首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wu  Hong  Liu  Xiang-Qin 《Plant molecular biology》1997,34(2):339-343
The Guillardia theta chloroplast hlpA gene encodes a protein resembling bacterial histone-like protein HU. This gene was cloned and overexpressed in Escherichia coli cells, and the resulting protein product, HlpA, was purified and characterized in vitro. In addition to exhibiting a general DNA-binding activity, the chloroplast HlpA protein also strongly facilitated cyclization of a short DNA fragment in the presence of T4 DNA ligase, indicating its ability to mediate very tight DNA curvatures.  相似文献   

2.
T Nakano  S Murakami  T Shoji  S Yoshida  Y Yamada    F Sato 《The Plant cell》1997,9(9):1673-1682
  相似文献   

3.
N. Sato  O. Misumi  Y. Shinada  M. Sasaki  M. Yoine 《Protoplasma》1997,200(3-4):163-173
Summary Localization and protein composition of plastid nucleoids was analyzed in light-grown pea seedlings at various stages of leaf development. In young plastids of unopened leaf buds, nucleoids were abundant and localized in the periphery of plastids, whereas, in mature leaves, chloroplasts contained nucleoids within narrow spaces restricted by thylakoids or grana. The migration of nucleoids into the interior of plastids preceded the formation of grana, and hence, the maturation of the photosynthetic apparatus. The protein composition of nucleoids was considerably different in young plastids and mature chloroplasts. Polypeptides with a molecular mass of 70–100 kDa predominated in the nucleoids of young plastids, whereas polypeptides with molecular mass of 20–30 kDa were abundant in the nucleoids of mature chloroplasts. Immuno-blot analysis with antibodies against the nucleoids of young plastids identified various polypeptides that were significantly more abundant in the nucleoids of young plastids than in the nucleoids of mature chloroplasts. These results demonstrate that plastid nucleoids are subject to dynamic changes in both localization and composition during the normal development of chloroplasts in the light.Abbreviations DAPI 4,6-diamidino-2-phenylindol - DiOC6 3,3-dihexyloxacarbocyanine iodide  相似文献   

4.
Cell movement requires the coordinated reception, integration, and processing of intracellular signals. We have discovered that the protein kinase A anchoring protein AKAP220 interacts with the cytoskeletal scaffolding protein IQGAP1 to influence cell motility. AKAP220/IQGAP1 networks receive and integrate calcium and cAMP second messenger signals and position signaling enzymes near their intended substrates at leading edges of migrating cells. IQGAP1 supports calcium/calmodulin-dependent association of factors that modulate microtubule dynamics. AKAP220 suppresses GSK-3β and positions this kinase to allow recruitment of the plus-end microtubule tracking protein CLASP2. Gene silencing of AKAP220 alters the rate of microtubule polymerization and the lateral tracking of growing microtubules and retards cell migration in metastatic human cancer cells. This reveals an unappreciated role for this anchored kinase/microtubule effector protein network in the propagation of cell motility.  相似文献   

5.
N Goshima  Y Kano  F Imamoto 《Biochimie》1990,72(4):207-212
A HU-like protein (HBl) of Bifidobacterium longum was purified and characterized. HBl is heat-stable and acid-resistant, and has a molecular weight of about 9.1 kDa as estimated by its mobility on electrophoresis. HBl is intermediate in basicity (pI 9.8) between the HU-1 and HU-2 proteins of Escherichia coli, and is dissociated from a calf thymus DNA-cellulose column at 300-400 mM NaCl. Its amino acid composition shows many similarities with that of E coli HU. The NH2-terminal amino acid sequence of HBl also shows significant similarities to the consensus sequence deduced from the sequences of eleven HU-like proteins from prokaryotic sources. Chemical crosslinking analysis indicated that the HBl protein predominantly forms a homotypic dimer.  相似文献   

6.
Diverse higher plant species synthesize low molecular weight (LMW) heat shock proteins (HSPs) which localize to chloroplasts. These proteins are homologous to LMW HSPs found in the cytoplasm of all eukaryotes, a class of HSPs whose molecular mode of action is not understood. To obtain basic information concerning the role of chloroplast HSPs, we examined the accumulation, stability, tissue specificity, and intra-chloroplast localization of HSP21, the major LMW chloroplast HSP in pea. Intact pea plants were subjected to heat stress conditions which would be encountered in the natural environment and HSP21 mRNA and protein levels were measured in leaves and roots. HSP21 was not detected in leaves or roots before stress, but the mature, 21-kD protein accumulated in direct proportion to temperature and HSP21 mRNA levels in both tissues. All of the HSP21 in leaves was localized to chloroplasts; there was no evidence for its transport into other organelles. In chloroplast fractionation experiments, greater than 80% of HSP21 was recovered in the soluble chloroplast protein fraction. The half-life of HSP21 at control temperatures was 52 +/- 12 h, suggesting the protein's function is critical during recovery as well as during stress. We hypothesize that HSP21 functions in a catalytic fashion in both photosynthetic and nonphotosynthetic plastids.  相似文献   

