首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
The structural glycoprotein E(rns) of classical swine fever virus (CSFV) is one of the major antibody targets upon infection of pigs with the virus. Molecular dissection of the structure of E(rns) would define the minimal immunodominant regions that induce antibody responses after infection and may thus help design an effective diagnostic reagent or vaccine. In this study, deletion analysis was made within amino acids (aa) 297 to 776 of the CSFV Alfort/187 polyprotein containing the large C-terminal portion of the E(rns) protein (aa 27 to 227), the entire E1 protein (aa 1 to 195), and the N-terminal portion of the E2 protein (aa 1 to 87). Various protein fragments with target deletions from N- or/and C-terminal ends were constructed with pET30, expressed in Escherichia coli and probed on Western blots with antisera from pigs infected with CSFV. This has resulted in the identification within E(rns) of three overlapping antigenic regions: AR1(E(rns)aa 65-145), AR2 (E(rns)aa 84-160) and AR3 (E(rns)aa 109-220). N- or C-terminal deletions as small as 3 residues introduced into these regions disrupt their reactivity with antibodies, indicating that they are the minimum requirements for recognition by pig antibodies. The three minimal antigenic regions correlated well with the hydropathy profiles and the 3D structural model of E(rns). Each individual region and a protein fragment containing AR1, AR2 and AR3 reacted equally well with pig anti-CSFV sera. Since variable and conserved sequences are present within the three overlapping antigenic regions of E(rns) of different pestiviruses, specific serological detection of CSFV infection or broad detection of pestivirus infections may be achieved with the use of a single E(rns) region or a combination of two or three E(rns) regions.  相似文献   

3.
In this study, a synthesized quadruple antigenic epitope gene region of the classical swine fever virus (CSFV) E2 glycoprotein was expressed in E. coli to a obtain target protein. This target protein was used as a coating antigen to establish an indirect ELISA for specifically detecting anti-CSFV antibodies in serum samples from pigs. The P/N cut-off value of this assay was 1.92 by receiver operating characteristic curve (ROC) analysis based on 30 negative sera and 80 positive samples. The test gave 97.5% sensitivity and 96.7% specificity compared with the indirect hemagglutination (IHA) test. The inter-assay and intra-assay coefficients of variation (CVs) for 16 sera were both ⩽6.8%. No cross-reactivity between the coating antigen and anti-bovine viral diarrhoea virus (BVDV) antibodies was observed.  相似文献   

4.
Classical Swine Fever Virus (CSFV) causes classical swine fever, a highly contagious hemorrhagic fever affecting both feral and domesticated pigs. Outbreaks of CSF in Europe, Asia, Africa and South America had significant adverse impacts on animal health, food security and the pig industry. The disease is generally contained by prevention of exposure through import restrictions (e.g. banning import of live pigs and pork products), localized vaccination programmes and culling of infected or at‐risk animals, often at very high cost. Current CSFV‐modified live virus vaccines are protective, but do not allow differentiation of infected from vaccinated animals (DIVA), a critical aspect of disease surveillance programmes. Alternatively, first‐generation subunit vaccines using the viral protein E2 allow for use of DIVA diagnostic tests, but are slow to induce a protective response, provide limited prevention of vertical transmission and may fail to block viral shedding. CSFV E2 subunit vaccines from a baculovirus/insect cell system have been developed for several vaccination campaigns in Europe and Asia. However, this expression system is considered expensive for a veterinary vaccine and is not ideal for wide‐spread deployment. To address the issues of scalability, cost of production and immunogenicity, we have employed an Agrobacterium‐mediated transient expression platform in Nicotiana benthamiana and formulated the purified antigen in novel oil‐in‐water emulsion adjuvants. We report the manufacturing of adjuvanted, plant‐made CSFV E2 subunit vaccine. The vaccine provided complete protection in challenged pigs, even after single‐dose vaccination, which was accompanied by strong virus neutralization antibody responses.  相似文献   

