首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amyloid deposition in 11 inbred strains of mice (A/J, SJL/J, DDD, C57BL/6J, B10.BR, C57BL/10, B10A/SgSn, C3H/HeMs, B10A(5R), DBA/2 and C57BL/6Cr5/c) was studied using the peroxidase antiperoxidase (PAP) method and antisera against ASSAM and murine protein AA. Among the 170 mice examined, in 77 (45.3%) from the nine strains other than C3H/HeMs and DBA/2, there was evidence of spontaneous amyloid deposits in routine histological sections. Immunohistochemical studies using 54 mice with amyloid deposition, demonstrated ASSAM deposition in 45 mice (83.3%) in all nine strains, although the incidence and intensity of the deposition differed somewhat between strains. SJL/J and A/J had ASSAM deposits from the age of 8 months and the incidence increased with advancing age. In the other seven strains, ASSAM was first deposited at an older age than in the SJL/J and A/J strains. In A J, C57BL/6J, C57BL/10, B10.BR, B10A(5R) and C57BL/6Cr5/c, protein AA often coexisted with ASSAM. The distribution pattern of the ASSAM deposits was similar to that observed among the SAM strains. Thus, ASSAM is an ubiquitously distributed senile amyloid protein in the mouse. Determination of the molecular type of apoA-II, a serum precursor of ASSAM, among all 11 strains using the polymerase chain reaction (PCR) revealed the SAM-P/1 type apoA-II variant in SJL/J and A/J strains with a high susceptibility to ASSAM deposition. We concluded from this study that amino acid substitution in precursor apoA-II may be responsible for the early onset and severe amyloid deposition in the mouse.  相似文献   

2.
We previously produced a transgenic mouse line designated MT-hMet30 by introducing the human mutant transthyretin (TTR) gene carrying the mouse metallothionein promoter, and showed that the presence of human variant TTR is sufficient for amyloid deposition in various tissues of these transgenic mice. However, the expression pattern of human mutant transthyretin gene in the mouse was different from that in man. To analyse pathologic processes, it is essential to establish a transgenic mouse line in which the developmental and tissue- specific expression of the human mutant TTR gene is the same as in man. Thus, we produced two additional transgenic mouse lines carrying the human mutant TTR gene containing either 0.6 kb (0.6- hMet30) or 6.0 kb (6.0-hMet30) of the upstream region. The expression levels of 6.0-hMet30 gene in the liver and serum were the same as in man and about 10 times higher than those of 0.6- hMet30 gene. In both lines amyloid deposition was observed in similar tissues to human patients except for the peripheral and autonomic nervous tissues. The amyloid deposition started earlier and was more extensive in 6.0-hMet30 than 0.6-hMet30 mice, suggesting that the serum levels of human mutant TTR are correlated with the occurrence and degree of amyloid deposition, to some extent. Neither amyloid deposition nor degenerative changes were observed in the peripheral and autonomic nervous systems despite the transgene expression in the choroid plexus of the 6.0-hMet30 mice. In the 6.0-hMet30 mice, amyloid deposition started at 9 months of age, although the serum level of human mutant TTR reached the adult level at 1 month. These results suggest that intrinsic environmental factors other than the mutant gene are involved in the late-onset deposition of amyloid fibrils. Transgenic mice described here should be useful for analysing such factors  相似文献   

3.
Infection of young adult BALB/cByJ mice with mouse parvovirus-1, a newly recognized, lymphocytotropic, nonpathogenic parvovirus, was examined by in situ hybridization. Virus appeared to enter through the small intestine and was disseminated to the liver and lymphoid tissues. Strand-specific probes detected virion DNA in a consistently larger number of cells than replicative forms of viral DNA and/or viral mRNA. The number of signal-positive cells in the intestinal mucosa, lymph nodes, spleen, and thymus increased through day 10 after oral inoculation but decreased after seroconversion. Positive cells were still detected, however, in peripheral lymphoid tissues of mice examined at 9 weeks postinoculation. The results underscore the need to assess potential effects of persistent mouse parvovirus-1 infection on immune function in mice.  相似文献   

4.
The mannan-binding proteins (L-MBP and S-MBP, also denoted MBL-C and MBL-A), mainly produced in liver and existing in liver and serum, play important roles in the innate immunity against a variety of pathogens. Total RNA from mouse tissues were screened for MBP mRNA by RT-PCR. In addition to liver, S-MBP mRNA was detected in lung, kidney, and testis, and L-MBP mRNA was detected in kidney, thymus, and small intestine. Quantitative RT-PCR revealed that the small intestine is a predominant site of extrahepatic expression of L-MBP. Western blotting with polyclonal Abs against rat L-MBP demonstrated this protein in Triton X-100 extracts of the small intestine obtained from mice that had undergone systemic perfusion. Immunohistochemical staining with an mAb against mouse L-MBP and in situ hybridization revealed that L-MBP is selectively expressed in some villous epithelial cells of the small intestine. These findings suggest that L-MBP plays a role in mucosal innate immunity.  相似文献   

