首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Dimerumic acid (DMA) is contained in Monascus anka and Monascus pilosus fermented products. The purpose of this study was to evaluate the effect of DMA against salicylic acid (SA)- and tert-butylhydroperoxide (t-BHP)-induced oxidative stress and cytotoxicity in the liver, using rat liver microsomes and isolated rat hepatocytes. DMA was extracted from monascus-garlic-fermented extract using M. pilosus. In rat liver microsomes, 1 microM DMA decreased SA-induced lipid peroxidation but did not affect the production of the oxidative metabolite of SA via CYP. In isolated rat hepatocytes, 1 microM DMA decreased SA-induced lipid peroxidation and chemiluminescence (CL) generation and the intracellular glutathione-reduced form/oxidized form (GSH/GSSG) ratio in the presence of 1 microM DMA was higher than that without DMA; however, 100 microM DMA suppressed the leakage of lactate dehydrogenase (LDH). On the other hand, t-BHP-induced lipid peroxidation, CL generation, and LDH leakage were prevented by 100 microM DMA. Thus, DMA showed an antioxidative effect in hepatocytes and protected against hepatotoxicity by suppressing oxidative stress without affecting CYP enzymes.  相似文献   

2.
Hormonal regulation of glutathione efflux   总被引:3,自引:0,他引:3  
The efflux of GSH has been shown previously to be a saturable process in both isolated rat hepatocytes and perfused liver, suggesting a carrier-mediated transport mechanism. The possibility in hormonal regulation of this process has been raised by recent reports. Our present work examined the role of hormones known to affect intracellular signal transduction mechanisms on GSH efflux in cultured rat hepatocytes and perfused rat livers. We found that cAMP-dependent factors, such as cholera toxin (CT), dibutyryl cAMP, forskolin, and glucagon all stimulated GSH efflux in cultured rat hepatocytes. The efflux kinetics were compared in cultured cells incubated with or without CT; the stimulation of GSH efflux was related to a near doubling of the Vmax while exhibiting no significant alteration of the Km. The increase in intracellular cAMP level associated with the threshold for this stimulatory effect was 25% above control. The stimulatory effect of CT could not be blocked by cyclohexamide pretreatment or reversed by colchicine treatment. The stimulatory effect of glucagon was abolished in the presence of ouabain but not in the presence of barium. On the other hand, hormones which act through Ca2+ and protein kinase C, such as phenylephrine and vasopressin, had no effect on GSH efflux in the cultured cells. In the perfused liver model, glucagon (10 nM) and dibutyryl cAMP (8 microM) stimulated sinusoidal GSH efflux to 130 and 144% of control values, respectively, and increased bile flow while not affecting biliary GSH efflux. Finally, the physiological significance of glucagon-mediated stimulation of sinusoidal GSH efflux was assessed by both plasma GSH and glucose levels in response to in vivo glucagon infusion. The threshold dose of glucagon for significant increase in plasma GSH (5.21 pmol/min) was lower than for glucose (15.61 pmol/min). At the highest glucagon infusion rate (261 pmol/min), plasma GSH level doubled while glucose level increased 80%. In conclusion, increased cAMP stimulates GSH efflux in cultured rat hepatocytes and perfused livers. The stimulatory effect of cAMP is exerted at the sinusoidal pole and appears to be mediated by hyperpolarization of hepatocytes by stimulation of Na(+)-K(+)-ATPase. In vivo studies confirmed the importance of cAMP-mediated stimulation of sinusoidal GSH efflux as it resulted in significant elevation of the plasma GSH level.  相似文献   

