首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
RNase P catalyzes removal of the 5′ leader from precursor tRNAs (pre-tRNAs) in all three domains of life. Some eukaryotic cells contain multiple forms of the protein-only RNase P (PRORP) variant, prompting efforts to unravel this seeming redundancy. Previous studies concluded that there were only modest differences in the processing of typical pre-tRNAs by the three isoforms in Arabidopsis thaliana [AtPRORP1 (organellar), AtPRORP2 and AtPRORP3 (nuclear)]. Here, we investigated if different physical attributes of the three isoforms might engender payoffs under specific conditions. Our temperature–activity profiling studies revealed that AtPRORPs display substrate-identity dependent behavior at elevated temperatures (37–45 °C), with the organellar variant outperforming the nuclear counterparts. Echoing these findings, molecular dynamics simulations revealed that AtPRORP2 relative to AtPRORP1 samples a wider conformational ensemble that deviates from the crystal structure. Results from our biochemical studies and molecular dynamics simulations support the idea that AtPRORPs have overlapping but not necessarily redundant attributes and inspire new perspectives on the suitability of each variant to perform its function(s) in a specific cellular locale.  相似文献   

2.
3.
4.
Eukaryotic ribonuclease P (RNase P) enzymes require both RNA and protein subunits for activityin vivo andin vitro. We have undertaken an analysis of the complex RNA subunit of the nuclear holoenzyme in an effort to understand its structure and its similarities to and differences from the bacterial ribozymes. Phylogenetic analysis, structure-sensitive RNA footprinting, and directed mutagenesis reveal conserved secondary and tertiary structures with both strong similarities to the bacterial consensus and distinctive features. The effects of mutations in the most highly conserved positions are being used to dissect the functions of individual subdomains.Abbreviations RPRI ribonucleaseP ribonucleoprotein 1 gene fromSaccharomyces cerevisiae - Pu purine ribonucleoside  相似文献   

5.
The 5'-terminal guanylate residue (G-1) of mature Escherichia coli tRNA(His) is generated as a result of an unusual cleavage by RNase P (Orellana, O., Cooley, L., and S?ll, D. (1986) Mol. Cell. Biol. 6, 525-529). We have examined the importance of the unique acceptor stem structure of E. coli tRNA(His) in determining the specificity of RNase P cleavage. Mutant tRNA(His) precursors bearing substitutions of the normal base G-1 or the opposing, potentially paired base, C73, can be cleaved at the +1 position, in contrast to wild-type precursors which are cut exclusively at the -1 position. These data indicate that the nature of the base at position -1 is of greater importance in determining the site of RNase P cleavage than potential base pairing between nucleotides -1 and 73. In addition, processing of the mutant precursors by M1-RNA or P RNA under conditions of ribozyme catalysis yields a higher proportion of +1-cleaved products in comparison to the reaction catalyzed by the RNase P holoenzyme. This lower sensitivity of the holoenzyme to alterations in acceptor stem structure suggests that the protein moiety of RNase P may play a role in determining the specificity of the reaction and implies that recognition of the substrate involves additional regions of the tRNA. We have also shown that the RNase P holoenzyme and tRNA(His) precursor of Saccharomyces cerevisiae, unlike their prokaryotic counterparts, do not possess these abilities to carry out this unusual reaction.  相似文献   

6.
7.
Barkan A 《The Plant cell》1993,5(4):389-402
The molecular basis for the photosynthetic defect in four nuclear mutants of maize was investigated. Mutants hcf7, cps1-1, cps1-2, and cps2 contained reduced levels of many chloroplast-encoded proteins without corresponding deficiencies in chloroplast mRNAs. Many chloroplast mRNAs were associated with abnormally few ribosomes, indicating that the protein deficiencies were due to global defects in chloroplast translation. These mutants were used to study the effects of reduced ribosome association on the metabolism of chloroplast RNAs. The level of the rbcL mRNA was reduced fourfold in each mutant, but was unaltered in other nonphotosynthetic mutants with normal chloroplast translation. These results suggest that the rbcL mRNA is destabilized as a consequence of its decreased association with ribosomes. The fact that many other chloroplast mRNAs accumulated to normal levels demonstrated that a decreased association with ribosomes does not significantly alter their stabilities or processing. hcf7 seedlings had a gross defect in the processing of the 16S rRNA: the primary lesion in this mutant may be a defect in 16S rRNA processing itself.  相似文献   