5.
Transthyretin (TTR) associated amyloidosis is an autosomal dominant disorder characterized by peripheral and autonomic neuropathy. Both genetic and environmental factors are thought to be involved in development of TTR associated amyloidosis. Previously, we demonstrated that amyloid deposition was observed in various tissues of transgenic mouse lines carrying a human mutant TTR (Met30) gene. To analyze the influence of environmental factors on TTR amyloidosis, these amyloidogenic transgenic mouse models were kept under conventional (CV) or specific pathogen free (SPF) conditions. Although the serum levels of Met30 for mice housed in the CV and SPF conditions were similar, amyloid deposition was observed in CV conditions, but not in SPF conditions. In addition, the extent of amyloid deposition in transgenic mice was dependent on duration kept under CV conditions. There were significant differences in proportion of amyloid deposition in several tissues between CV and SPF conditions. Maintenance of these mice at 30 degrees C did not induce amyloid deposition in SPF conditions. These results suggest that the SPF conditions can completely prevent amyloid deposition, and that environmental factors can affect the onset and progression even in a single gene disorder.  相似文献   

6.
Senescence-accelerated mouse-prone (SAMP1; SAMP1@Umz) is an animal model of senile amyloidosis with apolipoprotein A-II (apoA-II) amyloid fibril (AApoAII) deposits. This study was undertaken to investigate the effects of dietary fats on AApoAII deposits in SAMP1 mice when purified diets containing 4% fat as butter, safflower oil, or fish oil were fed to male mice for 26 weeks. The serum HDL cholesterol was significantly lower (P < 0.01) in mice on the diet containing fish oil (7.4 +/- 3.0 mg/dl) than in mice on the butter diet (38.7 +/- 12.5 mg/dl), which in turn had significantly lower (P < 0.01) HDL levels than mice on the safflower oil diet (51.9 +/- 5.6 mg/dl). ApoA-II was also significantly lower (P < 0.01) in mice on the fish oil diet (7.6 +/- 2.7 mg/dl) than on the butter (26.9 +/- 7.3 mg/dl) or safflower oil (21.6 +/- 3.7 mg/dl) diets. The mice fed fish oil had a significantly greater ratio (P < 0.01) of apoA-I to apoA-II, and a smaller HDL particle size than those fed butter and safflower oil. Severe AApoAII deposits in the spleen, heart, skin, liver, and stomach were shown in the fish oil group compared with those in the butter and safflower oil groups (fish oil > butter > safflower oil group, P < 0.05). These findings suggest that dietary fats differ in their effects on serum lipoprotein metabolism, and that dietary lipids may modulate amyloid deposition in SAMP1 mice.  相似文献   

7.
8.
High density lipoproteins (HDL) are heterogeneous particles consisting of about equal amounts of lipid and protein that are thought to mediate the transport of cholesterol from peripheral tissues to liver. We show that a previously identified polymorphism affecting HDL electrophoretic mobility in mice is due to a monogenic variation controlling HDL size and apolipoprotein composition. Thus, the HDL particles of various inbred strains of mice exhibit a striking difference in the ratio fo the two major apolipoproteins of HDL, apoA-I and apoA-II. HDL particles in all strains examined contain an average of about five apoA-I molecules; however, whereas the strains with small HDL contain two to three apoA-II molecules per particle, the strains with large HDL contain about five apoA-II molecules per particle. This increase in the protein content of the large HDL is also accompanied by increased lipid content. The HDL size polymorphism and apoA-II levels cosegregate with the apoA-II structural gene on mouse chromosome 1, indicating that a mutation of the apoA-II gene locus is responsible. The rates of synthesis of apoA-II are increased in the strains with large HDL and high apoA-II levels as compared to the strains with small HDL and low apoA-II levels. On the other hand, the fractional catabolic rates of both apoA-I and apoA-II among the strains are very similar, confirming that apoA-II concentrations are controlled at the level of synthesis. Despite the difference in rates of apoA-II synthesis between strains, the apoA-II mRNA levels in the strains are not discernibly different, suggesting that a mutation of the apoA-II structural gene controls apoA-II translational efficiency. This was confirmed by translating apoA-II mRNA in vitro using a rabbit reticulocyte lysate system. Sequencing of apoA-II cDNA from the strains revealed a number of nucleotide substitutions, which may affect translational efficiency. We conclude that the assembly of apoA-II into HDL does not have a set stoichiometry but, rather, is controlled by the production of apoA-II. As apoA-II levels increase, the HDL particles become larger and acquire more lipid, but apoA-I content per particle remains unchanged. These studies with mice provide a model for the metabolic relationships between apoA-I, apoA-II, and HDL lipid in humans.  相似文献   

