首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The plaque-forming cell (PFC) response to sheep erythrocytes (SRBC) is suppressed in a dose-related manner when concanavalin A (Con A) is administered intravenously to mice prior to or after immunization with antigen. The magnitude of suppression as well as the duration of the Con A effect greatly depends on the concentration of antigen used for immunization. Although profound suppression of the anti-SRBC PFC response is observed in intact mice pretreated with Con A for 4-24 hr, spleen cells from these mice do not exhibit suppressive activity when transferred into normal recipients or when cotransferred with normal spleen cells into irradiated recipients. Moreover, the cells from Con A-treated mice respond as normal spleen cells to SRBC when transferred alone into irradiated hosts. Suppression of the anti-SRBC PFC is only observed when adoptive hosts of cells from Con A-treated mice are also injected with Con A within 48 hr (but not 72 hr) of cell transfer and immunization. This time course of responsiveness to the suppressive effects of Con A is similar to that observed in normal mice and in irradiated recipients of normal spleen cells. The immune response to SRBC is also suppressed in adoptive hosts of normal spleen cells that are pretreated with Con A 4-24 hr prior to irradiation and cell transfer. Although functionally inactive when transferred into adoptive hosts, spleen cells from mice pretreated with Con A for 4-24 hr can suppress a primary antibody response to SRBC in vitro. The suppressive activity, which cannot be detected in the spleens of mice when the interval between pretreatment and assay is longer than 24 hr, is present in a subpopulation that bears the Thy 1.2 and Lyt 2 phenotype. Taken together the results obtained in in vivo and in vitro functional assays suggest that a suppressor cell population is activated following in vivo treatment with Con A, but that the cells rapidly lose their state of activation when removed from a Con A environment. This phenomenon is in all probability responsible for the failure to demonstrate suppressive activity in the spleens of Con A-treated mice using in vivo functional assays.  相似文献   

2.
Two antigen-nonspecific T cell-dependent suppressor systems were compared for their effects upon CML and MLR. Suppressor cells generated by an in vitro culture of spleen cells were compared with suppressor cells generated by in vivo priming with alloantigen. Culture-induced suppressor cells were themselves unable to respond in CML or MLR; were able to suppress actively the CML and MLR responses of untreated responding cells; were mitomycin-sensitive; and, produced no easily demonstrable suppressive supernatant. Alloantigen-primed cells were able to respond in CML and LR; could suppress proliferation in MLR, but were able to suppress CML only after mitomycin treatment; and, produced suppressive supernatants active in suppressing both CML and MLR. In addition to cataloging the differences and similarities between these suppressor populations, the data have been employed to analyze the mechanisms by which suppression occurs in CML and MLR.  相似文献   

3.
The effect of nonviable Mycobacterium paratuberculosis on the delayed-type hypersensitivity reaction to sheep erythrocytes (SRBC) in mice was evaluated by means of delayed-type footpad swelling. Intraperitoneal (i.p.) injection with nonviable M. paratuberculosis into mice from 28 days before to 1 day after immunization with SRBC resulted in a significant suppression of foot-pad swelling to SRBC. The suppressive effect could be transferred by i.p. injection of spleen cells or peritoneal exudate cells from mice which had been pre-treated with nonviable M. paratuberculosis into non-treated recipient mice. The suppressive effect of spleen cells was retained even after passing them through a nylon wool column. The suppressive effect of spleen cells was abolished by treatment with anti-Thy 1.2 monoclonal antibody plus complement or anti-Lyt 2.2 monoclonal antibody plus complement. However, treatment of spleen cells with anti-mouse gamma globulin antiserum plus complement or anti-Lyt 1.2 monoclonal antibody plus complement did not affect the suppressive effect of spleen cells. The suppression of footpad swelling to SRBC induced by pre-treatment with nonviable M. paratuberculosis could be reversed by i.p. administration of cyclophosphamide. Serum antibody response to SRBC in mice was not affected by pre-treatment with nonviable M. paratuberculosis. These findings indicate that T cells appear to be involved in the suppression of delayed-type hypersensitivity reaction to SRBC in mice by pre-treatment with nonviable M. paratuberculosis.  相似文献   

