首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Developmental cell》2021,56(24):3334-3348.e6
  1. Download : Download high-res image (234KB)
  2. Download : Download full-size image
  相似文献   

2.
ZBP-89-induced apoptosis is p53-independent and requires JNK   总被引:1,自引:0,他引:1  
ZBP-89 induces apoptosis in human gastrointestinal cancer cells through a p53-independent mechanism. To understand the apoptotic pathway regulated by ZBP-89, we identified downstream signal transduction targets. Ectopic expression of ZBP-89 induced apoptosis through the mitochondrial pathway and was accompanied by activation of all three MAP kinase subfamilies: JNK1/2, ERK1/2 and p38 MAP kinase. ZBP-89-induced apoptosis was markedly enhanced by ERK inhibition with U0126. In contrast, inhibiting JNK with a JNK1-specific peptide inhibitor or dominant-negative JNK2 expression abrogated ZBP-89-mediated apoptosis. The p38 inhibitor SB202190 had no effect on ZBP-89-induced cell death. Protein dephosphorylation assays revealed that ZBP-89 activates JNK via repression of JNK dephosphorylation. Oligonucleotide microarray analyses revealed that ectopic expression of ZBP-89 downregulated expression of the dual-specificity phosphatase MKP6. Overexpression of MKP6 blocked ZBP-89-induced JNK phosphorylation and PARP cleavage. In addition, ectopic expression of ZBP-89 repressed Bcl-xL and Mcl-1 expression, but had no effect on Bcl-2. Silencing ZBP-89 with small interfering RNA enhanced both Bcl-xL and Mcl-1 expression. Taken together, ZBP-89-mediated apoptosis occurs via a p53-independent mechanism that requires JNK activation.  相似文献   

3.
TNF-alpha-mediated apoptosis in vascular smooth muscle cells requires p73   总被引:2,自引:0,他引:2  
Atherosclerosis, now considered an inflammatory process, is the leading cause of death in the Western world and is manifested by a variety of diseases in multiple organ systems. Because of its prevalence and associated morbidity, novel therapies directed at arresting this progressive process are urgently needed. The inflammatory mediator TNF-, which is known to contribute to apoptosis in vascular smooth muscle cells, has been shown to be intimately involved in the atherosclerotic process, being present at elevated levels in human atheroma as well as possibly being responsible for plaque rupture, a clinically devastating event. In light of our earlier finding that p73 is a proapoptotic protein in vascular smooth muscle cells, which are involved in plaque progression as well as rupture, we asked whether TNF- mediates apoptosis in these cells through p73. We now show that p73 is present in spindle-shaped cells within human atheroma, and p73, an isoform that is pivotal in both apoptosis and growth suppression, is induced in vascular smooth muscle cells in vitro by serum but not by PDGF-BB. In addition, TNF-, when added to these cells in the presence of serum-containing media, increases p73 expression and causes apoptosis in both rat and human vascular smooth muscle cells. Inhibition of p73 activity with a dominant inhibitory NH2-terminally deleted p73 plasmid results in markedly decreased TNF--induced apoptosis. Thus p73 is likely a mediator of the apoptotic effect of TNF- in the vasculature, such that future targeting of the p73 isoforms may ultimately prove useful in novel atherosclerosis therapies. atherosclerosis; inflammation; plaque  相似文献   

4.
Of the three Shc isoforms, p66Shc is responsible for fine-tuning p52/p46Shc signaling to Ras and has been implicated in apoptotic responses to oxidative stress. Here we show that human peripheral blood lymphocytes and mouse thymocytes and splenic T cells acquire the capacity to express p66Shc in response to apoptogenic stimulation. Using a panel of T-cell transfectants and p66Shc(-/-) T cells, we show that p66Shc expression results in increased susceptibility to apoptogenic stimuli, which depends on Ser36 phosphorylation and correlates with an altered balance in apoptosis-regulating gene expression. Furthermore, p66Shc blunts mitogenic responses to T-cell receptor engagement, at least in part by transdominant inhibition of p52Shc signaling to Ras/mitogen-activated protein kinases, in an S36-dependent manner. The data highlight a novel interplay between p66Shc and p52Shc in the control of T-cell fate.  相似文献   