5.
Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), a highly contagious disease of pigs. There are numerous CSFV strains that differ in virulence, resulting in clinical disease with different degrees of severity. Low-virulent and moderately virulent isolates cause a mild and often chronic disease, while highly virulent isolates cause an acute and mostly lethal hemorrhagic fever. The live attenuated vaccine strain GPE(-) was produced by multiple passages of the virulent ALD strain in cells of swine, bovine, and guinea pig origin. With the aim of identifying the determinants responsible for the attenuation, the GPE(-) vaccine virus was readapted to pigs by serial passages of infected tonsil homogenates until prolonged viremia and typical signs of CSF were observed. The GPE(-)/P-11 virus isolated from the tonsils after the 11th passage in vivo had acquired 3 amino acid substitutions in E2 (T830A) and NS4B (V2475A and A2563V) compared with the virus before passages. Experimental infection of pigs with the mutants reconstructed by reverse genetics confirmed that these amino acid substitutions were responsible for the acquisition of pathogenicity. Studies in vitro indicated that the substitution in E2 influenced virus spreading and that the changes in NS4B enhanced the viral RNA replication. In conclusion, the present study identified residues in E2 and NS4B of CSFV that can act synergistically to influence virus replication efficiency in vitro and pathogenicity in pigs.  相似文献   

6.
In this study, the coding region of type O FMDV capsid protein VP1 and a series of codon optimized DNA sequences coding for VP1 amino acid residues 141–160 (epitope1), tandem repeat 200–213 (epitope2 (+2)) and the combination of two epitopes (epitope1–2) was genetically cloned into the prokaryotic expression vector pPROExHTb and pGEX4T-1, respectively. VP1 and the fused epitopes GST-E1, GST-E2 (+2) and GST-E1-2 were successfully solubly expressed in the cytoplasm of Escherichia coli and Western blot analysis demonstrated they retained antigenicity. Indirect VP1-ELISA and epitope ELISAs were subsequently developed to screen a panel of 80 field pig sera using LPB-ELISA as a standard test. For VP1-ELISA and all the epitope ELISAs, there were clear distinctions between the FMDV-positive and the FMDV-negative samples. Cross-reactions with pig sera positive to the viruses of swine vesicular disease virus that produce clinically indistinguishable syndromes in pigs or guinea pig antisera to FMDV strains of type A, C and Asia1 did not occur. The relative sensitivity and specificity for the GST-E1 ELISA, GST-E2 (+2), GST-E1-2 ELISA and VP1-ELISA in comparison with LPB-ELISA were 93.3% and 85.0%, 95.0% and 90%, 100% and 81.8%, 96.6% and 80.9% respectively. This study shows the potential use of the aforementioned epitopes as alternatives to the complex antigens used in current detection for antibody to FMDV structural proteins.  相似文献   

7.
Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), which is a highly contagious swine disease that causes significant economic loses to the pig industry worldwide. The envelope E2 glycoprotein of CSFV is the most important viral antigen in inducing protective immune response against CSF. In this study, we generated a mammalian cell clone (BCSFV-E2) that could stably produce a secreted form of CSFV E2 protein (mE2). The mE2 protein was shown to be N-linked glycosylated and formed a homodimer. The vaccine efficacy of mE2 was evaluated by immunizing pigs. Twenty-five 6-week-old Landrace piglets were randomly divided into five groups. Four groups were intramuscularly immunized with mE2 emulsified in different adjuvants twice at four-week intervals. One group was used as the control group. All mE2-vaccinated pigs developed CSFV-neutralizing antibodies two weeks after the first vaccination with neutralizing antibody titers ranging from 1∶40 to 1∶320. Two weeks after the booster vaccination, the neutralizing antibody titers increased greatly and ranged from 1∶10,240 to 1∶81,920. At 28 weeks after the booster vaccine was administered, the neutralizing antibody titers ranged from 1∶80 to 1∶10240. At 32 weeks after the first vaccination, pigs in all the groups were challenged with a virulent CSFV strain at a dose of 1×105 TCID50. At two weeks after the challenge, all the mE2-immunized pigs survived and exhibited no obvious symptoms of CSF. The neutralizing antibody titer at this time was 20,480. Unvaccinated pigs in the control group exhibited symptoms of CSF 3–4 days after challenge and were euthanized from 7–9 days after challenge when the pigs became moribund. These results indicate that the mE2 is a good candidate for the development of a safe and effective CSFV subunit vaccine.  相似文献   

8.
Classical swine fever virus (CSFV) is an important pathogen in the swine industry. Virion attachment is mediated by envelope proteins Erns and E2, and E2 is indispensable. Using a pull-down assay with soluble E2 as the bait, we demonstrated that ADAM17, a disintegrin and metalloproteinase 17, is essential for CSFV entry. Loss of ADAM17 in a permissive cell line eliminated E2 binding and viral entry, but compensation with pig ADAM17 cDNA completely rescued these phenotypes. Similarly, ADAM17 silencing in primary porcine fibroblasts significantly impaired virus infection. In addition, human and mouse ADAM17, which is highly homologous to pig ADAM17, also mediated CSFV entry. The metalloproteinase domain of ADAM17 bound directly to E2 protein in a zinc-dependent manner. A surface exposed region within this domain was mapped and shown to be critical for CSFV entry. These findings clearly demonstrate that ADAM17 serves as an essential attachment factor for CSFV.  相似文献   