3.
4-hydroxynonenal (HNE), one of the main breakdown products of lipid peroxides, has been shown to react with DNA yielding a 1,N2-propano adduct to 2'-deoxyguanosine. However, HNE may also react with a wide range of biomolecules before reaching the nucleus. Glutathione (GSH), the most abundant cellular thiol-containing peptide, is likely to be a major cytosolic target for HNE because of its high reactivity and its implication in the detoxification of this aldehyde. In order to estimate the proportion of HNE actually reaching DNA in human THP1 monocytes, we designed an experimental protocol aimed at quantifying DNA adducts and HNE-GSH in the same sample of cells exposed to extracellularly added HNE. Reverse-phase HPLC associated with tandem mass spectrometry detection was used as the analytical tool. It was first observed that, once produced, the HNE-GSH conjugate was very efficiently excreted from the cells into the culture medium. More strikingly, we determined that the amount of HNE-GSH conjugate produced was 4 orders of magnitude higher than that of DNA adduct. These results emphasize the major role played by glutathione in the protection of DNA against electrophilic species.  相似文献   

4.
Rabbit hepatocytes isolated after liver perfusion with collagenase were maintained in primary monolayer culture for periods up to 96 h. Bile acid synthesis and secretion was measured by capillary gas-liquid chromatography and by a rapid enzymatic-bioluminescence assay. As expected from the bile acid profile of rabbit gallbladder bile, cholic acid was the only bile acid synthesized in detectable amounts and was produced at a linear rate of 170 pmol/h per mg cell protein from 24 to 96 h in culture. Ketoconazole (20 microM) inhibited cholic acid synthesis and secretion by 78%, whereas the bile acids chenodeoxycholic acid (100 microM), deoxycholic acid (100 microM) or lithocholic acid (2 microM) had no effect. When rat hepatocytes were cultured under identical conditions, the rate of bile acid synthesis was found to be only 12 pmol/h per mg cell protein, a value in agreement with previous work. The large difference in rates of bile acid synthesis between rabbit and rat hepatocytes may be due to rapid loss of cytochrome P-450 from rat hepatocytes when placed in monolayer culture. Although reportedly active in cholesterol 7 alpha-hydroxylation, form 4 cytochrome P-450 levels in rabbit hepatocytes did not correlate with rates of bile acid synthesis.  相似文献   

5.
A major pathway for detoxification of the highly reactive lipid peroxidation product, 4-hydroxy-2,3-trans-nonenal (HNE) is through the conjugation with glutathione (GSH). We have studied the metabolism of GS-HNE conjugate by the enzyme gamma-glutamyltranspeptidase (GGT) using its purified form, as well as a GGT-overexpressing fibroblast cell line (V79 GGT). Using mass spectrometry analysis we identified for the first time cysteinylglycine-HNE (CysGly-HNE) as the GGT metabolite of GS-HNE. Furthermore, the GGT-dependent metabolism of GS-HNE in the V79 GGT cell line was associated with a considerable increase of cytotoxicity as compared to a control cell line which does not express GGT (V79 Cl). The cytotoxic effect was dose- and time-dependent (100% cellular death at 200 microM GS-HNE after 24 h incubation) in V79 GGT cells, whereas no decrease of viability was observed in V79 Cl cells. A similar cytotoxic effect was obtained when cells were incubated directly with CysGly-HNE, demonstrating that this GGT-dependent metabolite unlike GS-HNE, exhibits cytotoxic properties.  相似文献   

6.
Using isolated rat hepatocytes we have shown that glutathione (GSH) depletion by glutathione-S-transferase (GST)-catalyzed conjugation with 1-bromoheptane or phorone was accompanied by a significant elevation in ascorbate synthesis. Glycogenolysis was also stimulated without a significant rise in glucose synthesis. Furthermore, when glycogenolysis was stimulated in control hepatocytes by increasing intracellular cAMP levels (with glucagon or dibutyryl cAMP), cellular glucose levels, but not ascorbate levels, increased. These data suggest that GSH depletion can stimulate ascorbate synthesis independently of glucose synthesis and that hepatocytes can direct glycogenolysis towards ascorbate synthesis during GSH conjugation.  相似文献   