5.
Although the death-inducing signaling complex (DISC) is rapidly assembled, several lines of evidence suggest that formation of this complex is not the first consequence of cell surface CD95 (Fas) stimulation but rather a later step in this process. Activation of Fas triggers a cascade of signaling events that culminate in cellular apoptosis. Tyrosine kinases are critical effectors in T cell activation. However, their functional involvement in death receptor-mediated apoptosis is unknown. Here, we used p56(Lck)-deficient cells to show that CD95-induced cell death is highly dependent on p56(Lck) activity and its localization within plasma membrane. We found that p56(Lck) acts upstream of the mitochondria; in the absence of p56(Lck), Bid cleavage and the release of cytochrome c were severely impaired. Moreover, p56(Lck)-deficient cells or cells expressing an inactive form of p56(Lck) displayed defective formation of the DISC post CD95 stimulation. In vivo reconstitution of thymocytes from p56(lck)-deficient mice, which are resistant to apoptosis, with p56(Lck) restored Fas-mediated cell death. Our results support a novel model whereby sensitivity to apoptosis is regulated through quantitative changes in the stoichiometry of DISC components triggered by p56(Lck) activation and localization.  相似文献   

6.
The p66shc protein governs oxidant stress and mammalian lifespan. Here, we identify melanoma inhibitory activity (MIA), a protein secreted by melanoma cells, as a novel binding partner and antagonist of p66shc. The N-terminal collagen homology-2 (CH2) domain of p66shc binds to the Src Homology-3 (SH3)-like domain of MIA in vitro. In cells, ectopically expressed MIA and p66shc colocalize and co-precipitate. MIA also co-precipitates with the CH2 domain of p66shc in vivo. MIA expression in vivo suppresses p66shc-stimulated increase in endogenous hydrogen peroxide (H(2)O(2)), and inhibits basal and H(2)O(2)-induced phosphorylation of p66shc on serine 36 and H(2)O(2)-induced death. In human melanoma cells expressing MIA, endogenous MIA and p66shc co-precipitate. Downregulation of MIA in melanoma cells increases basal and ultraviolet radiation (UVR)-induced phosphorylation of p66shc on serine 36, augments endogenous H(2)O(2) levels, and increases their susceptibility to UVR-induced death. These findings show that MIA binds to p66shc, and suggest that this interaction antagonizes phosphorylation and function of p66shc.  相似文献   

7.
8.
Follicular dendritic cells (FDCs) select B cells during germinal center (GC) reactions. The B cells that are able to bind to the FDCs receive a signal that leads to the termination of endonuclease activity in the nuclei of those B cells. This signal must be in addition to the signals transferred through the cross-linkage of the B cell receptors and signals resulting from the interactions of the adhesion molecules lymphocyte function-associated Ag-1 and very late Ag-4 with ICAM-1 and VCAM-1, respectively. In this report, we present evidence that the FDCs silence all apoptotic processes in GC B lymphocytes and additionally switch off pre-present endonuclease activity. We also show that GC B cell apoptosis requires cathepsin activity downstream of caspase-3. This cathepsin activity is directly connected to endonuclease activity and therefore may be an interesting target for the antiapoptotic factors produced by FDCs.  相似文献   