4.
Effects of thymectomy at various times after birth on effector and suppressor T cells for a delayed footpad reaction were determined in 6-week-old mice immunized intraperitoneally (ip) with sheep erythrocytes (SRBC). Mice thymectomized 1 day after birth (Tx-1 mice) gave delayed footpad reactions weaker than those of mice thymectomized 7 days after birth (Tx-7 mice) or sham operated (SH mice) after immunization with a low dose of SRBC. After immunization with a high dose of SRBC, on the other hand, Tx-1 mice showed reactions stronger than those of Tx-7 or SH mice. Pretreatment with cyclophosphamide (CY) augmented the delayed footpad reaction in Tx-7 or SH mice, but not in Tx-1 mice, immunized with a high dose of SRBC. The presence of T cells suppressive for the delayed footpad reaction in the spleen of Tx-7 or SH mice was confirmed by cell transfer experiments. These results suggest that effector T cells responsible for a delayed footpad reaction to SRBC are less thymus dependent and require the presence of the thymus for a shorter period in their development compared to suppressor T cells.  相似文献   

5.
Natural suppressor cells were induced by culturing spleen cells from normal adult mice for 2 to 3 wk. The suppressor cells were large in size, nonadherent and nonspecifically suppressed the plaque-forming cells response of fresh spleen cells to SRBC in vitro. The suppressive activity of the cells was not affected by treatment with indomethacin or anti-Thy-1, anti-Ig, anti-Ia, or anti-asialoGM1 plus complement. Phenotype analysis by FACS showed that Thy-1, L3T4, Ly-2, CD3-epsilon, TCR-alpha beta, Ig, B220, Ia, and asialoGM1 Ag were all absent in the suppressor cells, although they were wheat germ agglutinin receptor positive. The suppressor cells did not demonstrate cytotoxicity against either YAC-1 or P-815 cells. Enriched large cell populations from fresh normal spleens expressed the same phenotypes and also exhibited the suppressive activity. These findings suggest that a minor population of natural suppressor cells exist in the normal adult mouse spleen and they proliferate during the in vitro culture of spleen cells.  相似文献   

6.
The i.p. injection of Corynebacterium parvum (CP) into CBA/J mice effected increases in macrophage colony-forming cells (M-CFC) when spleen cells were cultured with L cell culture filtrate as a source of colony-stimulating factor. Significant increases in phagocytic macrophages (M phi) with Fc receptors for IgG2a and IgG2b immune complexes were additionally noted among the spleen cells in these mice. These M phi effectively inhibited Con A-induced lymphocyte proliferation, probably reflecting a 10-fold increase above normal controls in prostaglandin E to 47 ng/3 X 10(6) spleen cells/ml. To determine whether the suppressor M phi are immediate derivatives of splenic M-CFC, we tried to induce suppressor M phi by the injection of CP into mice depleted of bone marrow M-CFC by the earlier administration of the bone-seeking isotope, 89Sr. This procedure reduced M-CFC in the bone marrow to less than 1% of normal for more than 30 days. Monocytes in the blood fell to 5% of normal by day 10 and were 30% on day 30. Levels of resident peritoneal M phi showed relatively little change in this period. By contrast, splenic M-CFC increased to 20-fold higher than the "cold" 88Sr controls. CP-induced suppressor M phi activity, however, was sharply reduced in 89Sr marrow-depleted mice on day 10, despite the striking increase in M-CFC. There was a threefold increase in the number of phagocytic M phi binding IgG2a immune complexes, with no significant increase in IgG2b binding M phi. The kinetics of recovery of suppressor M phi activity showed that on days 20, 30, and 50 after 89Sr injection the activities reached 20%, 30%, and 70% of the "cold" control, respectively, and correlated with the recovery of significant levels of M-CFC in the bone marrow. Taken together, these observations suggest that splenic M-CFC are not an immediate source of PGE-suppressor M phi in vivo. It appears more likely that the CP-inducible suppressor M phi, in particular, originate from radiosensitive bone marrow cells or require for differentiation a microenvironment provided by bone marrow cells. The data also suggest that the expression of the Fc gamma 2b receptor and of suppressor activity by CP-induced splenic M phi are related phenomena.  相似文献   