7.
Chloroplast DNA (cpDNA) binds to the envelope membrane of actively dividing chloroplasts (plastids) in young pea leaves. South-western blotting was used to identify and characterize the protein involved in the binding of cpDNA to the envelope membrane. A 130 kDa protein in the inner chloroplast (plastid) envelope membrane binds specific sequences within the cpDNA. These included a 0.41 kbp sequence located upstream of the psaAB gene, a 0.57 kbp sequence located downstream of the petA gene and a 1.2 kbp sequence located within the rpoC2 gene. The protein was detected in the envelope membrane of young pea leaves in which the cpDNA had been located by fluorescence microscopy at the chloroplast periphery, whereas it was undetectable in mature leaves. We therefore propose that the 130 kDa protein is involved in the binding of cpDNA to the envelope membrane, and named it plastid envelope DNA-binding protein.  相似文献   

8.
《Molecular cell》2022,82(23):4443-4457.e9
  1. Download : Download high-res image (96KB)
  2. Download : Download full-size image
  相似文献   

9.
《Plant science》1988,56(2):129-136
Six polypeptides which are related to the preferential digestion of male chloroplast nucleoids in Chlamydomonas reinhardii were identified, using inhibitors to selectively block digestion. These polypeptides of molecular weight 94 000(α), 94 000(β), 94 000(γ), 52 000, 50 000 and 38 000 were among the 200 polypeptides synthesized in young zygotes within 30 min after mating.  相似文献   

10.
Dimorphic chloroplasts of Zea mays L. cv. GH5004 from bundle sheath and mesophyll cells contained similar amounts of DNA, while bundle sheath chloroplasts contained twice the number of nucleoids compared to mesophyll chloroplasts. On average bundle sheath nucleoids were half the size of mesophyll nucleoids and contained half as much DNA. Electron microscope autoradiography of the chloroplasts showed that the nucleoid DNA is associated with the thylakoids and in the case of mesophyll chloroplasts preferentially with the grana. These observations suggest that the differences in nucleoid distribution may be due to differences in membrane morphology, with the small nucleoids of agranal bundle sheath chloroplasts being widely dispersed.  相似文献   

11.
secY is a prokaryotic gene that encodes the SecY protein, an integral membrane component of the prokaryotic protein translocation apparatus. A chloroplast-encoded secY homologue has been identified in the unicellular, chromophytic alga, Pavlova lutherii. The gene predicts a protein composed of ten membrane-spanning regions, that is approximately 25% homologous and 50% similar to bacterial and plastid SecY proteins. The secY gene from P. lutherii is independent of the ribosomal protein (rp) gene cluster to which it is closely linked in other organisms. In P. lutherii secY is located 5' to atpI and atpH. Since, in higher plants the atpIHFA gene cluster and the rp gene cluster are separated by approximately 50 kb, we conclude, this indicates a novel chloroplast gene arrangement in P. lutherii.  相似文献   

12.
Ribulose-1,5-bisphosphate carboxylase/oxygenase of chloroplasts contains eight large and eight small subunits. The small subunit is encoded by nuclear DNA, synthesized in the cytoplasm, and imported into chloroplasts. The large subunit is encoded by chloroplast DNA and synthesized within chloroplasts. We show in this communication that the large subunit of Chlamydomonas chloroplasts could be efficiently imported into isolated yeast mitochondria if it was attached to the presequence of a protein transported into the yeast mitochondrial matrix. Thus, synthesis of the large subunit within chloroplasts does not reflect the inability of this subunit to cross membranes. The same mitochondrial presequence could also transport the nuclear-encoded small subunit into yeast mitochondria. However, when the two types of subunits were coimported into mitochondria, they did not assemble with each other inside the heterologous organelle.  相似文献   

13.
14.
15.
Summary Synchronous cultures of the algaDunaliella salina were grown in blue or red light. The relationships between replication of chloroplast DNA, cell size, cell age and the number of chloroplast nucleoids were studied. The replication of chloroplast DNA and the division of chloroplast nucleoids occurred in two separate periods of the chloroplast cycle. DNA replication was concomitant with that in the nucleocytoplasmic compartment but nucleoid division occurred several hours earlier than nuclear division. Red-light-grown cells were bigger and grew more rapidly than those grown in blue light. In newly formed daughter cells, the chloroplast nucleoids were small and spherical and they were localized around the pyrenoid. During the cell cycle they spread to other parts of the chloroplast. The number of DNA molecules per nucleoid doubled during DNA replication in the first third of the cell cycle but decreased several hours later when the nucleoids divided. Their number was fairly constant independent of the different light quality. Cells grown in red light replicated their chl-DNA and divided their nucleoids before those grown in blue light and their daughter cells possessed about 25 nucleoids as opposed to 15.Abbreviations DAPI 4,6-diamidino-2-phenylindole - chl-DNA chloroplast DNA - PAR photosynthetically active radiation  相似文献   

