首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Arabidopsis thaliana heterotrimeric G protein complex is encoded by single canonical Galpha and Gbeta subunit genes and two Ggamma subunit genes (AGG1 and AGG2), raising the possibility that the two potential G protein complexes mediate different cellular processes. Mutants with reduced expression of one or both Ggamma genes revealed specialized roles for each Ggamma subunit. AGG1-deficient mutants, but not AGG2-deficient mutants, showed impaired resistance against necrotrophic pathogens, reduced induction of the plant defensin gene PDF1.2, and decreased sensitivity to methyl jasmonate. By contrast, both AGG1- and AGG2-deficient mutants were hypersensitive to auxin-mediated induction of lateral roots, suggesting that Gbetagamma1 and Gbetagamma2 synergistically inhibit auxin-dependent lateral root initiation. However, the involvement of each Ggamma subunit in this root response differs, with Gbetagamma1 acting within the central cylinder, attenuating acropetally transported auxin signaling, while Gbetagamma2 affects the action of basipetal auxin and graviresponsiveness within the epidermis and/or cortex. This selectivity also operates in the hypocotyl. Selectivity in Gbetagamma signaling was also found in other known AGB1-mediated pathways. agg1 mutants were hypersensitive to glucose and the osmotic agent mannitol during seed germination, while agg2 mutants were only affected by glucose. We show that both Ggamma subunits form functional Gbetagamma dimers and that each provides functional selectivity to the plant heterotrimeric G proteins, revealing a mechanism underlying the complexity of G protein-mediated signaling in plants.  相似文献   

2.
Heterotrimeric G proteins are signaling molecules ubiquitous among all eukaryotes. The Arabidopsis (Arabidopsis thaliana) genome contains one Galpha (GPA1), one Gbeta (AGB1), and two Ggamma subunit (AGG1 and AGG2) genes. The Gbeta requirement of a functional Ggamma subunit for active signaling predicts that a mutant lacking both AGG1 and AGG2 proteins should phenotypically resemble mutants lacking AGB1 in all respects. We previously reported that Gbeta- and Ggamma-deficient mutants coincide during plant pathogen interaction, lateral root development, gravitropic response, and some aspects of seed germination. Here, we report a number of phenotypic discrepancies between Gbeta- and Ggamma-deficient mutants, including the double mutant lacking both Ggamma subunits. While Gbeta-deficient mutants are hypersensitive to abscisic acid inhibition of seed germination and are hyposensitive to abscisic acid inhibition of stomatal opening and guard cell inward K+ currents, none of the available Ggamma-deficient mutants shows any deviation from the wild type in these responses, nor do they show the hypocotyl elongation and hook development defects that are characteristic of Gbeta-deficient mutants. In addition, striking discrepancies were observed in the aerial organs of Gbeta- versus Ggamma-deficient mutants. In fact, none of the distinctive traits observed in Gbeta-deficient mutants (such as reduced size of cotyledons, leaves, flowers, and siliques) is present in any of the Ggamma single and double mutants. Despite the considerable amount of phenotypic overlap between Gbeta- and Ggamma-deficient mutants, confirming the tight relationship between Gbeta and Ggamma subunits in plants, considering the significant differences reported here, we hypothesize the existence of new and as yet unknown elements in the heterotrimeric G protein signaling complex.  相似文献   

3.
Activation of the plant defensin gene PDF1.2 in Arabidopsis by pathogens has been shown previously to be blocked in the ethylene response mutant ein2-1 and the jasmonate response mutant coi1-1. In this work, we have further investigated the interactions between the ethylene and jasmonate signal pathways for the induction of this defense response. Inoculation of wild-type Arabidopsis plants with the fungus Alternaria brassicicola led to a marked increase in production of jasmonic acid, and this response was not blocked in the ein2-1 mutant. Likewise, A. brassicicola infection caused stimulated emission of ethylene both in wild-type plants and in coi1-1 mutants. However, treatment of either ein2-1 or coi1-1 mutants with methyl jasmonate or ethylene did not induce PDF1.2, as it did in wild-type plants. We conclude from these experiments that both the ethylene and jasmonate signaling pathways need to be triggered concomitantly, and not sequentially, to activate PDF1.2 upon pathogen infection. In support of this idea, we observed a marked synergy between ethylene and methyl jasmonate for the induction of PDF1.2 in plants grown under sterile conditions. In contrast to the clear interdependence of the ethylene and jasmonate pathways for pathogen-induced activation of PDF1.2, functional ethylene and jasmonate signaling pathways are not required for growth responses induced by jasmonate and ethylene, respectively.  相似文献   