9.
10.
To analyze the pathologic processes of amyloid deposition in type I familial amyloidotic polyneuropathy (FAP), mice were made transgenic by introducing the human mutant transthyretin (TTR) gene(MT-hMet 30). An inbred strain of mouse, C57 BL/6, was chosen. Transgenic mice were killed using ether anesthesia at 3-mo intervals up to 24 mo after birth. In these transgenic mice, amyloid deposition started in the gastrointestinal tract, cardiovascular system, and kidneys and extended to various other organs and tissues with advancing age. The pattern of amyloid deposition was similar to that observed in human autopsy cases of FAP, except for its absence in the choroid plexus and in the peripheral and autonomic nervous systems. We extracted the amyloid fibrils from kidneys of these mice with a human mutant TTR gene and analyzed them immunochemically and electronmicroscopically. Deposited amyloid was shown to be composed of human mutant TTR and mouse serum amyloid P component. Amyloid fibril from transgenic mice was morphologically and immunohistochemically similar to that of human FAP. The most striking pathologic feature of the transgenic mice was the absence of amyloid deposition in the peripheral and autonomic nervous tissues. Thus, other intrinsic factors may be involved in amyloid deposition in the nervous tissues of human FAP.  相似文献   

11.
The recognition of the critical involvement of oxidative and electrophilic stress in cardiac disorders has led to extensive investigation of the protective effects of exogenous antioxidants on cardiac injury. On the other hand, another strategy for protecting against oxidative/electrophilic cardiac injury may be through induction of the endogenous antioxidants and phase 2 enzymes in myocardium by chemical inducers. However, our understanding of the chemical inducibility of cardiac antioxidants/phase 2 enzymes in vivo is very limited. In addition, careful studies on the basal levels of a scope of endogenous antioxidants/phase 2 enzymes in myocardium as compared with other tissues, such as liver, are lacking. Accordingly, this study was undertaken to determine the basal levels of endogenous antioxidants/phase 2 enzymes, including superoxide dismutase (SOD), catalase, reduced glutathione (GSH), GSH peroxidase (GPx), glutathione reductase (GR), GSH S-transferase (GST), and NAD(P)H:quinone oxidoreductase 1 (NQO1), and investigate the inducibility of the above antioxidants/phase 2 enzymes by the chemoprotectant, 1,2-dithiole-3-thione (D3T), in cardiac as well as hepatic tissues in C57BL/6 mice. Our results demonstrated that in C57BL/6 mice, the levels of catalase, GSH, GPx, GR, and GST were significantly lower in cardiac tissue than in hepatic tissue. The level of total SOD did not differ significantly between mouse heart and liver. Notably, heart contained a much higher NQO1 activity than liver. Immunoblotting and RT-PCR analyses further demonstrated the high expression of NQO1 protein and mRNA in myocardium. Oral administration of D3T at 0.25 and 0.5 mmol/kg body weight for 3 consecutive days resulted in a significant induction of cardiac SOD, catalase, GR, GST, and NQO1. No significant induction of cardiac GSH and GPx was observed with the above D3T treatment. Only GR, GST, and NQO1 in mouse liver were induced by the D3T treatment. Unexpectedly, we observed a significant D3T dose-dependent decrease in hepatic GPx activity. Taken together, this study demonstrates for the first time that: (1) the expression of NQO1 is remarkably high in mouse myocardium though other cardiac antioxidants/phase 2 enzymes are relatively lower as compared with liver; (2) a number of endogenous antioxidants/phase 2 enzymes in mouse cardiac tissue can be significantly induced by D3T following oral administration; and (3) the inducibility of endogenous antioxidants/phase 2 enzymes by D3T differs between mouse cardiac and hepatic tissues. This study provides a basis for future investigation of the cardioprotection of chemically induced endogenous antioxidants and phase 2 enzymes in myocardium in animal models of oxidative/electrophilic cardiac disorders.  相似文献   

12.
Isolation and analysis of murine serum amyloid P component cDNA clones   总被引:1,自引:0,他引:1  
In contrast to other animals, the biosynthesis of serum amyloid P component in mice is regulated as an acute-phase protein. As a first step in studying the regulation and biosynthesis of serum amyloid P component in the mouse, cDNA clones have been isolated from a liver cDNA library and sequenced. The largest of these clones was 960 bp in length, and contained an open reading frame encoding a protein of 224 amino acids. Comparison of the mouse cDNA sequence to that published for humans (Mantzouranis, E. C., S. B. Dowton, A. S. Whitehead, M. D. Edge, G. A. P. Bruns, and H. R. Colten, 1985. J. Biol. Chem. 260:7752.) revealed 74% identity for nucleotides in the translated region. Northern-blot analysis demonstrated that murine serum amyloid P component synthesis in the liver is directed by a 1.2-kb mRNA that is elevated in high responder (C57BL/6J) mice after thioglycollate-induced inflammation.  相似文献   