9.
Two related classical swine fever virus (CSFV) strain Brescia clones were isolated from blood samples from an infected pig. Virus C1.1.1 is a cell-adapted avirulent variant, whereas CoBrB is a virulent variant. Sequence analysis revealed 29 nucleic acid mutations in C1.1.1, resulting in 9 amino acid substitutions compared to the sequence of CoBrB (476)R. Using reverse genetics, parts of the genomes of these viruses, which contain differences that lead to amino acid changes, were exchanged. Animal experiments with chimeric viruses derived from C1.1.1 and CoBrB (476)R showed that a combination of amino acid changes in the structural and nonstructural regions reduced the virulence of CSFV in pigs. Moreover, the presence of a Leu at position 710 in structural envelope protein E2 seemed to be an important factor in the virulence of the virus. Changing the Leu at position 710 in the CoBrB (476)S variant into a His residue did not affect virulence. However, the (710)His in the C1.1.1/CoBrB virus, together with adaptive mutations (276)R, (476)R, and (477)I in E(rns), resulted in reduced virulence in pigs. These results indicated that mutations in E(rns) and E2 alone do not determine virulence in pigs. The results of in vitro experiments suggested that a high affinity for heparan sulfate of C1.1.1 E(rns) may reduce the spread of the C1.1.1/CoBrB virus in pigs and together with the altered surface structure of E2 caused by the (710)L-->H mutation may result in a less efficient infection of specific target cells in pigs. Both these features contributed to the attenuation of the C1.1.1/CoBrB virus in vivo.  相似文献   

10.
基于镧系元素Eu微球标记技术建立了一种猪瘟病毒抗体检测的免疫层析方法。通过对反应体系中包被浓度、复溶浓度以及反应时间等因素进行优化,确定最适的反应条件,建立检测方法,然后通过从敏感性、特异性、重复性、临床评价等方面对其进行性能评价。对反应体系进行优化,最终确定包被浓度为0.1 mg/mL,复溶浓度为6倍稀释,检测时间为15 min。通过对试纸条的性能评价可以得出,猪瘟病毒抗体荧光检测试纸条的敏感性为猪瘟阳性血清国家参考品倍比稀释至1∶128倍仍可以检测到;对常见的猪繁殖与呼吸综合征、猪I型疱疹病毒、猪口蹄疫、猪圆环病毒2型、猪流行性腹泻、牛病毒性腹泻病毒、羊边界病毒等抗体阳性血清无交叉反应;批内和批内变异系数均小于10%;经临床评价,与商品化的猪瘟病毒抗体ELISA检测试剂盒相比阳性符合率为90%,阴性符合率为100%,总符合率为97.7%;与荧光抗体中和试验(FVNT)的阴性符合率为100%,阳性符合率为93%,总符合率为98.5%。综合评定认为本研究建立的猪瘟病毒抗体纳米荧光检测方法,符合各项性能参数,可以快速、经济、方便地对猪个体及群体进行猪瘟病毒抗体检测评估,可广泛应用于猪场管理中。  相似文献   

11.
Lin M  Lin F  Mallory M  Clavijo A 《Journal of virology》2000,74(24):11619-11625
The major structural glycoprotein E2 of classical swine fever virus (CSFV) is responsible for eliciting neutralizing antibodies and conferring protective immunity. The current structural model of this protein predicts its surface-exposed region at the N terminus with a short stretch of the C-terminal residues spanning the membrane envelope. In this study, the N-terminal region of 221 amino acids (aa) covering aa 690 to 910 of the CSFV strain Alfort/187 E2, expressed as a fusion product in Escherichia coli, was shown to contain the epitope recognized by a monoclonal antibody (WH303) with affinity for various CSFV strains but not for the other members of the Pestivirus genus, bovine viral diarrhea virus (BVDV) and border disease virus (BDV). This region also contains the sites recognized by polyclonal immunoglobulin G (IgG) antibodies of a pig hyperimmune serum. Serial deletions of this region precisely defined the epitope recognized by WH303 to be TAVSPTTLR (aa 829 to 837) of E2. Comparison of the sequences around the WH303-binding site among the E2 proteins of pestiviruses indicated that the sequence TAVSPTTLR is strongly conserved in CSFV strains but highly divergent among BVDV and BDV strains. These results provided a structural basis for the reactivity patterns of WH303 and also useful information for the design of a peptide containing this epitope for potential use in the detection and identification of CSFV. By deletion analysis, an antigenic domain capable of reacting with pig polyclonal IgG was found 17 aa from the WH303 epitope within the N-terminal 123 residues (aa 690 to 812). Small N- or C-terminal deletions introduced into the domain disrupt its reactivity with pig polyclonal IgG, suggesting that this is the minimal antigenic domain required for binding to pig antibodies. This domain could have eliminated or reduced the cross-reactivity with other pestiviruses and may thus have an application for the serological detection of CSFV infection; evaluation of this is now possible, since the domain has been expressed in E. coli in large amounts and purified to homogeneity by chromatographic methods.  相似文献   