8.
Processing of multimeric precursor tRNAs from Bacillus subtilis by the catalytic RNA component of RNase P was studied in vitro. Previous studies on processing by either Escherichia coli or B. subtilis RNase P-RNA utilized monomeric or dimeric substrates. In the experiments described here, a multimeric precursor tRNA containing six complete tRNA sequences and the partial sequence of a seventh were used. One species did not encode the 3'-terminal CCA sequence and the partial tRNA lacked 3' nucleotides and could form only a 3-base pair instead of a 7-base paired aminoacyl stem. Two species had the potential for forming extended base-paired aminoacyl stems. Processing was studied under varied ionic conditions. Chemical sequencing of the products showed that the RNase P-RNA cleavage produced the proper mature 5' termini for all of the six complete tRNA species, but no 5'-cleavage of the partial species was observed. At suboptimal ionic concentrations, the two species capable of forming extended base-paired aminoacyl stems were not observed. Thus, encoding of the 3'-CCA in a tRNA species is not critical for processing, but the formation of an aminoacyl stem with more than 3 base pairs is necessary. Particularly noteworthy was the observation that all species of the multimeric precursor could be processed at significantly lower ionic conditions than monomeric precursors used previously by ourselves and others. However, a single precursor species produced from the multimeric precursor could also be processed at the same lower ionic conditions as the multimeric precursor. This demonstrates that precursor tRNA species can differ widely in their ionic requirements for processing and that, to a large extent, the optimal conditions of MgCl2 or NH4Cl are a function of the substrate which is used.  相似文献   

9.
Ribonuclease P (RNase P) is an endonuclease involved in processing tRNA. It contains both RNA and protein subunits and occurs in all three domains of life: namely, Archaea, Bacteria and Eukarya. The RNase P RNA subunits from bacteria and some archaea are catalytically active in vitro, whereas those from eukaryotes and most archaea require protein subunits for activity. RNase P has been characterized biochemically and genetically in several systems, and detailed structural information is emerging for both RNA and protein subunits from phylogenetically diverse organisms. In vitro reconstitution of activity is providing insight into the role of proteins in the RNase P holoenzyme. Together, these findings are beginning to impart an understanding of the coevolution of the RNA and protein worlds.  相似文献   

10.
11.
Secondary structure is evaluated for determining evolutionary relationships between catalytic RNA molecules that are so distantly related they are scarcely alignable. The ribonucleoproteins RNase P (P) and RNase MRP (MRP) have been suggested to be evolutionarily related because of similarities in both function and secondary structure. However, their RNA sequences cannot be aligned with any confidence, and this leads to uncertainty in any trees inferred from sequences. We report several approaches to using secondary structures for inferring evolutionary trees and emphasize quantitative tests to demonstrate that evolutionary information can be recovered. For P and MRP, three hypotheses for the relatedness are considered. The first is that MRP is derived from P in early eukaryotes. The next is that MRP is derived from P from an early endosymbiont. The third is that both P and MRP evolved in the RNA-world (and the need for MRP has since been lost in prokaryotes). Quantitative comparisons of the pRNA and mrpRNA secondary structures have found that the possibility of an organellar origin of MRP is unlikely. In addition, comparison of secondary structures support the identity of an RNase P–like sequence in the maize chloroplast genome. Overall, it is concluded that RNA secondary structure is useful for evaluating evolutionary relatedness, even with sequences that cannot be aligned with confidence. Received: 19 July 1999 / Accepted: 3 May 2000  相似文献   

12.
Ribonuclease P (RNase P), a ribonucleoprotein (RNP) complex required for tRNA maturation, comprises one essential RNA (RPR) and protein subunits (RPPs) numbering one in bacteria, and at least four in archaea and nine in eukarya. While the bacterial RPR is catalytically active in vitro, only select euryarchaeal and eukaryal RPRs are weakly active despite secondary structure similarity and conservation of nucleotide identity in their putative catalytic core. Such a decreased archaeal/eukaryal RPR function might imply that their cognate RPPs provide the functional groups that make up the active site. However, substrate-binding defects might mask the ability of some of these RPRs, such as that from the archaeon Methanocaldococcus jannaschii (Mja), to catalyze precursor tRNA (ptRNA) processing. To test this hypothesis, we constructed a ptRNA-Mja RPR conjugate and found that indeed it self-cleaves efficiently (k(obs), 0.15 min(-1) at pH 5.5 and 55 degrees C). Moreover, one pair of Mja RPPs (POP5-RPP30) enhanced k(obs) for the RPR-catalyzed self-processing by approximately 100-fold while the other pair (RPP21-RPP29) had no effect; both binary RPP complexes significantly reduced the monovalent and divalent ionic requirement. Our results suggest a common RNA-mediated catalytic mechanism in all RNase P and help uncover parallels in RNase P catalysis hidden by plurality in its subunit make-up.  相似文献   