7.
A reduction of cellular glutathione (GSH) content was observed when isolated rat hepatocytes were incubated with a stereoisomer of a uricosuric diuretic (S-8666) at a high concentration. Subsequent studies have revealed it was due to conjugation of GSH and S-8666 (-)-enantiomer in the liver cytosol. The (+)-enantiomer strongly inhibited the conjugation reaction, therefore, GSH depletion did not take place when a racemic form of S-8666 was incubated with the liver cells. A possible chemical structure of the GSH-conjugate is tentatively proposed.  相似文献   

8.
It is known that an accumulation of lipoperoxidative aldehydes malondialdehyde (MDA) and 4-hydroxynonenal (HNE) takes place in liver mitochondria during aging. The existence and role of an increased extra- and intra-cellular oxidative stress in diabetes, an aging-accelerating disease, is currently under discussion. This report offers evidence that lipoperoxidative aldehydes accumulate in liver microsomes and mitochondria at a higher rate in spontaneously diabetic BB/WOR rats than in control non-diabetic animals (HNE content, diabetes vs. control: microsomes 80.6+/-19.9 vs. 25.75+/-3.6 pmol/mg prot, p = .024; mitochondria 77.4+/-15.4 vs. 26.5+/-3.5 pmol/mg prot, p = .0103). Liver subcellular fractions from diabetic rats, when exposed to the peroxidative stimulus ADP/Fe, developed more lipoperoxidative aldehydes than those from non diabetic rats (HNE amount, diabetes vs. control: microsomes 3.60+/-0.37 vs. 2.33+/-0.22 nmol/mg prot, p = .014; mitochondria 3.62+/-0.26 vs. 2.30+/-0.17 nmol/mg prot, p = .0009). Liver subcellular fractions of diabetic rats developed more fluorescent chromolipids related to HNE-phospholipid adducts, either after in vitro peroxidation (microsomes: p = .0045; mitochondria: p = .0023) or by exposure to exogenous HNE (microsomes: p = .049; mitochondria: p = .0338). This higher susceptibility of diabetic liver membranes to the non-enzymatic attack of HNE may be due to an altered phospholipid composition. Moreover, a decreased activity of the HNE-metabolizing systems can be involved: diabetic liver mitochondria and microsomes were unable to consume exogenous HNE at the same rate as non-diabetic membranes; the difference was already significant after 5' incubation (microsomes p<.001; mitochondria p<.001). These data show an increased oxidative stress inside the hepatocytes of diabetic rats; the impairment of the HNE-metabolizing systems can play a key role in the maintenance and propagation of the damage.  相似文献   

9.
Since experiments with freshly isolated rat hepatocytes have shown that cellular vitamin E is consumed in response to insult by compounds that induce an oxidative stress only after cellular glutathione (GSH) concentrations have been substantially depleted, experiments were performed to determine whether this sequence of events occurred in response to oxidative insult in vivo. The role that plasma vitamin E plays in the response to chemically induced oxidative injury in vivo was also assessed. Treatments with 40 mg/kg of methyl ethyl ketone peroxide (MEKP) quickly induced lipid peroxidation in vivo and from one to 4 h after treatment caused a depression in the plasma content of vitamin E and the liver content of GSH, as well as signs of toxicity (elevations in serum activities of alanine and aspartate aminotransferases). At these time points however, the liver content of vitamin E was either indistinguishable from or slightly elevated from controls. By 12 to 24 h after treatment the liver content of vitamin E was reduced by 20-25% whereas values for all other indicators had returned toward control levels. Pretreatment of rats with L-buthionine-S,R-sulfoximine, an inhibitor of GSH by 4 or 24 h after treatment, did not alter the time course or extent of hepatic vitamin E depletion that was observed after treatment with MEKP. Other compounds that induce oxidative stress and lipid peroxidation to the liver, carbon tetrachloride and menadione, did not provoke an alteration in hepatic vitamin E levels as compared to controls 1 day after treatment. These findings indicate that depletion of hepatic vitamin E may not occur as an immediate consequence of oxidative insult to the liver and that the depletion of hepatic vitamin E levels may not be related to the extent of prior GSH depletion. Moreover, these findings suggest that alterations in the plasma concentration of vitamin E may not reflect concurrent alterations in hepatic vitamin E levels. A mechanism whereby liver vitamin E stores are mobilized for the maintenance of plasma vitamin E levels is proposed.  相似文献   

