首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used high-sensitivity, high-resolution tandem mass spectrometry to shotgun sequence ancient protein remains extracted from a 43?000 year old woolly mammoth ( Mammuthus primigenius ) bone preserved in the Siberian permafrost. For the first time, 126 unique protein accessions, mostly low-abundance extracellular matrix and plasma proteins, were confidently identified by solid molecular evidence. Among the best characterized was the carrier protein serum albumin, presenting two single amino acid substitutions compared to extant African ( Loxodonta africana ) and Indian ( Elephas maximus ) elephants. Strong evidence was observed of amino acid modifications due to post-mortem hydrolytic and oxidative damage. A consistent subset of this permafrost bone proteome was also identified in more recent Columbian mammoth ( Mammuthus columbi ) samples from temperate latitudes, extending the potential of the approach described beyond subpolar environments. Mass spectrometry-based ancient protein sequencing offers new perspectives for future molecular phylogenetic inference and physiological studies on samples not amenable to ancient DNA investigation. This approach therefore represents a further step into the ongoing integration of different high-throughput technologies for identification of ancient biomolecules, unleashing the field of paleoproteomics.  相似文献   

2.
Excessive nuclear or mitochondrial DNA damage can lead to mitochondrial dysfunction, decreased energy production, and increased generation of reactive oxygen species (ROS). Although numerous cell signaling pathways are activated when cells are injured, the ataxia telangiectasia mutant (ATM) protein has emerged as a major regulator of the response to both mitochondrial dysfunction and nuclear DNA double-strand breaks (DSBs). Because mitochondrial dysfunction is often a response to excessive DNA damage, it has been difficult to determine whether nuclear and/or mitochondrial DNA DSBs activate ATM independent of mitochondrial dysfunction. In this study, mitochondrial and nuclear DNA DSBs were generated in the A549 human lung adenocarcinoma cell line by infecting with retroviruses expressing the restriction endonuclease PstI fused to a mitochondrial targeting sequence (MTS) or nuclear localization sequence (NLS) and a hemagglutinin antigen epitope tag (HA). Expression of MTS-PstI-HA or NLS-PstI-HA activated the DNA damage response defined by phosphorylation of ATM, the tumor suppressor protein p53 (TP53), KRAB-associated protein (KAP)-1, and structural maintenance of chromosomes (SMC)-1. Phosphorylated ATM and SMC1 were detected in nuclear fractions, whereas phosphorylated TP53 and KAP1 were detected in both mitochondrial and nuclear fractions. PstI also enhanced expression of the cyclin-dependent kinase inhibitor p21 and inhibited cell growth. This response to DNA damage occurred in the absence of detectable mitochondrial dysfunction and excess production of ROS. These findings reveal that DNA DSBs are sufficient to activate ATM independent of mitochondrial dysfunction and suggest that the activated form of ATM and some of its substrates are restricted to the nuclear compartment, regardless of the site of DNA damage.  相似文献   

3.
Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA (λnDNA) and mtDNA (λmtDNA) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two genomes is demonstrated and which evaluates systematically the impact of DNA degradation on quantification of mtDNA copy number.  相似文献   

4.
Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplifiable template molecules, but may also lead to the generation of erroneous sequence information. A qualitative and quantitative assessment of DNA post-mortem damage is essential to determine the accuracy of molecular data from herbarium specimens. In this study we present an assessment of DNA damage as miscoding lesions in herbarium specimens using 454-sequencing of amplicons derived from plastid, mitochondrial, and nuclear DNA. In addition, we assess DNA degradation as a result of strand breaks and other types of polymerase non-bypassable damage by quantitative real-time PCR. Comparing four pairs of fresh and herbarium specimens of the same individuals we quantitatively assess post-mortem DNA damage, directly after specimen preparation, as well as after long-term herbarium storage. After specimen preparation we estimate the proportion of gene copy numbers of plastid, mitochondrial, and nuclear DNA to be 2.4-3.8% of fresh control DNA and 1.0-1.3% after long-term herbarium storage, indicating that nearly all DNA damage occurs on specimen preparation. In addition, there is no evidence of preferential degradation of organelle versus nuclear genomes. Increased levels of C→T/G→A transitions were observed in old herbarium plastid DNA, representing 21.8% of observed miscoding lesions. We interpret this type of post-mortem DNA damage-derived modification to have arisen from the hydrolytic deamination of cytosine during long-term herbarium storage. Our results suggest that reliable sequence data can be obtained from herbarium specimens.  相似文献   