7.
The suppressor cells induced by Toxoplasma infection were shown to be macrophages, since they adhered to plastic, and their suppressive activity in anti-sheep erythrocytes (SRBC) antibody responses was abrogated by treatment with silica or carrageenan, which are selectively cytotoxic for macrophages. The suppressor macrophages strongly inhibited the uptake of tritiated thymidine ( [3H]TdR) by normal mouse spleen cells in the responses to SRBC and Toxoplasma antigens. Supernatant fluids from the suppressor macrophages could not passively transfer the suppressive effect on anti-SRBC antibody responses. Furthermore, when the suppressor macrophages were isolated by a cell-impermeable membrane from normal mouse spleen cells, the antibody responses of normal spleen cells were not suppressed. These results indicate that suppression of antibody responses in Toxoplasma-infected mice is caused by an inhibitory effect of the suppressor macrophages upon proliferation of lymphocytes via direct contact with responder target cells. The suppressive effect of the macrophages was not counteracted by indomethacin, a potent inhibitor of prostaglandin synthesis, or catalase, a catabolic enzyme for hydrogen peroxide (H2O2).  相似文献   

8.
Down-regulation of the development of CTL has been studied in mice both in vivo and in vitro. To generate CTL to hapten-altered self Ag in vivo, an immunization protocol has been used in which the host's Th cells are stimulated by a minor locus histocompatibility Ag (Mlsd) and its precursor CTL are activated by trinitrophenylated syngeneic spleen cells. Injecting the H-2 compatible Mls-disparate spleen cells along with the TNP-coupled self cells into the hind paws causes TNP-self specific CTL to appear in popliteal lymph nodes within 5 days. We have previously reported that inducing Ts cells by i.v. injecting Mlsd-bearing cells prevents in vivo generation of TNP-self specific CTL after immunization in this way. Here the induced Ts cell as well as the mechanism by which it functions have been further examined. The suppression was seen to extend to allogeneic as well as TNP-self Ag, provided the Mlsd-tolerized animal was reexposed to Mlsd-bearing cells at the time of immunization for CTL. By transferring the Mlsd-induced suppression adoptively we have learned that the splenic suppressor cell bears Thy-1.2 as well as Lyt-1.1 Ag and inhibits the generation of CTL at the afferent limb. In addition, Mlsd-induced PEC of Mlsd-tolerized mice, but not of normal mice, mediated suppression of development of CTL in vivo. The active cells within the tolerized PEC have been identified as T cells and macrophages (M phi). Furthermore, PEC from mice tolerized to Mlsd suppressed generation of CTL directed toward TNP-self targets in vitro. T cells and M phi separated from PEC of Mlsd-tolerized mice achieved suppression best in culture when present together. In addition, Lyt-1+ splenic cells from tolerized but not normal mice cooperated to down-regulate CTL generation in vitro with peritoneal M phi from either tolerized or normal mice. Supernatants of 24- to 72-h cultures of PEC from tolerized mice were suppressive of CTL generation when incorporated at 40 to 50% of culture volume. Supernatants of T cells from tolerized PEC or spleen were suppressive in culture only when M phi from normal mice were also present. To achieve suppression dialyzed supernatants of M phi from tolerized mice could replace the M phi.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Mice pretreated with an intravenous (i.v.) injection of BCG (BCG-sensitized mice) and then immunized intravenously with a high dose (10(8)--10(9)) of sheep red blood cells (SRBC) 2 weeks later developed strong delayed-type hypersensitivity (DTH) to SRBC, as in mice pretreated with cyclophosphamide (CY) (CY-treated mice) and then immunized with SRBC 2 days later; normal mice given the same dose of SRBC did not show such DTH. The mechanism of this strong DTH to SRBC which developed in BCG-sensitized mice was studied, by comparing it with that in CY-treated mice. The transfer of either whole spleen cells or thymus cells, but not serum, obtained from mice immunized with i.v. injections of 10(9) SRBC 4 days previously (hyperimmune mice) did not suppress either the induction or the expression of DTH to SRBC in BCG-sensitized mice, but suppressed those in CY-treated mice. The suppressor cells were SRBC-specific T cells. Adoptive transfer of DTH to SRBC by spleen cells from either BCG-sensitized mice of CY-treated mice to hyperimmune recipients failed. The adoptive transfer of DTH from BCG-sensitized mice to normal recipients also failed if the spleen cells from hyperimmune mice were cotransferred. Whole body irradiation (600 rad) of mice 2 hr before or after the time of immunization with SRBC reduced significantly DTH to SRBC in both BCG-sensitized and CY-treated mice. It was noticed that the total number of spleen cells in BCG-sensitized mice was 3--4 times larger than that in CY-treated mice. From these results, we conclude that the entity of effector T cells of DTH to SRBC induced in BCG-sensitized mice and in CY-treated mice was not different in terms of susceptibility to suppressor T cells and irradiation, but that the total numbers of effector T cells generated in these mice differed remarkably, resulting in the above-described different responsiveness to suppressor T cells transferred passively.  相似文献   