12.
Classical swine fever, caused by classical swine fever virus (CSFV), is a highly contagious disease that results in enormous economic losses in pig industries. The E2 protein is one of the main structural proteins of CSFV and is capable of inducing CSFV-neutralizing antibodies and cytotoxic T lymphocyte (CTL) activities in vivo. Thymosin α-1 (Tα1), an immune-modifier peptide, plays a very important role in the cellular immune response. In this study, genetically engineered Lactobacillus plantarum bacteria expressing CSFV E2 protein alone (L. plantarum/pYG-E2) and in combination with Tα1 (L. plantarum/pYG-E2-Tα1) were developed, and the immunogenicity of each as an oral vaccine to induce protective immunity against CSFV in pigs was evaluated. The results showed that recombinant L. plantarum/pYG-E2 and L. plantarum/pYG-E2-Tα1 were both able to effectively induce protective immune responses in pigs against CSFV infection by eliciting immunoglobulin A (IgA)-based mucosal, immunoglobulin G (IgG)-based humoral, and CTL-based cellular immune responses via oral vaccination. Significant differences (P < 0.05) in the levels of immune responses were observed between L. plantarum/pYG-E2-Tα1 and L. plantarum/pYG-E2, suggesting a better immunogenicity of L. plantarum/pYG-E2-Tα1 as a result of the Tα1 molecular adjuvant that can enhance immune responsiveness and augment specific lymphocyte functions. Our data suggest that the recombinant Lactobacillus microecological agent expressing CSFV E2 protein combined with Tα1 as an adjuvant provides a promising strategy for vaccine development against CSFV.  相似文献   

13.
Two groups with three wild boars each were used: Group A (animals 1 to 3) served as the control, and Group B (animals 4 to 6) was postnatally persistently infected with the Cat01 strain of CSFV (primary virus). The animals, six weeks old and clinically healthy, were inoculated with the virulent strain Margarita (secondary virus). For exclusive detection of the Margarita strain, a specific qRT-PCR assay was designed, which proved not to have cross-reactivity with the Cat01 strain. The wild boars persistently infected with CSFV were protected from superinfection by the virulent CSFV Margarita strain, as evidenced by the absence of clinical signs and the absence of Margarita RNA detection in serum, swabs and tissue samples. Additionally, in PBMCs, a well-known target for CSFV viral replication, only the primary infecting virus RNA (Cat01 strain) could be detected, even after the isolation in ST cells, demonstrating SIE at the tissue level in vivo. Furthermore, the data analysis of the Margarita qRT-PCR, by means of calculated ΔCt values, supported that PBMCs from persistently infected animals were substantially protected from superinfection after in vitro inoculation with the Margarita virus strain, while this virus was able to infect naive PBMCs efficiently. In parallel, IFN-α values were undetectable in the sera from animals in Group B after inoculation with the CSFV Margarita strain. Furthermore, these animals were unable to elicit adaptive humoral (no E2-specific or neutralising antibodies) or cellular immune responses (in terms of IFN-γ-producing cells) after inoculation with the second virus. Finally, a sequence analysis could not detect CSFV Margarita RNA in the samples tested from Group B. Our results suggested that the SIE phenomenon might be involved in the evolution and phylogeny of the virus, as well as in CSFV control by vaccination. To the best of our knowledge, this study was one of the first showing efficient suppression of superinfection in animals, especially in the absence of IFN-α, which might be associated with the lack of innate immune mechanisms.  相似文献   