5.
To study nuclear and mitochondrial deoxyribonucleic acid (DNA) synthesis during the cell cycle, a 15N-labeled log-phase population of Saccharomyces cervisiae was shifted to 14N medium. After one-half generation, the cells were centrifuged on a sorbitol gradient in a zonal rotor to fractionate the population according to cell size and age into fractions representing the yeast cell cycle. DNA samples isolated from the zonal rotor cell samples were centrifuged to equilibrium in CsC1 in an analytical ultracentrifuge to separate the nuclear and mitochondrial DNA components. The amount of 14N incorporated into each 15N-labeled DNA species was measured. The extent of nuclear DNA replication per sample was obtained by measuring the amount of hybrid DNA. The percentage of hybrid nuclear DNA increased from 6 to 68% and then decreased to 44% during the cell cycle. Upon ultracentrifugation, mitochondrial DNA banded as a unimodal peak in all zonal rotor samples. Mitochondrial DNA replication could be ascertained only by the 14N level in each mitochondrial peak and not, as with nuclear DNA, by hybrid DNA level. In contrast to the nuclear incorporation pattern, the 14N percentage in mitochondrial DNA remained effectively constant during the cell cycle. Comparison of the data to theoretical distributions showed that nuclear DNA was replicated discontinuously during the cell cycle, whereas mitochondrial DNA was replicated continuously throughout the entire mitotic cycle.  相似文献   

6.
The use of historical and ancient tissue samples for genetic analysis is increasing, with ever greater numbers of samples proving to contain sufficient mitochondrial and even nuclear DNA for multilocus analysis. DNA yield, however, remains highly variable and largely unpredictable based solely on sample morphology or age. Quantification of DNA from historical and degraded samples can greatly improve efficiency of screening DNA extracts prior to attempting sequencing or genotyping, but requires sequence‐specific quantitative polymerase chain reaction (qPCR) based assays to detect such minute quantities of degraded DNA. We present two qPCR assays for marine mammal DNA quantification, and results from analysis of DNA extracted from preserved soft tissues, bone, baleen, and tooth from several cetacean species. These two assays have been shown to amplify DNA from 26 marine mammal species representing 12 families of pinnipeds and cetaceans. Our results indicate that different tissues retain different ratios of mitochondrial to nuclear DNA, and may be more or less suitable for analysis of nuclear loci. Specifically, historical bone and tooth samples average 60‐fold higher ratio of mitochondrial DNA to nuclear DNA than preserved fresh soft tissue, and the ratio is almost 8000‐fold higher in baleen.  相似文献   

7.
Empirical evaluation of preservation methods for faecal DNA   总被引:30,自引:0,他引:30  
We evaluate the relative effectiveness of four methods for preserving faecal samples for DNA analysis. PCR assays of fresh faecal samples collected from free-ranging baboons showed that amplification success was dependent on preservation method, PCR-product size, and whether nuclear or mitochondrial DNA was assayed. Storage in a DMSO/EDTA/Tris/salt solution (DETs) was most effective for preserving nuclear DNA, but storage in 70% ethanol, freezing at –20°C and drying performed approximately equally well for mitochondrial DNA and short (<200 bp) nuclear DNA fragments. Because faecal DNA is diluted and degraded, repeated extractions from faeces may be necessary and short nuclear markers should be employed for genotyping. A review of molecular scatology studies further suggests that three to six faeces per individual should be collected.  相似文献   