4.
5.
Heterotrimeric G-protein signaling systems are activated via cell surface receptors possessing the seven-membrane span motif. Several observations suggest the existence of other modes of stimulus input to heterotrimeric G-proteins. As part of an overall effort to identify such proteins we developed a functional screen based upon the pheromone response pathway in Saccharomyces cerevisiae. We identified two mammalian proteins, AGS2 and AGS3 (activators of G-protein signaling), that activated the pheromone response pathway at the level of heterotrimeric G-proteins in the absence of a typical receptor. beta-galactosidase reporter assays in yeast strains expressing different Galpha subunits (Gpa1, G(s)alpha, G(i)alpha(2(Gpa1(1-41))), G(i)alpha(3(Gpa1(1-41))), Galpha(16(Gpa1(1-41)))) indicated that AGS proteins selectively activated G-protein heterotrimers. AGS3 was only active in the G(i)alpha(2) and G(i)alpha(3) genetic backgrounds, whereas AGS2 was active in each of the genetic backgrounds except Gpa1. In protein interaction studies, AGS2 selectively associated with Gbetagamma, whereas AGS3 bound Galpha and exhibited a preference for GalphaGDP versus GalphaGTPgammaS. Subsequent studies indicated that the mechanisms of G-protein activation by AGS2 and AGS3 were distinct from that of a typical G-protein-coupled receptor. AGS proteins provide unexpected mechanisms for input to heterotrimeric G-protein signaling pathways. AGS2 and AGS3 may also serve as novel binding partners for Galpha and Gbetagamma that allow the subunits to subserve functions that do not require initial heterotrimer formation.  相似文献   

6.
Heterotrimeric guanine-nucleotide-binding proteins (G proteins) act as molecular switches in signaling pathways by coupling the activation of heptahelical receptors at the cell surface to intracellular responses. In the resting state, the G-protein alpha subunit (Galpha) binds GDP and Gbetagamma. Receptors activate G proteins by catalyzing GTP for GDP exchange on Galpha, leading to a structural change in the Galpha(GTP) and Gbetagamma subunits that allows the activation of a variety of downstream effector proteins. The G protein returns to the resting conformation following GTP hydrolysis and subunit re-association. As the G-protein cycle progresses, the Galpha subunit traverses through a series of conformational changes. Crystallographic studies of G proteins in many of these conformations have provided substantial insight into the structures of these proteins, the GTP-induced structural changes in Galpha, how these changes may lead to subunit dissociation and allow Galpha and Gbetagamma to activate effector proteins, as well as the mechanism of GTP hydrolysis. However, relatively little is known about the receptor-G protein complex and how this interaction leads to GDP release from Galpha. This article reviews the structural determinants of the function of heterotrimeric G proteins in mammalian systems at each point in the G-protein cycle with special emphasis on the mechanism of receptor-mediated G-protein activation. The receptor-G protein complex has proven to be a difficult target for crystallography, and several biophysical and computational approaches are discussed that complement the currently available structural information to improve models of this interaction. Additionally, these approaches enable the study of G-protein dynamics in solution, which is becoming an increasingly appreciated component of all aspects of G-protein signaling.  相似文献   

7.
Inoculation of wild-type Arabidopsis plants with the fungus Alternaria brassicicola results in systemic induction of genes encoding a plant defensin (PDF1.2), a basic chitinase (PR-3), and an acidic hevein-like protein (PR-4). Pathogen-induced induction of these three genes is almost completely abolished in the ethylene-insensitive Arabidopsis mutant ein2-1. This indicates that a functional ethylene signal transduction component (EIN2) is required in this response. The ein2-1 mutants were found to be markedly more susceptible than wild-type plants to infection by two different strains of the gray mold fungus Botrytis cinerea. In contrast, no increased fungal colonization of ein2-1 mutants was observed after challenge with avirulent strains of either Peronospora parasitica or A. brassicicola. Our data support the conclusion that ethylene-controlled responses play a role in resistance of Arabidopsis to some but not all types of pathogens.  相似文献   