14.
Passage of native classical swine fever virus (CSFV) in cultured swine kidney cells (SK6 cells) selects virus variants that attach to the surface of cells by interaction with membrane-associated heparan sulfate (HS). A Ser-to-Arg change in the C terminus of envelope glycoprotein E(rns) (amino acid 476 in the open reading frame of CSFV) is responsible for selection of these HS-binding virus variants (M. M. Hulst, H. G. P. van Gennip, and R. J. M. Moormann, J. Virol. 74:9553-9561, 2000). In this investigation we studied the role of binding of CSFV to HS in vivo. Using reverse genetics, an HS-independent recombinant virus (S-ST virus) with Ser(476) and an HS-dependent recombinant virus (S-RT virus) with Arg(476) were constructed. Animal experiments indicated that this adaptive Ser-to-Arg mutation had no effect on the virulence of CSFV. Analysis of viruses reisolated from pigs infected with these recombinant viruses indicated that replication in vivo introduced no mutations in the genes of the envelope proteins E(rns), E1, and E2. However, the blood of one of the three pigs infected with the S-RT virus contained also a low level of virus particles that, when grown under a methylcellulose overlay, produced relative large plaques, characteristic of an HS-independent virus. Sequence analysis of such a large-plaque phenotype showed that Arg(476) was mutated back to Ser(476). Removal of HS from the cell surface and addition of heparin to the medium inhibited infection of cultured (SK6) and primary swine kidney cells with S-ST virus reisolated from pigs by about 70% whereas infection with the administered S-ST recombinant virus produced in SK6 cells was not affected. Furthermore, E(rns) S-ST protein, produced in insect cells, could bind to immobilized heparin and to HS chains on the surface of SK6 cells. These results indicated that S-ST virus generated in pigs is able to infect cells by an HS-dependent mechanism. Binding of concanavalin A (ConA) to virus particles stimulated the infection of SK6 cells with S-ST virus produced in these cells by 12-fold; in contrast, ConA stimulated infection with S-ST virus generated in pigs no more than 3-fold. This suggests that the surface properties of S-ST virus reisolated from pigs are distinct from those of S-ST virus produced in cell culture. We postulate that due to these surface properties, in vivo-generated CSFV is able to infect cells by an HS-dependent mechanism. Infection studies with the HS-dependent S-RT virus, however, indicated that interaction with HS did not mediate infection of lung macrophages, indicating that alternative receptors are also involved in the attachment of CSFV to cells.  相似文献   

15.
A novel fluorescent microbead immunoassay (FMIA) using the recombinant polypeptide SpaA415 was developed for detection of anti-Erysipelothrix spp. IgG in pig sera. The diagnostic performance of the FMIA was evaluated on samples from pigs with known and unknown Erysipelothrix spp. exposure and compared to an in-house enzyme-linked immunosorbent assay (ELISA-1) based on the same capture antigen, and two commercially available ELISAs (ELISA-2 and ELISA-3). Sera from pigs experimentally infected with Erysipelothrix rhusiopathiae serotype 1a (n=60) or 19 (n=12), sera from pigs vaccinated with a commercial attenuated-live vaccine based on serotype 1a (n=12) or a commercial bacterin based on serotype 2 (n=12), and 90 field samples were utilized. The sensitivity on 22 true positive samples collected in the later stages of infection/post-vaccination was 100% for the FMIA and ELISA-1, 63.6% for ELISA-2 and 81.8% for ELISA-3. The earliest antibody response was detected 7days post inoculation with the FMIA (77.8%) and ELISA-1 (11.1%), and at 14days post-vaccination (dpv) with FMIA (50%) and ELISA-1 (50%). On field samples, a higher seroprevalence was found in pigs older than 21days with all four assays. Kappa analysis indicated that the FMIA and ELISA-1 had almost complete agreement whereas the agreement was slight with ELISA-2 and fair with ELISA-3. The sensitivity of both immunoassays based on the rSpaA415 antigen was higher compared to that of the two commercial ELISAs. The rSpaA415 FMIA has great potential as an inexpensive ELISA alternative for detection of antibodies against E. rhusiopathiae in the future.  相似文献   

16.
In this study,a synthesized quadruple antigenic epitope gene region of the classical swine fever virus (CSFV)E2 glycoprotein was expressed in E.coli to a obtain target protein.This target protein was used as a coating antigen to establish an indirect ELISA for specifically detecting anti-CSFV antibodies in serum samples from pigs.The P/N cut-off value of this assay was 1.92 by receiver operating characteristic curve(ROC)analysis based on 30 negative sera and 80 positive samples.The test gave 97.5%sensitivit...  相似文献   