8.
9.
The metabolites of bacteria Bacillus cereus and Bacillus pumilus isolated from soil samples in Shimoga region, Karnataka (India) were tested for cytotoxicity and anticancer properties. The various solvent extract fractions obtained from the metabolites of the two bacteria were tested for their cytotoxicity against normal human liver cell lines and 2 cancer cell lines by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole) assay. The two fractions obtained from B. cereus showed high cytotoxicity. These two fractions were further screened for anticancer activity by nuclear staining studies and DNA fragmentation analysis. Both the fractions demonstrated significant activity by membrane blebbing during nuclear staining and caused the damage the DNA patterns during DNA fragmentation analysis. On the other hand, the metabolites of B. pumilus revealed toxic effect against cancer cells as well as normal ones.  相似文献   

10.
Considerable progress has been made recently toward understanding the processes of mitochondrial DNA (mtDNA) damage and repair. However, a paucity of information still exists regarding the physiological effects of persistent mtDNA damage. This is due, in part, to experimental difficulties associated with targeting mtDNA for damage, while sparing nuclear DNA. Here, we characterize two systems designed for targeted mtDNA damage based on the inducible (Tet-ON) mitochondrial expression of the bacterial enzyme, exonuclease III, and the human enzyme, uracil-N-glyosylase containing the Y147A mutation. In both systems, damage was accompanied by degradation of mtDNA, which was detectable by 6 h after induction of mutant uracil-N-glycosylase and by 12 h after induction of exoIII. Unexpectedly, increases in the steady-state levels of single-strand lesions, which led to degradation, were small in absolute terms indicating that both abasic sites and single-strand gaps may be poorly tolerated in mtDNA. mtDNA degradation was accompanied by the loss of expression of mtDNA-encoded COX2. After withdrawal of the inducer, recovery from mtDNA depletion occurred faster in the system expressing exonuclease III, but in both systems reduced mtDNA levels persisted longer than 144 h after doxycycline withdrawal. mtDNA degradation was followed by reduction and loss of respiration, decreased membrane potential, reduced cell viability, reduced intrinsic reactive oxygen species production, slowed proliferation, and changes in mitochondrial morphology (fragmentation of the mitochondrial network, rounding and “foaming” of the mitochondria). The mutagenic effects of abasic sites in mtDNA were low, which indicates that damaged mtDNA molecules may be degraded if not rapidly repaired. This study establishes, for the first time, that mtDNA degradation can be a direct and immediate consequence of persistent mtDNA damage and that increased ROS production is not an invariant consequence of mtDNA damage.  相似文献   

11.
12.
The ATR pathway is one of the major DNA damage checkpoints, and Rad17 is a DNA-binding protein that is phosphorylated upon DNA damage by ATR kinase. Rad17 recruits the 9-1-1 complex that mediates the checkpoint activation, and proteasomal degradation of Rad17 is important for recovery from the ATR pathway. Here, we identified several Rad17 mutants deficient in nuclear localization and resistant to proteasomal degradation. The nuclear localization signal was identified in the central basic domain of Rad17. Rad17 Δ230–270 and R240A/L243A mutants that were previously postulated to lack the destruction box, a sequence that is recognized by the ubiquitin ligase/anaphase-promoting complex that mediates degradation of Rad17, also showed cytoplasmic localization. Our data indicate that the nuclear translocation of Rad17 is functionally linked to the proteasomal degradation. The ATP-binding activity of Rad17, but not hydrolysis, is essential for the nuclear translocation, and the ATPase domain orchestrates the nuclear translocation, the proteasomal degradation, as well as the interaction with the 9-1-1 complex. The Rad17 mutant that lacked a nuclear localization signal was proficient in the interaction with the 9-1-1 complex, suggesting cytosolic association of Rad17 and the 9-1-1 complex. Finally, we identified two tandem canonical and noncanonical destruction boxes in the N-terminus of Rad17 as the bona fide destruction box, supporting the role of anaphase-promoting complex in the degradation of Rad17. We propose a model in which Rad17 is activated in the cytoplasm for translocation into the nucleus and continuously degraded in the nucleus even in the absence of exogenous DNA damage.  相似文献   