9.
10.
The retinoblastoma protein (RB) suppresses cell proliferation and apoptosis. We have previously shown that RB degradation is required for tumor necrosis factor alpha (TNF-alpha) to induce apoptosis. We show here the identification of two apoptotic effectors, i.e., c-ABL tyrosine kinase and p73, which are activated by TNF-alpha following RB degradation. In cells expressing a degradation-resistant RB protein (RB-MI), TNF-alpha does not activate c-ABL. RB-MI also inhibits TNF-alpha-mediated activation of p73. Genetic deletion and pharmacological inhibition of c-ABL or p73 diminish the apoptotic response to TNF-alpha in human cell lines and mouse fibroblasts. Thymocytes isolated from Rb(MI/MI), Abl(-/-), or p73(-/-) mice are resistant to TNF-alpha-induced apoptosis compared to their wild-type counterparts. This is in contrast to p53(-/-) thymocytes, which exhibit a wild-type level of apoptosis in response to TNF-alpha. Thus, c-ABL and p73 contribute to apoptosis induced by TNF-alpha, in addition to their role in promoting DNA damage-associated cell death.  相似文献   

11.
Mechanisms regulating the activation and delivery of function of Lck and Fyn are central to the generation of the most proximal signaling events emanating from the T cell antigen receptor (TcR) complex. Recent results demonstrate that lipid rafts (LR) segregate Lck and Fyn and play a fundamental role in the temporal and spatial coordination of their activation. Specifically, TcR-CD4 co-aggregation-induced Lck activation outside LR results in Lck translocation to LR where the activation of LR-resident Fyn ensues. Here we report a structure-function analysis toward characterizing the mechanism supporting Lck partitioning to LR and its capacity to activate co-localized Fyn. Using NIH 3T3 cells ectopically expressing FynT, we demonstrate that only LR-associated, kinase-active (Y505F)Lck reciprocally co-immunoprecipitates with and activates Fyn. Mutational analyses revealed a profound reduction in the formation of Lck-Fyn complexes and Fyn activation, using kinase domain mutants K273R and Y394F of (Y505F)Lck, both of which have profoundly compromised kinase activity. The only kinase-active Lck mutants tested that revealed impaired physical and enzymatic engagement with Fyn were those involving truncation of the C-terminal sequence YQPQP. Remarkably, sequential truncation of YQPQP resulted in an increasing reduction of kinase-active Lck partitioning to LR, in both fibroblasts and T cells. This in turn correlated with an ablation of the capacity of these truncates to enhance TcR-mediated interleukin-2 production. Thus, Lck-dependent Fyn activation is predicated by proximity-mediated transphosphorylation of the Fyn kinase domain, and targeting kinase-active Lck to LR is dependent on the C-terminal sequence QPQP.  相似文献   

12.
13.
p66Shc, a redox enzyme that enhances reactive oxygen species (ROS) production by mitochondria, promotes T cell apoptosis. We have addressed the mechanisms regulating p66Shc-dependent apoptosis in T cells exposed to supraphysiological increases in [Ca2+]c. p66Shc expression resulted in profound mitochondrial dysfunction in response to the Ca2+ ionophore A23187, as revealed by dissipation of mitochondrial transmembrane potential, cytochrome c release and decreased ATP levels. p66Shc expression also caused a dramatic alteration in the cells' Ca2+-handling ability, which resulted in Ca2+ overload after A23187 treatment. The impairment in Ca2+ homeostasis was ROS dependent and caused by defective Ca2+ extrusion due at least in part to decreased plasma membrane ATPase (PMCA) expression. Both effects of p66Shc required Ca2+-dependent serine-36 phosphorylation. The mitochondrial effects of p66Shc were potentiated by but not strictly dependent on the rise in [Ca2+]c. Thus, Ca2+-dependent p66Shc phosphorylation causes both mitochondrial dysfunction and impaired Ca2+ homeostasis, which synergize in promoting T cell apoptosis.  相似文献   

