IL-1R1 deficiency did not affect the function of HSCs or niche cells under steady-state conditions or during transplantation. Chronic exposure to IL-1β decreased the expansion of Il-1r1−/− hematopoietic cells in Il-1r1+/+ recipient mice. These results indicated that IL-1β exposure impaired the ability of niche cells to support hematopoietic cells. Furthermore, we revealed that IL-1R1 deficiency in niche cells prolonged the survival of MLL-AF9–induced AML mice. The results of our study suggest that inhibition of the IL-1β/IL-1R1 signaling pathway in the niche might be a non–cell-autonomous therapy strategy for AML.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号