10.
4-hydroxy-2-nonenal (HNE) plays an important role in the pathogenesis of cardiac disorders. While conjugation with glutathione (GSH) catalyzed by GSH S-transferase (GST) has been suggested to be a major detoxification mechanism for HNE in target cells, whether chemically upregulated cellular GSH and GST afford protection against HNE toxicity in cardiac cells has not been investigated. In addition, the differential roles of chemically induced GSH and GST as well as other cellular factors in detoxifying HNE in cardiomyocytes are unclear. In this study, we have characterized the induction of GSH and GST by 3H-1,2-dithiole-3-thione (D3T) and the protective effects of the D3T-elevated cellular defenses on HNE-mediated toxicity in rat H9C2 cardiomyocytes. Treatment of cardiomyocytes with D3T resulted in a significant induction of both GSH and GST as well as the mRNA expression of gamma-glutamylcysteine ligase catalytic subunit and GSTA. Both GSH and GST remained elevated for at least 72 h after removal of D3T from the culture media. Treatment of cells with HNE led to a significant decrease in cell viability and an increased formation of HNE-protein adducts. Pretreatment of cells with D3T dramatically protected against HNE-mediated cytotoxicity and protein-adduct formation. HNE treatment caused a significant decrease in cellular GSH level, which preceded the loss of cell viability. Either depletion of cellular GSH by buthionine sulfoximine (BSO) or inhibition of GST by sulfasalazine markedly sensitized the cells to HNE toxicity. Co-treatment of cardiomyocytes with BSO was found to completely block the D3T-mediated GSH elevation, which however failed to reverse the cytoprotective effects of D3T, suggesting that other cellular factor(s) might be involved in D3T cytotprotection. In this regard, D3T was shown to induce cellular aldose reductase (AR). Surprisingly, inhibition of AR by sorbinil failed to potentiate HNE toxicity in cardiomyocytes. In contrast, sorbinil dramatically augmented HNE cytotoxicity in cells with GSH depletion induced by BSO. Similarly, in BSO-treated cells, D3T cytoprotection was also largely reversed by sorbinil, indicating that AR played a significant role in detoxifying HNE only under the condition of GSH depletion in cardiomyocytes. Taken together, this study demonstrates that D3T can induce GSH, GST, and AR in cardiomyocytes, and that the above cellular factors appear to play differential roles in detoxification of HNE in cardiomyocytes.  相似文献   

11.
Reactive oxygen species are important mediators of cellular damage during endotoxic shock. In order to investigate the hepatic response to the oxidative stress induced by endotoxin, hepatic and plasma glutathione (total, GSH and GSSG), GSSG/GSH ratio as well as Mn-superoxide dismutase and catalase activities were determined during the acute and recovery phases of reversible endotoxic shock in the rat. A significant increase in liver and plasma total glutathione content was observed 5 h after endotoxin treatment (acute phase), followed by a diminution of these parameters below control values at 48 h (recovery phase). The significant increases of GSSG levels and GSSG/GSH ratio are indicative of oxidative stress occurring during the acute phase. Liver Mn-SOD activity showed a similar time dependency as the GSSG/GSH ratio; however, a marked decrease in the liver catalase activity was observed during the process. These results indicate the participation of liver glutathione in the response to endotoxin and the possible use of plasma glutathione levels and GSSG/GSH ratio as indicators of the acute phase during the endotoxic process. (Mol Cell Biochem 159: 115-121, 1996)  相似文献   