8.
The hypersensitive response (HR) was induced in a wild-type Arabidopsis thaliana plant (Columbia) (Col-wt) by inoculation with Alternaria brassicicola that causes the development of small brown necrotic lesions on the leaves. By contrast, pad3-1 mutants challenged with A. brassicicola produced spreading lesions. The cell death in pad3-1 mutants could not inhibit the pathogen growth and development, although both production of H(2)O(2) and localized cell death were similar in Col-wt and pad3-1 plants after the inoculation. The difference between Col-wt and pad3-1 plants is defense responses after the occurrence of cell death. In other words, PAD3 is necessary for defense response to A. brassicicola. Therefore, we examined the changes in the expression patterns of ca. 7,000 genes by cDNA microarray analysis after inoculation with A. brassicicola. The cDNA microarrays were also done to analyze Arabidopsis responses after treatment with signal molecules, reactive oxygen species (ROS)-inducing compounds and UV-C. The results suggested that the pad3-1 mutation altered not only the accumulation of camalexin but also the timing of expression of many defense-related genes in response to the challenge with A. brassicicola. Furthermore, the plants integrate two or more signals that act together for promoting the induction of multiple defense pathways.  相似文献   

9.
RACK1 regulates specific functions of Gbetagamma   总被引:6,自引:0,他引:6  
We showed previously that Gbetagamma interacts with Receptor for Activated C Kinase 1 (RACK1), a protein that not only binds activated protein kinase C (PKC) but also serves as an adaptor/scaffold for many signaling pathways. Here we report that RACK1 does not interact with Galpha subunits or heterotrimeric G proteins but binds free Gbetagamma subunits released from activated heterotrimeric G proteins following the activation of their cognate receptors in vivo. The association with Gbetagamma promotes the translocation of RACK1 from the cytosol to the membrane. Moreover, binding of RACK1 to Gbetagamma results in inhibition of Gbetagamma-mediated activation of phospholipase C beta2 and adenylyl cyclase II. However, RACK1 has no effect on other functions of Gbetagamma, such as activation of the mitogen-activated protein kinase signaling pathway or chemotaxis of HEK293 cells via the chemokine receptor CXCR2. Similarly, RACK1 does not affect signal transduction through the Galpha subunits of G(i), G(s), or G(q). Collectively, these findings suggest a role of RACK1 in regulating specific functions of Gbetagamma.  相似文献   

10.
Heterotrimeric G proteins are peripheral membrane proteins that propagate signals from membrane receptors to regulatory proteins localized in distinct cellular compartments. To facilitate signal amplification, G proteins are in molar excess with respect to G protein-coupled receptors. Because G proteins are capable of translocating from membrane to cytosol, protein-lipid interactions play a crucial role in signal transduction. Here, we studied the binding of heterotrimeric G proteins (Galphabetagamma) to model membranes (liposomes) and that of the entities formed upon receptor-mediated activation (Galpha and Gbetagamma). The model membranes used were composed of defined membrane lipids capable of organizing into either lamellar or nonlamellar (hexagonal H(II)) membrane structures. We demonstrated that although heterotrimeric G(i) proteins and Gbetagamma dimers can bind to lipid bilayers of phosphatidylcholine, their binding to membranes was markedly and significantly enhanced by the presence of nonlamellar phases of phosphatidylethanolamine. Conversely, activated G protein alpha subunits showed an opposite membrane binding behavior with a marked preference for lamellar membranes. These results have important consequences in cell signaling. First, the binding characteristics of the Gbetagamma dimer account for the lipid binding behavior and the cellular localization of heterotrimeric G proteins. Second, the distinct protein-lipid interactions of heterotrimeric G proteins, Gbetagamma dimers, and Galpha subunits with membrane lipids explain, in part, their different cellular mobilizations during signaling upon receptor activation. Finally, their differential interactions with lipids suggest an active role of the membrane lipid secondary structure in the propagation of signals through G protein-coupled receptors.  相似文献   