16.
There are three iron superoxide dismutases in Arabidopsis thaliana: FE SUPEROXIDE DISMUTASE1 (FSD1), FSD2, and FSD3. Their biological roles in chloroplast development are unknown. Here, we show that FSD2 and FSD3 play essential roles in early chloroplast development, whereas FSD1, which is found in the cytoplasm, does not. An fsd2-1 fsd3-1 double mutant had a severe albino phenotype on agar plates, whereas fsd2 and fsd3 single knockout mutants had pale green phenotypes. Chloroplast development was arrested in young seedlings of the double mutant. The mutant plants were highly sensitive to oxidative stress and developed increased levels of reactive oxygen species (ROS) during extended darkness. The FSD2 and FSD3 proteins formed a heteromeric protein complex in the chloroplast nucleoids. Furthermore, transgenic Arabidopsis plants overexpressing both the FSD2 and FSD3 genes showed greater tolerance to oxidative stress induced by methyl viologen than did the wild type or single FSD2- or FSD3-overexpressing lines. We propose that heteromeric FSD2 and FSD3 act as ROS scavengers in the maintenance of early chloroplast development by protecting the chloroplast nucleoids from ROS.  相似文献   

17.
《The Journal of cell biology》1989,109(6):2623-2632
Through a series of label transfer experiments, we have identified a HeLa cell nuclear protein that interacts with nuclear localization signals (NLSs). The protein has a molecular weight of 66,000 and an isoelectric point of approximately 6. It associates with a synthetic peptide that contains the SV-40 T antigen NLS peptide but not with an analogous peptide in which an asparagine is substituted for an essential lysine (un-NLS peptide). In addition to these peptides, several proteins have been tested as label donors. With the proteins, there is a correlation between nuclear localization (assayed with lysolecithin-permeabilized cells) and label transfer to the 66-kD protein. The NLS peptide (but not the un-NLS peptide) competes with the proteins in label transfer experiments, but neither wheat germ agglutinin nor ATP has an effect. These results suggest that the 66-kD protein functions as an NLS receptor in the first step of nuclear localization. In the course of this work, we have observed that the Staphylococcus aureus protein A is a strongly karyophilic protein. Its dramatic nuclear localization properties suggest that it may have multiple copies of an NLS.  相似文献   

18.
We examined the intracellular distribution of Bacillus subtilis Dna-initiation proteins by immunofluorescence microscopy to visualize the initiation complex of replication in vivo. DnaA was distributed throughout the cytoplasm, but both DnaB and DnaI were always detected as foci during the cell-division cycle. Interaction of DnaI with the DnaC helicase by the yeast two-hybrid assay suggests that DnaI acts as a helicase loader. The number of DnaB and DnaI foci within the cell exceeded that of oriC. Although the foci were not always co-localized with oriC, they seemed to be localized near the outer or inner edges of the nucleoids at initiation of replication. When the replication cycle was synchronized in cells using a temperature-sensitive dnaA mutant, duplication of the oriC region was observed predominantly near an edge of the nucleoid. Before initiation occurred, each one of the DnaB and DnaI foci was frequently observed near there. Furthermore, DnaX-GFP (DnaX is a component of DNA polymerase III) foci were detected near either of the edges of the nucleoids at the onset of replication. These results suggest that the replisome is recruited into oriC near either edge of the nucleoids to initiate chromosome replication in B. subtilis.  相似文献   

19.
We have cloned a novel nuclear gene for a ribosomal protein of rice and Arabidopsis that is like the bacterial ribosomal protein S9. To determine the subcellular localization of the gene product, we fused the N-terminal region and green fluorescent protein and expressed it transiently in rice seedlings. Localized fluorescence was detectable only in chloroplasts, indicating that this nuclear gene encodes chloroplast ribosomal protein S9. The N-terminal region of rice ribosomal protein S9 was found to have a high sequence similarity to the transit peptide region of the rice chloroplast ribosomal protein L12, suggesting that these transit peptides have a common lineage.  相似文献   

20.
A small conserved open reading frame in the plastid genome, ycf9, encodes a putative membrane protein of 62 amino acids. To determine the function of this reading frame we have constructed a knockout allele for targeted disruption of ycf9. This allele was introduced into the tobacco plastid genome by biolistic transformation to replace the wild-type ycf9 allele. Homoplasmic ycf9 knockout plants displayed no phenotype under normal growth conditions. However, under low light conditions, their growth rate was significantly reduced as compared with the wild-type, due to a lowered efficiency of the light reaction of photosynthesis. We show that this phenotype is caused by the deficiency in a pigment-protein complex of the light-harvesting antenna of photosystem II and hence by a reduced efficiency of photon capture when light availability is limiting. Our results indicate that, in contrast to the current view, light-harvesting complexes do not only consist of the classical pigment-binding proteins, but may contain small structural subunits in addition. These subunits appear to be crucial architectural factors for the assembly and/or maintenance of stable light-harvesting complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号