12.
Glutathione (GSH) conjugates inhibit enzymes that are involved in drug metabolism and drug resistance, but their cellular uptake is very low. To improve membrane-permeability, we synthesized a novel GSH-conjugate analogue with a tetrazole carboxylate isostere at the glycine position. Introduction of the tetrazole decreases inhibitory potency towards CDNB conjugation by glutathione S-transferase. However, the tetrazole derivative inhibited 2-bromoisovalerylurea conjugation in rat liver cytosol, as well as in hepatocytes.  相似文献   

13.
Free radical-mediated oxidation of arachidonic acid to prostanoids has been implicated in a variety of pathophysiological conditions such as oxidative stress. Here, we report on the development of a liquid chromatography–mass spectrometry method to measure several classes of prostaglandin derivatives based on regioisomer-specific mass transitions down to levels of 20 pg/ml applied to the measurement of prostaglandin biomarkers in primary hepatocytes. The quantitative profiling of prostaglandin derivatives in rat and human hepatocytes revealed the increase of several isomers on stress response. In addition to the well-established markers for oxidative stress such as 8-iso-prostaglandin F and the prostaglandin isomers PE2 and PD2, this method revealed a significant increase of 15R-prostaglandin D2 from 236.1 ± 138.0 pg/1E6 cells in untreated rat hepatocytes to 2001 ± 577.1 pg/1E6 cells on treatment with ferric NTA (an Fe3+ chelate with nitrilotriacetic acid causing oxidative stress in vitro as well as in vivo). Like 15R-prostaglandin D2, an unassigned isomer that revealed a more significant increase than commonly analyzed prostaglandin derivatives was identified. Mass spectrometric detection on a high-resolution instrument enabled high-quality quantitative analysis of analytes in plasma levels from rat experiments, where increased concentrations up to 23-fold change treatment with Fe(III)NTA were observed.  相似文献   

14.
The therapeutic efficacy of ursodeoxycholic acid (UDCA) has been widely demonstrated in various liver diseases, suggesting that UDCA might protect hepatocytes against common mechanisms of liver damage. A candidate for such protection is oxidative injury induced by reactive oxygen species. This study was designed to assess the effects of UDCA on oxidative injury and antioxidative systems in cultured rat hepatocytes. The viability of the hepatocytes dose-dependently decreased after hydrogen peroxide or cadmium administration. Pretreatment with UDCA significantly prevented this decrease in viability. The amounts of glutathione (GSH) and protein thiol increased significantly, but the activities of antioxidative enzymes such as superoxide dismutase, glutathione peroxidase and catalase were unchanged in UDCA-treated hepatocytes. The mRNA levels of gamma-glutamylcysteine synthetase and metallothionein (MT) were significantly higher in UDCA-treated hepatocytes than in controls. In conclusion, UDCA increased hepatocyte levels of GSH and thiol-containing proteins such as MT, thereby protecting hepatocytes against oxidative injury. Our results provide a new perspective on the hepatoprotective effect of UDCA.  相似文献   

15.
Various drugs and chemicals can cause a glutathione (GSH) depletion in the liver. Moreover, nitric oxide (NO) can be generated in response to physiological and pathological situations such as inflammation. The aim of this study was to estimate oxidative stress when primary rat hepatocytes were exposed to GSH depletion after NO production. For this purpose, cells were preincubated with lipopolysaccharide (LPS) and gamma-interferon (IFN) for 18 h in order to induce NO production by NO synthase and then L-buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, was added for 5 h. In hepatocyte cultures preincubated with LPS and IFN before BSO addition, an increase in lipid peroxidation was noted. In those cells, an elevation of iron-bound NO and a decrease in free NO led us to suggest the involvement of low-molecular-weight iron (LMW iron) in the enhancement of oxidative stress. Indeed, addition of deferiprone, a chelator of LMW iron, reduced iron-bound NO levels and the extent of oxidative stress. Moreover, an important elevation of LMW iron levels was also observed. As both, N-acetylcysteine, a GSH precursor, and N(G)-monomethyl-L-arginine, a NO synthase inhibitor, totally inhibited the elevation of LMW iron and oxidative stress, a cooperative role could be attributed to NO production and GSH depletion.  相似文献   