11.
Nagao M  Kaziro Y  Itoh H 《FEBS letters》2000,472(2-3):297-301
Thrombin has been shown to inhibit skeletal muscle differentiation. However, the mechanisms by which thrombin represses myogenesis remain unknown. Since the thrombin receptor couples to G(i), G(q/11) and G(12), we examined which subunits of heterotrimeric guanine nucleotide-binding regulatory proteins (Galpha(i), Galpha(q/11), Galpha(12) or Gbetagamma) participate in the thrombin-induced inhibition of C2C12 myoblast differentiation. Galpha(i2) and Galpha(11) had no inhibitory effect on the myogenic differentiation. Galpha(12) prevented only myoblast fusion, whereas Gbetagamma inhibited both the induction of skeletal muscle-specific markers and the myotube formation. In addition, the thrombin-induced reduction of creatine kinase activity was blocked by the C-terminal peptide of beta-adrenergic receptor kinase, which is known to sequester free Gbetagamma. These results suggest that the thrombin-induced inhibition of muscle differentiation is mainly mediated by Gbetagamma.  相似文献   

12.
Extracellular proteinase production induced by carbon starvation was studied in a series of heterotrimeric G protein signaling pathway mutants of Aspergillus nidulans. All the mutants tested--including deltafadA (Galpha), deltasfaD (Gbeta), deltagpgA (Ggamma) and deltasfgA (regulator of FadA signaling)--showed an elevated proteinase production after glucose depletion. Our results strongly support the view that during growth, FadA/SfaD/GpgA G protein signaling inhibits proteinase production via both Galpha and Gbetagamma subunits, and all conditions, which are not sufficient to support vegetative growth and, hence, inhibit this type of G protein signaling, elevate extracellular proteinase activities.  相似文献   

13.
Plant heterotrimeric G-proteins have been implicated in a number of signaling processes. However, most of these studies are based on biochemical or pharmacological approaches. To examine the role of heterotrimeric G-proteins in plant development, we generated transgenic Arabidopsis expressing the Galpha subunit of the heterotrimeric G-protein under the control of a glucocorticoid-inducible promoter. With the conditional overexpression of either the wild type or a constitutively active version of Arabidopsis Galpha, transgenic seedlings exhibited a hypersensitive response to light. This enhanced light sensitivity was more exaggerated in a relatively lower intensity of light and was observed in white light as well as far-red, red, and blue light conditions. The enhanced responses in far-red and red light required functional phytochrome A and phytochrome B, respectively. Furthermore, the response to far-red light depended on functional FHY1 but not on FIN219 and FHY3. This dependence on FHY1 indicates that the Arabidopsis Galpha protein may act only on a discrete branch of the phytochrome A signaling pathway. Thus, our results support the involvement of a heterotrimeric G-protein in the light regulation of Arabidopsis seedling development.  相似文献   

14.
The non-protein amino acid beta-aminobutyric acid (BABA) protects numerous plants against various pathogens. Protection of Arabidopsis plants against virulent pathogens involves the potentiation of pathogen-specific defense responses. To extend the analysis of the mode of action of BABA to necrotrophs we evaluated the effect of this chemical on Arabidopsis plants infected with the gray mold fungus Botrytis cinerea. BABA-treated Arabidopsis were found to be less sensitive to two different strains of this pathogen. BABA protected mutants defective in the jasmonate and ethylene pathways, but was inactive in plants impaired in the systemic acquired resistance transduction pathway. Treatments with benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester, a functional analog of salicylic acid (SA), also markedly reduced the level of infection. Moreover, BABA potentiated mRNA accumulation of the SA-associated PR-1, but not the jasmonate/ethylene-dependent PDF1.2 gene. Thus, besides jasmonate/ethylene-dependent defense responses, SA-dependent signaling also contributes to restrict B. cinerea infection in Arabidopsis. Our results also suggest that SA-dependent signaling is down-regulated after infection by B. cinerea. The observed up-regulation of the PDF1.2 gene in mutants defective in the SA-dependent signaling pathway points to a cross-talk between SA- and jasmonate/ethylene-dependent signaling pathways during pathogen ingress.  相似文献   