13.
Schizosaccharomyces pombe Pfh1p is an essential member of the Pif family of 5′-3′ DNA helicases. The two Saccharomyces cerevisiae homologs, Pif1p and Rrm3p, function in nuclear DNA replication, telomere length regulation, and mitochondrial genome integrity. We demonstrate here the existence of multiple Pfh1p isoforms that localized to either nuclei or mitochondria. The catalytic activity of Pfh1p was essential in both cellular compartments. The absence of nuclear Pfh1p resulted in G2 arrest and accumulation of DNA damage foci, a finding suggestive of an essential role in DNA replication. Exogenous DNA damage resulted in localization of Pfh1p to DNA damage foci, suggesting that nuclear Pfh1p also functions in DNA repair. The absence of mitochondrial Pfh1p caused rapid depletion of mitochondrial DNA. Despite localization to nuclei and mitochondria in S. pombe, neither of the S. cerevisiae homologs, nor human PIF1, suppressed the lethality of pfh1Δ cells. However, the essential nuclear function of Pfh1p could be supplied by Rrm3p. Expression of Rrm3p suppressed the accumulation of DNA damage foci but not the hydroxyurea sensitivity of cells depleted of nuclear Pfh1p. Together, these data demonstrate that Pfh1p has essential roles in the replication of both nuclear and mitochondrial DNA.  相似文献   

14.
15.
Chain-terminating nucleoside analogs (CTNAs) that cause stalling or premature termination of DNA replication forks are widely used as anticancer and antiviral drugs. However, it is not well understood how cells repair the DNA damage induced by these drugs. Here, we reveal the importance of tyrosyl–DNA phosphodiesterase 1 (TDP1) in the repair of nuclear and mitochondrial DNA damage induced by CTNAs. On investigating the effects of four CTNAs—acyclovir (ACV), cytarabine (Ara-C), zidovudine (AZT) and zalcitabine (ddC)—we show that TDP1 is capable of removing the covalently linked corresponding CTNAs from DNA 3′-ends. We also show that Tdp1−/− cells are hypersensitive and accumulate more DNA damage when treated with ACV and Ara-C, implicating TDP1 in repairing CTNA-induced DNA damage. As AZT and ddC are known to cause mitochondrial dysfunction, we examined whether TDP1 repairs the mitochondrial DNA damage they induced. We find that AZT and ddC treatment leads to greater depletion of mitochondrial DNA in Tdp1−/− cells. Thus, TDP1 seems to be critical for repairing nuclear and mitochondrial DNA damage caused by CTNAs.  相似文献   

16.
We have exposed mouse thymocytes and P-815 mastocytoma cells to four different conditions reported to cause apoptosis: 1) incubation in the absence of mitogenic factors; 2) incubation in the presence of dexamethasone; 3) stimulation with external ATP; 4) treatment with high concentrations of the K+ ionophore valinomycin. These treatments caused DNA fragmentation to a varying extent in the two cell types. High stringency hybridization with a cDNA probe specific to a mitochondrial DNA sequence revealed that during apoptosis induced by lack of mitogenic factors, dexamethasone, or extracellular ATP, mitochondrial DNA was not fragmented. On the contrary, valinomycin caused extensive degradation of mitochondrial DNA. These results support the notion that DNA fragmentation during apoptosis is a specific nuclear event and suggest that other agents, such as valinomycin, may act less selectively.  相似文献   