13.
M1 RNA that contained 4'-thiouridine was photochemically cross-linked to different substrates and to a product of the reaction it governs. The locations of the cross-links in these photochemically induced complexes were identified. The cross-links indicated that different substrates share some contacts but have distinct binding modes to M1 RNA. The binding of some substrates also results in a substrate-dependent conformational change in the enzymatic RNA, as evidenced by the appearance of an M1 RNA intramolecular cross-link. The identification of the cross-links between M1 RNA and product indicate that they are shared with only one of the three cross-linked E-S complexes that were identified, an indication of noncompetitive inhibition by the product. We also examined whether the cross-linked complexes between M1 RNA and substrate(s) or product are altered in the presence of the enzyme's protein cofactor (C5 protein) and in the presence of different concentrations of divalent metal ions. C5 protein enhanced the yield of certain M1 RNA-substrate cross-linked complexes for both wild-type M1 RNA and a deletion mutant of M1 RNA (delta[273-281]), but not for the M1 RNA-product complex. High concentrations of Mg2+ increased the yield of all M1 RNA-substrate complexes but not the M1 RNA-product complex.  相似文献   

14.
15.
16.
Independently folded domains in RNAs frequently adopt identical tertiary structures regardless of whether they are in isolation or are part of larger RNA molecules. This is exemplified by the P15 domain in the RNA subunit (RPR) of the universally conserved endoribonuclease P, which is involved in the processing of tRNA precursors. One of its domains, encompassing the P15 loop, binds to the 3'-end of tRNA precursors resulting in the formation of the RCCA-RNase P RNA interaction (interacting residues underlined) in the bacterial RPR-substrate complex. The function of this interaction was hypothesized to anchor the substrate, expose the cleavage site and result in re-coordination of Mg(2+) at the cleavage site. Here we show that small model-RNA molecules (~30 nt) carrying the P15-loop mediated cleavage at the canonical RNase P cleavage site with significantly reduced rates compared to cleavage with full-size RPR. These data provide further experimental evidence for our model that the P15 domain contributes to both substrate binding and catalysis. Our data raises intriguing evolutionary possibilities for 'RNA-mediated' cleavage of RNA.  相似文献   

17.
18.
19.
The ubiquitous occurrence of ribonuclease P (RNase P) as a ribonucleoprotein and the catalytic properties of bacterial RNase P RNAs indicate that RNA fulfills an ancient and important role in the function of this enzyme. This review focuses on efforts to determine the structure of the bacterial RNase P RNA ribozyme. Phylogenetic comparative analysis of a library of bacterial RNase P RNA sequences has resulted in a well-developed secondary structure model and allowed identification of some elements of tertiary structure. The native structure has been redesigned by circular permutation to facilitate intra- and inter-molecular crosslinking experiments in order to gain further structural information. The crosslinking constraints, together with the constraints provided by comparative analyses, have been incorporated into a first-order model of the structure of the ribozyme-substrate complex. The developing structural perspective allows the design of self-cleaving pre-tRNA-RNase P RNA conjugates which are useful tools for additional structure-probing experiments.Abbreviations cpRNA circularly permuted RNA  相似文献   

20.
Phylogenetic analysis and evolution of RNase P RNA in proteobacteria.   总被引:11,自引:0,他引:11       下载免费PDF全文
The secondary structures of the eubacterial RNase P RNAs are being elucidated by a phylogenetic comparative approach. Sequences of genes encoding RNase P RNA from each of the recognized subgroups (alpha, beta, gamma, and delta) of the proteobacteria have now been determined. These sequences allow the refinement, to nearly the base pair level, of the phylogenetic model for RNase P RNA secondary structure. Evolutionary change among the RNase P RNAs was found to occur primarily in four discrete structural domains that are peripheral to a highly conserved core structure. The new sequences were used to examine critically the proposed similarity (C. Guerrier-Takada, N. Lumelsky, and S. Altman, Science 246:1578-1584, 1989) between a portion of RNase P RNA and the "exit site" of the 23S rRNA of Escherichia coli. Phylogenetic comparisons indicate that these sequences are not homologous and that any similarity in the structures is, at best, tenuous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号