15.
The Galpha and Gbetagamma components of heterotrimeric G proteins, typically associated with cell-surface receptor signaling, also partake in the macromolecular interactions that underlie cell polarity and cell division. Proteins with Galpha-binding GoLoco motifs, such as Drosophila melanogaster Pins (for Partner of Inscuteable) and its mammalian counterpart LGN, participate in multi-protein complexes that maintain cellular asymmetry and orderly segregation of chromosomal content and daughter cell bodies. The GoLoco motif was recently identified as a selective Galpha-binding partner: the GoLoco-Galpha interaction can displace Gbetagamma and inhibit guanine nucleotide release from the bound Galpha subunit. Recent x-ray crystallographic studies suggest ways in which GoLoco-motif peptides may modulate heterotrimeric G protein signaling. Such peptides could be exploited to help dissect the signals that underpin cell polarity and cell division processes.  相似文献   

16.
G protein-activated K(+) channels (GIRKs; Kir3) are activated by direct binding of Gbetagamma subunits released from heterotrimeric G proteins. In native tissues, only pertussis toxin-sensitive G proteins of the G(i/o) family, preferably Galpha(i3) and Galpha(i2), are donors of Gbetagamma for GIRK. How this specificity is achieved is not known. Here, using a pull-down method, we confirmed the presence of Galpha(i3-GDP) binding site in the N terminus of GIRK1 and identified novel binding sites in the N terminus of GIRK2 and in the C termini of GIRK1 and GIRK2. The non-hydrolyzable GTP analog, guanosine 5'-3-O-(thio)triphosphate, reduced the binding of Galpha(i3) by a factor of 2-4. Galpha(i1-GDP) bound to GIRK1 and GIRK2 much weaker than Galpha(i3-GDP). Titrated expression of components of signaling pathway in Xenopus oocytes and their activation by m2 muscarinic receptors revealed that G(i3) activates GIRK more efficiently than G(i1), as indicated by larger and faster agonist-evoked currents. Activation of GIRK by purified Gbetagamma in excised membrane patches was strongly augmented by coexpression of Galpha(i3) and less by Galpha(i1). Differences in physical interactions of GIRK with GDP-bound Galpha subunits, or Galphabetagamma heterotrimers, may dictate different extents of Galphabetagamma anchoring, influence the efficiency of GIRK activation by Gbetagamma, and play a role in determining signaling specificity.  相似文献   

17.
Accumulating evidence suggests that heterotrimeric G protein activation may not require G protein subunit dissociation. Results presented here provide evidence for a subunit dissociation-independent mechanism for G protein activation by a receptor-independent activator of G protein signaling, AGS8. AGS8 is a member of the AGS group III family of AGS proteins thought to activate G protein signaling primarily through interactions with Gbetagamma subunits. Results are presented demonstrating that AGS8 binds to the effector and alpha subunit binding "hot spot" on Gbetagamma yet does not interfere with Galpha subunit binding to Gbetagamma or phospholipase C beta2 activation. AGS8 stimulates activation of phospholipase C beta2 by heterotrimeric Galphabetagamma and forms a quaternary complex with Galpha(i1), Gbeta(1)gamma(2), and phospholipase C beta2. AGS8 rescued phospholipase C beta binding and regulation by an inactive beta subunit with a mutation in the hot spot (beta(1)(W99A)gamma(2)) that normally prevents binding and activation of phospholipase C beta2. This demonstrates that, in the presence of AGS8, the hot spot is not used for Gbetagamma interactions with phospholipase C beta2. Mutation of an alternate binding site for phospholipase C beta2 in the amino-terminal coiled-coil region of Gbetagamma prevented AGS8-dependent phospholipase C binding and activation. These data implicate a mechanism for AGS8, and potentially other Gbetagamma binding proteins, for directing Gbetagamma signaling through alternative effector activation sites on Gbetagamma in the absence of subunit dissociation.  相似文献   