10.
The effects of feeding various quantities of a particulate antigen, sheep red blood cells (SRBC), on plaque-forming cells (PFC) in the spleen were determined. Mice were given various numbers of SRBC orally daily for 14 days, then injected with SRBC intravenously. Splenic IgA PFC responses to SRBC were enhanced in the mice fed 5 X 10(8) SRBC and splenic IgG PFC responses to SRBC were depressed in the mice fed 5 X 10(9) SRBC. Adoptive transfer experiments showed that enhancement of splenic IgA PFC responses and suppression of splenic IgG PFC responses were induced by the T-cell rich fraction from Peyer's patches (PP) and the spleen in 5 X 10(8) SRBC- and 5 X 10(9) SRBC-fed mice, respectively. Kinetic studies revealed that IgA helper cells or IgG suppressor cells appeared in PP 2 days after oral administration and 4 days after it in the spleen.  相似文献   

11.
Mice injected intravenously with 1 X 10(9) sheep red blood cells (SRBC) showed no delayed-type hypersensitivity (DTH) response to SRBC and were unresponsive to DTH induction by sc injection of an optimal dose of SRBC. However, when treated with T-2 toxin, a mycotoxin, 2 days after the iv injection, mice became to show significant DTH response and to be responsive to the DTH induction by the sc injection. When the spleen cells of the mice receiving the iv injection were transferred to unsensitized syngeneic recipients, the DTH response of the recipients to SRBC was suppressed. However, the suppressor activity of the spleen cells was decreased by T-2 toxin treatment. By the iv injection, cell population of the spleen was increased and that of the thymus decreased. In contrast, by T-2 toxin treatment 2 days after the iv injection, cell population of the spleen was not increased and that of the thymus was markedly decreased. The ratio of theta-bearing cells was increased in the spleen by the iv injection. However, such increase was not observed after the T-2 toxin treatment. The ratio of Ig-bearing cells in the spleen was not changed by the iv injection and the T-2 toxin treatment after the iv injection. T-2 toxin seems to interfere with generation of suppressor cells for the DTH response.  相似文献   

12.
Spleen cells taken from mice soon after infection with Trypanosoma brucei S 42 enhance the primary in vitro antibody response of normal spleen cells to sheep red blood cells (SRBC), but do not affect their response to DNP-Ficoll. Spleen cells harvested later in the infection (day 6 onwards) suppress the antibody response of normal spleen cells to both SRBC and DNP-Ficoll. The enhancing and suppressive effects of "infected" spleen cells are sensitive to treatment with anti-Thy 1.2 anti-serum and complement, and can be mediated by nylon wool-purified populations of T cells. The enhancing T cell is sensitive to ALS, not lost within 4 weeks of adult thymectomy, and bears the Ly-1+, 23- phenotype. The suppressor T cell is insensitive to ALS, lost within 20 weeks of adult thymectomy, and bears the Ly-1+, 23+ phenotype. The significance of the activation of distinct helper and suppressor T cells is discussed in relation to the pathogenesis of trypanosomiasis.  相似文献   

13.
The effect of Suramin on the secondary in vitro response to sheep erythrocytes (SRBC) was studied. Spleen cells from mice which were treated with Suramin immediately prior to sensitization with SRBC failed to respond to an in vitro SRBC challenge. This Suramin-induced immunosuppression is not related to a defect in macrophage or B-cell function(s). Suramin does not interfere with the induction by SRBC of radioresistant and radiosensitive helper-T-cell subpopulations. Cell separation studies, using wheat germ agglutinin, showed radiosensitive helper-T-cell function in the nonagglutinated fraction while the radioresistant helper activities are carried out by the agglutinated subpopulation. Evidence is presented that Suramin administration results in a suppressive T-cell activity which can be demonstrated in the subpopulation agglutinated by wheat germ agglutinin. The role of such suppressive T cells in the inhibitory effect exerted by Suramin on the cell-mediated delayed-type hypersensitivity response to SRBC is discussed.  相似文献   