16.
We compared the DNA damaging potency of acrylamide (AA) and its metabolite glycidamide (GA) in the comet assay in cell systems differing with respect to species origin and cytochrome P450-depended monooxygenase (CYP2E1) expression (V79, Caco-2, primary rat hepatocytes). Only after 24 h incubation in the highest concentration of AA (6 mM) a slight but significant increase in DNA damage was observed in V79 and Caco-2 cells. In primary rat hepatocytes, however, expressing substantial amounts of CYP2E1, no induction of DNA strand breaks was found. At the end of the incubation time period (24 h), still 67+/-19% of the CYP2E1 protein was detected by Western blotting. Direct treatment with GA resulted in a significant increase in DNA damage in V79 cells and primary rat hepatocytes at concentrations > or =100 microM (24 h). Caco-2 cells were found to be less sensitive, exhibiting an increase in DNA strand breaks at concentrations > or 300 microM GA. These data confirm the higher genotoxic potential of GA compared to AA but also indicate that high expression of CYP2E1 per se is not necessarily associated with increased genotoxicity of AA. We, therefore, investigated whether the intracellular glutathione (GSH) level might be a critical determinant for the genotoxicity of AA in cells with different CYP2E1 status. Depletion of intracellular GSH by dl-buthionine-[S,R]-sulfoxime (BSO) in rat hepatocytes and V79 cells resulted in a significant induction of DNA strand breaks after incubation with 1 mM AA. However, at higher concentrations (> or =1.25 mM) a strong increase in cytotoxicity, resulting in a severe loss of viability, was observed. In summary, the DNA strand breaking effect of AA appeared not to be directly correlated with the CYP2E1 status of the cells. Depletion of GSH is associated with an increase in AA genotoxicity but seems also to lead to a substantial enhancement of cytotoxicity.  相似文献   

17.
Troglitazone (TGZ) is an orally active antihyperglycemic agent used in the treatment of noninsulin-dependent diabetes mellitus. Several cases of liver failure following TGZ administration led to its withdrawal from the market. The mechanism of toxicity is still not understood. The formation of toxic metabolites is believed to play an important role. Herein, we report the biotransformation of TGZ in human hepatocytes. TGZ at 50 microM concentration was incubated with cryopreserved human hepatocytes. Four metabolites were found-glucuronide, sulfate, and two glutathione (GSH) conjugates of TGZ. The two GSH metabolites could be conjugation at the 6-hydroxychromane nucleus and the thiazolidinedione ring. Alternatively, the conjugation could be one of the two rings, with the two GSH metabolites are diastereomers. The sulfate conjugate was the major metabolite found. The cytochrome P450 (CYP) inhibitors furafylline (CYP1A1/2), omeprazole (CYP2C19), ketoconazole (CYP3A4), and sulfaphenazole (CYP2C9) had no inhibitory effect on the TGZ metabolism suggesting that several P450s may play a role in the TGZ metabolic pathway. Previous studies in our laboratory have shown a large interindividual variation between different donors in cytotoxicity after dosing with TGZ. Based on EC(50) values, donors were classified as sensitive or resistant. The sensitive human donors were found to form significantly less troglitazone GSH conjugates and glucuronides than the resistant donors.  相似文献   