14.
The actin cytoskeleton promotes clustering of proteins associated with cholesterol-dependent rafts, but its effect on lipid interactions that form and maintain rafts is not understood. We addressed this question by determining the effect of disrupting the cytoskeleton on co-clustering of dihexadecyl-(C(16))-anchored DiO and DiI, which co-enrich in ordered lipid environments such as rafts. Co-clustering was assayed by fluorescence resonance energy transfer (FRET) in labeled T cells, where rafts function in the phosphoregulation of the Src family kinase Lck. Our results show that probe co-clustering was sensitive to depolymerization of actin filaments with latrunculin B (Lat B), inhibition of myosin II with blebbistatin, and treatment with neomycin to sequester phosphatidylinositol 4,5-bisphosphate. Cytoskeletal effects on lipid interactions were not restricted to order-preferring label because co-clustering of C(16)-anchored DiO with didodecyl (C(12))-anchored DiI, which favors disordered lipids, was also reduced by Lat B and blebbistatin. Furthermore, conditions that disrupted probe co-clustering resulted in activation of Lck. These data show that the cytoskeleton globally modulates lipid interactions in the plasma membrane, and this property maintains rafts that function in Lck regulation.  相似文献   

15.
Reactive oxygen species (ROS) are potent inducers of oxidative damage and have been implicated in the regulation of specific cellular functions, including apoptosis. Mitochondrial ROS increase markedly after proapoptotic signals, though the biological significance and the underlying molecular mechanisms remain undetermined. P66Shc is a genetic determinant of life span in mammals, which regulates ROS metabolism and apoptosis. We report here that p66Shc is a redox enzyme that generates mitochondrial ROS (hydrogen peroxide) as signaling molecules for apoptosis. For this function, p66Shc utilizes reducing equivalents of the mitochondrial electron transfer chain through the oxidation of cytochrome c. Redox-defective mutants of p66Shc are unable to induce mitochondrial ROS generation and swelling in vitro or to mediate mitochondrial apoptosis in vivo. These data demonstrate the existence of alternative redox reactions of the mitochondrial electron transfer chain, which evolved to generate proapoptotic ROS in response to specific stress signals.  相似文献   

16.
17.
18.
Chen SS  Chang PC  Cheng YW  Tang FM  Lin YS 《The EMBO journal》2002,21(17):4491-4499
Using a transactivation-defective p53 derivative as bait, STK15, a centrosome-associated oncogenic serine/threonine kinase, was isolated as a p53 partner. The p53-STK15 interaction was confirmed further by co-immunoprecipitation and GST pull-down studies. In co-transfection experiments, p53 suppressed STK15-induced centrosome amplification and cellular transformation in a transactivation-independent manner. The suppression of STK15 oncogenic activity by p53 might be explained in part by the finding that p53 inhibited STK15 kinase activity via direct interaction with the latter's Aurora box. Taken together, these findings revealed a novel mechanism for the tumor suppressor function of p53.  相似文献   

19.
20.
During development, many cells are specifically eliminated. Therefore, programmed cell death must be understood to fully elucidate embryogenesis. Retinoic acid (RA) and bone morphogenetic protein (BMP) 4 induce rapidly dividing P19 embryonal carcinoma cells to undergo apoptosis. RA alone minimally induces apoptosis, while BMP4 alone induces none. RA and BMP4 exposure also elevates the number of cells in the G1 phase of the cell cycle. Because many cell cycle proteins control both proliferation and apoptosis, we determined the role of these proteins in inducing apoptosis. Although the mRNA levels of cyclins D1 and D2 are reduced in cells undergoing apoptosis, the protein levels are not. In contrast, RA and BMP4 induce the Cdk inhibitor p27. This protein binds Cdk4 in RA- and BMP4-treated cells and inhibits Cdk4-dependent kinase activity. We used p27 antisense oligonucleotides to rescue the P19 cells from RA and BMP4 apoptosis thus proving that p27 is necessary. The Cdk4 substrate, retinoblastoma (Rb) protein, is also induced in apoptotic cells. Consistent with the decreased kinase activity of the apoptotic cells, this Rb protein is hypophosphorylated and presumably active. These data support the hypothesis that RA and BMP4 together induce the p27 protein leading to Rb activation and ultimately apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号