14.
Rats given 10(10) sheep erythrocytes (SRBC) orally were found to contain specific suppressor cells to SRBC in their Peyer's patches (PP) and mesenteric lymph nodes (MLN) after 2 days of feeding. After 4 days of feeding, similar suppressor cells were found in the thymus and spleen, but they were missing in the PP or MLN. These suppressor cells effectively blocked IgM and IgG plaque-forming cell responses to SRBC in Mishell-Dutton cultures and delayed-type-hypersensitivity responses to SRBC when transferred to syngeneic recipients, but they did not affect responses to horse erythrocytes. The orally induced specific suppressor cells appeared to be T2 cells since their activity was eliminated by in vivo treatment of SRBC-fed rats with anti-rat lymphocyte serum but not by adult thymectomy. Because carrageenan partially relieved the suppression observed in culture, the actual suppressive mechanism may also involve a macrophage.  相似文献   

15.
Mechanisms underlying mononuclear phagocyte specialization are being probed by studying suppressor macrophages (M phi) as a reference population in mouse models with impaired blood monocyte formation. Splenic suppressor M phi, defined by PGE-mediated inhibition of Con A-induced T lymphocyte proliferation are induced by the i.p. administration of Corynebacterium parvum (CP). Mice severely depleted of bone marrow and blood monocytes by treatment with 89Sr fail to show this suppressor M phi response to CP, although M phi-forming stem cells, assessed as splenic M-CFC in vitro, are increased 20-fold. These observations suggest that radiosensitive bone marrow stem cells are necessary for the generation of both suppressor M phi and monocytes and that one such stem cell may be common to both types of mononuclear phagocytes. This notion was explored further by employing congenitally anemic mice of the genotype S1/S1d in which the hemopoietic microenvironment is genetically defective and thus unable to support the proliferation, differentiation, and function of stem cells. The congenital defect was found to be additionally expressed in the S1/S1d mouse by a monocytopenia of less than 10% of the values in normal congenic littermate controls and by the failure of splenic M-CFC to increase in response to CP. PGE-producing suppressor M phi expressing Fc gamma 2b receptors, however, were induced by CP in S1/S1d mice with no significant diminution of suppressor activity. These data establish the fact that significant impairment of the formation of monocytes is part of the overall hemopoietic defect in S1/S1d mice. PGE-producing suppressor M phi, however, were inducible at normal functional levels in the presence of a profound monocytopenia, and therefore appear to be independent of the mechanisms that regulate blood monocyte formation. Ablation of the bone marrow with 89Sr resulted in failure of CP to induce suppressor M phi in the spleens of the S1/S1d mice as in the littermate controls. Other observations in the present study, when taken with data from the 89Sr model, show the additional independence of these suppressor M phi from splenic M-CFC. In aggregate, these findings delineate three functionally definable populations of mononuclear phagocytes that appear to be independently regulated.  相似文献   

16.
Summary Mice cured from large MOPC-315 tumors by a single dose of melphalan, 7.5 mg/kg, were examined for up to 60 days after the drug treatment (71 days after the tumor inoculation) for their ability to respond to mitogenic stimulation, specific and nonspecific antigenic stimulation and for their susceptibility to inoculation with an unrelated tumor, L10 lymphoma. The response of spleen cells from cured mice to mitogenic stimulation by phytohemagglutinin or concanavalin A was slightly depressed at an early stage after the drug treatment. The allogeneic response against C57BL spleen cells and the antibody response against sheep red blood cells (SRBC) of spleen cells from cured mice remained below normal levels during the whole observation period. The deficiency in response to antigenic stimulation was found to be due to impairment in T-cell function. Cured mice were also deficient in their response to SRBC immunization (antibody and delayed-type hypersensitivity responses) and were more susceptible to inoculation with an unrelated tumor, L10 lymphoma, than normal, noninoculated mice. On the other hand, spleen cells of cured mice developed a highly specific cytotoxic response against target MOPC-315 tumor cells and the cured mice were resistant to challenge with an otherwise highly tumorigenic dose of MOPC-315. Thus, cured mice remained deficient for a long period of time in their response to MOPC-315-unrelated antigens but, at the same time, they showed a potent specific antitumor immunity potential in vivo and in vitro.Presented in part at the Ninth European Immunology Meeting, September 14–17, 1988, Rome, ItalyThe contribution of S. Shoval is in partial fullfillment of a PhD Thesis  相似文献   