18.
Qi L  Yan J  Li Y  Jiang H  Sun J  Chen Q  Li H  Chu J  Yan C  Sun X  Yu Y  Li C  Li C 《The New phytologist》2012,195(4):872-882
? Although the role of auxin in biotrophic pathogenesis has been extensively studied, relatively little is known about its role in plant resistance to necrotrophs. ? Arabidopsis thaliana mutants defective in different aspects of the auxin pathway are generally more susceptible than wild-type plants to the necrotrophic pathogen Alternaria brassicicola. We show that A.?brassicicola infection up-regulates auxin biosynthesis and down-regulates the auxin transport capacities of infected plants, these effects being partially dependent on JA signaling. We also show that these effects of A.?brassicicola infection together lead to an enhanced auxin response in host plants. ? Application of IAA and MeJA together synergistically induces the expression of defense marker genes PDF1.2 (PLANT DEFENSIN 1.2) and HEL (HEVEIN-LIKE), suggesting that enhancement of JA-dependent defense signaling may be part of the auxin-mediated defense mechanism involved in resistance to necrotrophic pathogens. ? Our results provide molecular evidence supporting the hypothesis that JA and auxin interact positively in regulating plant resistance to necrotrophic pathogens and that activation of auxin signaling by JA may contribute to plant resistance to necrotrophic pathogens.  相似文献   

19.
Control of cell proliferation depends on intracellular mediators that determine the cellular response to external cues. In neuroendocrine cells, the dopamine D2 receptor short form (D2S receptor) inhibits cell proliferation, whereas in mesenchymal cells the same receptor enhances cell proliferation. Nontransformed BALB/c 3T3 fibroblast cells were stably transfected with the D2S receptor cDNA to study the G proteins that direct D2S signaling to stimulate cell proliferation. Pertussis toxin inactivates G(i) and G(o) proteins and blocks signaling of the D2S receptor in these cells. D2S receptor signaling was reconstituted by individually transfecting pertussis toxin-resistant Galpha(i/o) subunit mutants and measuring D2-induced responses in pertussis toxin-treated cells. This approach identified Galpha(i)2 and Galpha(i)3 as mediators of the D2S receptor-mediated inhibition of forskolin-stimulated adenylyl cyclase activity; Galpha(i)2-mediated D2S-induced stimulation of p42 and p44 mitogen-activated kinase (MAPK) and DNA synthesis, whereas Galpha(i)3 was required for formation of transformed foci. Transfection of toxin-resistant Galpha(i)1 cDNA induced abnormal cell growth independent of D2S receptor activation, while Galpha(o) inhibited dopamine-induced transformation. The role of Gbetagamma subunits was assessed by ectopic expression of the carboxyl-terminal domain of G protein receptor kinase to selectively antagonize Gbetagamma activity. Mobilization of Gbetagamma subunits was required for D2S-induced calcium mobilization, MAPK activation, and DNA synthesis. These findings reveal a remarkable and distinct G protein specificity for D2S receptor-mediated signaling to initiate DNA synthesis (Galpha(i)2 and Gbetagamma) and oncogenic transformation (Galpha(i)3), and they indicate that acute activation of MAPK correlates with enhanced DNA synthesis but not with transformation.  相似文献   

20.
The conceptual segregation of G protein-stimulated cell signaling responses into those mediated by heterotrimeric G proteins versus those promoted by small GTPases of the Ras superfamily is no longer vogue. PLC-epsilon, an isozyme of the phospholipase C (PLC) family, has been identified recently and dramatically extends our understanding of the crosstalk that occurs between heterotrimeric and small monomeric GTPases. Like the widely studied PLC-beta isozymes, PLC-epsilon is activated by Gbetagamma released upon activation of heterotrimeric G proteins. However, PLC-epsilon markedly differs from the PLC-beta isozymes in its capacity for activation by Galpha(12/13) - but not Galpha(q) -coupled receptors. PLC-epsilon contains two Ras-associating domains located near the C terminus, and H-Ras regulates PLC-epsilon as a downstream effector. Rho also activates PLC-epsilon, but in a mechanism independent of the C-terminal Ras-associating domains. Therefore, Ca(2+) mobilization and activation of protein kinase C are signaling responses associated with activation of both H-Ras and Rho. A guanine nucleotide exchange domain conserved in the N terminus of PLC-epsilon potentially confers a capacity for activators of this isozyme to cast signals into additional signaling pathways mediated by GTPases of the Ras superfamily. Thus, PLC-epsilon is a multifunctional nexus protein that senses and mediates crosstalk between heterotrimeric and small GTPase signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号