17.
Claims of extreme survival of DNA have emphasized the need for reliable models of DNA degradation through time. By analysing mitochondrial DNA (mtDNA) from 158 radiocarbon-dated bones of the extinct New Zealand moa, we confirm empirically a long-hypothesized exponential decay relationship. The average DNA half-life within this geographically constrained fossil assemblage was estimated to be 521 years for a 242 bp mtDNA sequence, corresponding to a per nucleotide fragmentation rate (k) of 5.50 × 10–6 per year. With an effective burial temperature of 13.1°C, the rate is almost 400 times slower than predicted from published kinetic data of in vitro DNA depurination at pH 5. Although best described by an exponential model (R2 = 0.39), considerable sample-to-sample variance in DNA preservation could not be accounted for by geologic age. This variation likely derives from differences in taphonomy and bone diagenesis, which have confounded previous, less spatially constrained attempts to study DNA decay kinetics. Lastly, by calculating DNA fragmentation rates on Illumina HiSeq data, we show that nuclear DNA has degraded at least twice as fast as mtDNA. These results provide a baseline for predicting long-term DNA survival in bone.  相似文献   

18.
Neurodegeneration has been correlated with mitochondrial DNA (mtDNA) damage and exposure to environmental toxins, but causation is unclear. We investigated the ability of several known environmental genotoxins and neurotoxins to cause mtDNA damage, mtDNA depletion, and neurodegeneration in Caenorhabditis elegans. We found that paraquat, cadmium chloride and aflatoxin B1 caused more mitochondrial than nuclear DNA damage, and paraquat and aflatoxin B1 also caused dopaminergic neurodegeneration. 6-hydroxydopamine (6-OHDA) caused similar levels of mitochondrial and nuclear DNA damage. To further test whether the neurodegeneration could be attributed to the observed mtDNA damage, C. elegans were exposed to repeated low-dose ultraviolet C radiation (UVC) that resulted in persistent mtDNA damage; this exposure also resulted in dopaminergic neurodegeneration. Damage to GABAergic neurons and pharyngeal muscle cells was not detected. We also found that fasting at the first larval stage was protective in dopaminergic neurons against 6-OHDA-induced neurodegeneration. Finally, we found that dopaminergic neurons in C. elegans are capable of regeneration after laser surgery. Our findings are consistent with a causal role for mitochondrial DNA damage in neurodegeneration, but also support non mtDNA-mediated mechanisms.  相似文献   

19.
Although the nuclear processes responsible for genomic DNA replication and repair are well characterized, the pathways involved in mitochondrial DNA (mtDNA) replication and repair remain unclear. DNA repair has been identified as being particularly important within the mitochondrial compartment due to the organelle's high propensity to accumulate oxidative DNA damage. It has been postulated that continual accumulation of mtDNA damage and subsequent mutagenesis may function in cellular aging. Mitochondrial base excision repair (mtBER) plays a major role in combating mtDNA oxidative damage; however, the proteins involved in mtBER have yet to be fully characterized. It has been established that during nuclear long-patch (LP) BER, FEN1 is responsible for cleavage of 5′ flap structures generated during DNA synthesis. Furthermore, removal of 5′ flaps has been observed in mitochondrial extracts of mammalian cell lines; yet, the mitochondrial localization of FEN1 has not been clearly demonstrated. In this study, we analyzed the effects of deleting the yeast FEN1 homolog, RAD27, on mtDNA stability in Saccharomyces cerevisiae. Our findings demonstrate that Rad27p/FEN1 is localized in the mitochondrial compartment of both yeast and mice and that Rad27p has a significant role in maintaining mtDNA integrity.  相似文献   

20.
The number of genetic studies that use preserved specimens as sources of DNA has been steadily increasing during the last few years. Therefore, selecting the sources that are more likely to provide a suitable amount of DNA of enough quality to be amplified and at the minimum cost to the original specimen is an important step for future research. We have compared different types of tissue (hides vs. bones) from museum specimens of Iberian lynx and multiple alternative sources within each type (skin, footpad, footpad powder, claw, diaphysis, maxilloturbinal bone, mastoid process and canine) for DNA yield and probability of amplification of both mitochondrial and nuclear targets. Our results show that bone samples yield more and better DNA than hides, particularly from sources from skull, such as mastoid process and canines. However, claws offer an amplification success as high as bone sources, which makes them the preferred DNA source when no skeletal pieces have been preserved. Most importantly, these recommended sources can be sampled incurring minimal damage to the specimens while amplifying at a high success rate for both mitochondrial and microsatellite markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号