17.
Mice were primed subcutaneously with trinitrophenyl (TNP)-modified syngeneic spleen cells. Seven days later, spleen cells from these in vivo primed mice, or spleen cells from naive mice, were co-cultured with TNP-modified syngeneic cells. Spleen cells from the in vivo primed mice demonstrated augmented cytolytic T lymphocyte (CTL) activity. The spleens of these in vivo primed mice contained a population of radioresistant, antigen-specific, helper T cells. Specifically, spleen cells from these mice, after x-irradiation, were able to augment the in vitro CTL response of normal spleen cells to TNP-modified syngeneic cells.  相似文献   

18.
Mice were orally administered sheep erythrocytes (SRBC) in a regimen previously known to produce systemic tolerance to SRBC. Cellular interactions and movement from the gut-associated lymphoid tissue (GALT) to the spleen were found to occur using both in vivo and in vitro transfer systems. The cell in the GALT which initiates the suppression circuit migrates from the GALT to the spleen shortly after contacting antigen. This cell is a T suppressor-inducer (Tsi) cell which interacts with splenic lymphocytes to induce the formation of an effector T suppressor cell (Ts). The Tsi and Ts can be separated from each other by their differential sensitivities to cyclophosphamide. In addition, the Tsi can be separated from other GALT T cells by its inability to bind the lectin, peanut agglutinin. Thus, cell migration and cellular interaction among T cells must occur to result in orally induced tolerance.  相似文献   

19.
Demonstration of active suppressor cells in spleens of young NZB mice   总被引:1,自引:0,他引:1  
NZB mice, a strain prone to the development of autoimmune disease, have during the first 2 weeks of life suppressor cells in their spleens which can in coculture with adult spleen cells suppress the antibody response to sheep red blood cells (SRBC) generated in culture by the adult cells. The suppressive activity of spleen cells from NZB mice in the first week after birth is similar to that of spleen cells from 4-day-old C57BL/6 mice, a strain which does not spontaneously develop autoimmune disease. As in “normal” strains of mice, suppressor cell activity in NZB mice is diminished at 2 weeks and undetectable at 3 weeks of age. The data indicate that there is no defect inherent in the suppressor cells detected in the spleens of newborn and young NZB mice and suggest that the development of autoimmune responses does not result from a lack of suppressor cells in the young animals.  相似文献   

20.
Selective impairment of B cell function by Neisseria meningitidis   总被引:1,自引:0,他引:1  
Spleen cells from CBA/J mice infected with Neisseria meningitidis displayed depressed in vitro plaque-forming cell (PFC) responses to T-dependent (sheep red blood cell; SRBC) and T-independent (TNP-LPS, TNP-Ficoll) antigens. The inhibition was observed over a wide range of antigen concentrations. The decreased responsiveness of splenocytes from infected mice was due to a selective impairment of B-cell function since helper-T-cell activity was intact in infected mice as shown by the ability of T-enriched lymphocytes to cooperate with normal B-enriched lymphocytes in the generation of an anti-SRBC response, accessory macrophage function was preserved since adherent spleen cells from bacteria-injected mice were shown to produce normal or increased levels of IL-1 and were able to cooperate with normal non-adherent spleen cells in the generation of PFC against SRBC. Addition of peritoneal cells from normal animals or extraneous IL-1 both failed to restore normal PFC responses in cultures of splenocytes from infected mice. Finally, B-enriched lymphocytes from infected mice produced poor anti-SRBC responses when cultured with either Con A supernatant or T-enriched lymphocytes from normal or infected mice. Cell-mixing experiments failed to detect the presence of suppressor cells in cultures of unfractionated spleen cells or B-enriched lymphocytes from infected mice. Therefore, the immunological unresponsiveness associated with a Neisseria meningitidis infection was attributed to a meningococcus-induced defect(s) in B-cell function. In vivo polyclonal B-cell activation leading to clonal exhaustion did not play a major role in the depression of humoral responses since meningococcal infection induced little or no polyclonal Ig secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号