18.
4-Hydroxy-2-nonenal (HNE), the aldehydic product of lipid peroxidation, is associated with multiple immune dysfunctions, such as HIV and hepatitis C virus infection. HNE-induced immunosuppression could be due to a decrease in CD4+ T lymphocyte activation or proliferation. Glutathione (GSH) is the most abundant endogenous antioxidant in cells, and an adduct between HNE and GSH has been suggested to be a marker of oxidative stress. Our earlier studies showed that HNE induced cytotoxicity and Akt inactivation, which led to the enhancement of FasL expression and concomitantly decreased cellular FLICE-like inhibitory protein (c-FLIP(S)) levels. In this study, we found that HNE caused intracellular GSH depletion in Jurkat T cells, and we further investigated the role of 2(RS)-n-propylthiazolidine-4(R)-carboxylic acid (PTCA), a GSH prodrug, in attenuating HNE-induced cytotoxicity in CD4+ T lymphocytes. The results show that PTCA protected against HNE-induced apoptosis and depletion of intracellular GSH. PTCA also suppressed FasL expression through increasing levels of Akt kinase as well as antiapoptotic c-FLIP(S) and decreasing the activation of type 2 protein serine/threonine phosphatase. Taken together, these data demonstrate a novel correlation between GSH levels and Akt activation in T lymphocyte survival, which involves FasL down-regulation and c-FLIP(S) expression through increasing intracellular GSH levels. This suggests that PTCA could potentially be used in the treatment of oxidative stress-induced immunosuppressive diseases.  相似文献   

19.
The present study was designed to evaluate the radioprotective effect of lycopene, a naturally occurring dietary carotenoid, on gamma-radiation induced toxicity in cultured rat hepatocytes. The cellular changes were estimated using lipid peroxidative indices like thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), ceruloplasmin, vitamins A, E, C and uric acid. The DNA damage was analysed by single cell gel electrophoresis (comet assay). The increase in the severity of DNA damage was observed with the increase in gamma-radiation dose (1, 2 and 4 Gy) in cultured rat hepatocytes. TBARS were increased significantly whereas the levels of GSH, vitamins C, E and A, ceruloplasmin, uric acid and antioxidant enzymes were significantly decreased in gamma-irradiated groups. The maximum damage to hepatocytes was observed at 4 Gy irradiation. Pretreatment with lycopene (1.86, 9.31 and 18.62 microM) showed a significant decrease in the levels of TBARS and DNA damage. The antioxidant enzymes increased significantly along with the levels of GSH, vitamins A, E, C, uric acid and ceruloplasmin. The maximum protection of hepatocytes was observed at 9.31 muM of lycopene pretreatment. Thus, our results show that pretreatment with lycopene offers protection against gamma-radiation induced cellular damage and can be developed as an effective radioprotector during radiotherapy.  相似文献   

20.
The influence of the hypoglycemic agent glipizide (0-100 microM) on the rate of gluconeogenesis from lactate, as well as on the levels of fructose 2,6-bisphosphate, has been investigated in hepatocytes isolated from genetically obese (fa/fa) Zucker rats and from their corresponding lean (Fa/-) littermates. As compared to lean rat hepatocytes, liver cells isolated from obese animals showed a lower rate of basal gluconeogenesis (0.9 +/- 0.2 vs 5.4 +/- 0.5 micromol of lactate converted to glucose/g cell x 30 min, n=4) and higher levels of fructose 2,6-bisphosphate (11.5 +/- 1.0 vs 5.9 +/- 0.4 nmol/g cell, n=8-9). In lean rat hepatocytes, the presence of glipizide in the incubation medium caused a dose-dependent inhibition of the rate of lactate conversion to glucose (maximal inhibition=46%; EC50 value=26 microM), and simultaneously raised the cellular content of fructose-2,6-bisphosphate (maximal increment=40%; EC50 value=10 microM). In contrast, in hepatocytes isolated from obese rats, the inhibition of gluconeogenesis and the increment in fructose-2,6-bisphosphate levels elicited by glipizide were significantly reduced (maximal effects of 22 and 13%, respectively). Similarly, the activation of glycogen phosphorylase and the increase in hexose 6-phosphate levels in response to glipizide were less marked in obese rat hepatocytes than in liver cells isolated from lean animals. These results demonstrate that the efficacy of sulfonylureas as inhibitors of hepatic gluconeogenesis is reduced in the genetically obese (fa/fa) Zucker rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号