17.
Aims: To estimate the proportions of farms on which broilers, turkeys and pigs were shedding fluoroquinolone (FQ)-resistant Escherichia coli or Campylobacter spp. near to slaughter. Methods and Results: Freshly voided faeces were collected on 89 poultry and 108 pig farms and cultured with media containing 1·0 mg l−1 ciprofloxacin. Studies demonstrated the specificity of this sensitive method, and both poultry and pig sampling yielded FQ-resistant E. coli on 60% of farms. FQ-resistant Campylobacter spp. were found on around 22% of poultry and 75% of pig farms. The majority of resistant isolates of Campylobacter (89%) and E. coli (96%) tested had minimum inhibitory concentrations for ciprofloxacin of ≥8 mg l−1. The proportion of resistant E. coli and Campylobacter organisms within samples varied widely. Conclusions: FQ resistance is commonly present among two enteric bacterial genera prevalent on pig and poultry farms, although the low proportion of resistant organisms in many cases requires a sensitive detection technique. Significance and Impact of the Study: FQ-resistant bacteria with zoonotic potential appear to be present on a high proportion of UK pig and poultry farms. The risk this poses to consumers relative to other causes of FQ-resistant human infections remains to be clarified.  相似文献   

18.
猪瘟(Classical swine fever,CSF)是猪的一种急性、热性和致死性传染病。该病流行范围很广,而且致死率极高,给世界养猪业造成严重危害。目前,猪瘟流行地区或国家仍然采用接种弱毒疫苗的方法作为预防猪瘟的主要策略,但接种弱毒疫苗的传统预防控制方法无法区别猪瘟疫苗免疫抗体和野毒感染抗体。为了净化、消灭猪瘟,新型标记疫苗的研究已迫在眉睫。近些年,陆续有国内外研究者应用分子生物学和基因工程方法,对猪瘟野毒株或弱毒株进行基因修饰构建出新毒株,其中以Erns和E2为基础构建新毒株的方法占据着重要地位。部分候选疫苗具有较好的免疫效果,可用于区分免疫和自然感染动物,而且有望作为新一代疫苗来替代传统弱毒疫苗。  相似文献   

19.
猪瘟病毒E2基因真核表达质粒的构建及基因疫苗的研究   总被引:12,自引:0,他引:12  
构建了猪瘟(classical swine fever virus,CSFV)主要保护性抗原E2基因4种不同的真核表达质粒。小鼠免疫试验表明,E2基因上不同的功能区对基因疫苗的免疫应答有很大影响,有信号肽序列的E2基因可诱导产生特异性免疫反应,且无跨膜区序列的E2基因所诱导的免疫应答反应比有跨膜区序列的强,而无信号肽序列的E2基因则不能诱导产生CSFV特异性的免疫反应。攻毒保护试验表明,免疫家兔最  相似文献   

20.
Porcine reproductive and respiratory syndrome (PRRS) is a swine infectious disease causing major economic problems on the intensive pig industry. This virus has been reported worldwide in domestic pigs and there is evidence of PRRS virus (PRRSV) infection in wild boar (Sus scrofa). Nonetheless, the epidemiological role of wild boar and extensively kept domestic pigs remains unclear. The aim of this study was to determine the occurrence of PRRS in wild boar and Iberian pigs in the dehesa ecosystem of the Castile-La Mancha region of Spain, which boasts one of the most important free-roaming porcine livestock and hunting industries in the country. Using geo-spatial analysis of literature data, we first explored the relationship between domestic pig density and PRRS occurrence in wild boar in Europe. Results revealed that PRRS occurrence in wild boar may be influenced, albeit not significantly, by domestic pig density. Next, we analyzed sera from 294 wild boar and 80 Iberian pigs by indirect enzyme-linked immunosorbent assay for PRRSV antibodies. The sera and 27 wild boar tissue samples were analyzed by two real-time RT-PCR assays, targeting the most conserved genes of the PRRSV genome, ORF1 and ORF7. Seven wild boar (2.4 %) and one Iberian pig (1.3 %) were seropositive, while none of the animals tested positive for PRRSV by RT-PCR. Our results confirm the limited spread of PRRSV in free-roaming Iberian pigs and wild boar living in mutual contact. Further studies would be necessary to address whether this low seroprevalence found in these animals reflects transmission from intensively kept pigs or the independent circulation of specific strains in free-roaming pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号