13.
A cDNA clone for the beta-chain of human alcohol dehydrogenase (ADH) was used to isolate several cross-hybridizing clones from a mouse liver cDNA library. Clones pADHm9 and a portion of pADHm12 were sequenced. pADHm9 coded for a sequence of 151 C-terminal amino acids and some untranslated sequences from the 3' end of its corresponding mRNA. This clone was identified as an Adh-1 cDNA clone. Consistent with the known expression of Adh-1, this gene was expressed constitutively in liver, whereas the Adh-3 gene product was found only in stomach, lung and reproductive tissues. Furthermore, the translated region of the cDNA shared 91% amino acid sequence homology with rat liver ADH. [32P]pADHm9 was used as a hybridization probe to study the mechanism of androgen induction of kidney ADH activity. Induction of A/J female mice by androgen resulted in a dramatic increase in the steady-state level of Adh-1 mRNA content which correlated with the level of enzyme induction. The size of the mRNA obtained from control or induced kidney and liver tissues was indistinguishable by Northern analysis. [32P]pADHm9 was also used to probe restriction fragments of genomic DNA obtained from several inbred mouse strains. The hybridization patterns, considered with the genetic evidence, suggested that pADHm9 recognized sequences which may be present as only a single copy in the genome. No restriction fragment length polymorphisms were observed among the several inbred mouse strains examined.  相似文献   

14.
Two putative serum precursors which cross-react with antiserum against murine senile amyloid protein (ASSAM) were isolated from the high density lipoprotein (HDL) of normal mouse serum. Apolipoproteins designated "apoSASSAM-1" and "apoSASSAM-2" have the same molecular weight as tissue amyloid fibril protein. ApoSASSAM-1 and apoSASSAM-2 migrate to an intermediate position between apoA-I and apoC on alkaline-urea polyacrylamide gel electrophoresis and are present mainly in HDL apoproteins and to a slight extent in very low density lipoprotein apoproteins when compared to apoC. ApoSASSAM-1 and apoSASSAM-2 are polymorphic; there are two apparent isoproteins of apoSASSAM-1 with isoelectric points of 4.72 and 4.79 and two major isoproteins of apo-SASSAM-2. Subunit bands of ASSAM separated by alkaline-urea polyacrylamide gel electrophoresis and that migrated to the same positions as apoSASSAM-1 and apoSASSAM-2 were labeled by anti-apoSASSAM-1 antiserum. The amino acid compositions of apoSASSAM-1 and apoSASSAM-2 were much the same and closely resembled those of ASSAM and mouse apoA-II. Sequence analysis of apoSASSAM and ASSAM revealed a blocked amino terminus. ApoSASSAM is considered to be a mouse apoA-II and probably transforms to amyloid fibril "ASSAM" in tissues through a process yet to be clarified.  相似文献   

15.
16.
Mannose-binding proteins play a role in first line host defense against a variety of pathogens. We report the molecular cloning of two mouse mannose-binding proteins designated A and C based on their close identity with their rat homologues. The deduced amino acid sequence of the mouse mannose-binding proteins, as with rat and the human forms, have an NH2 terminus that is rich in cysteine that stabilizes a collagen alpha helix followed by a carboxyl- terminal carbohydrate binding domain. We further show that the mouse mannose-binding protein A mRNA, as with the human, is induced like the acute phase reactant serum amyloid P protein, yet the expression of mouse mannose-binding protein C mRNA is not regulated above its low baseline level. The expression of both mannose-binding proteins A and C mRNA is restricted to the liver under basal and stress conditions.  相似文献   

17.
A quantitative procedure involving RNA-RNA hybridization kinetics was developed for measurement of specific mRNA accumulated in particular tissues and cells. Two types of riboprobes for quantitating mouse beta-tubulin mRNA were prepared; one was a truncated RNA covering only the coding portion of beta-tubulin cDNA and the other was a non-truncated RNA covering the vector portion as well as the coding portion. These antisense RNAs were hybridized with the mouse brain RNA, yielding heat-stable hybrids. The truncated and non-truncated antisense RNA probes showed similar hybridization kinetics. Hybridization of the sense RNA, consisting of the beta-tubulin coding portion, with the antisense RNA probe gave standards for determining the proportion of beta-tubulin mRNA in total brain RNA. By this method, the amounts of beta-tubulin mRNA included in the brains of mice of 10 and 50 days old were quantitated.  相似文献   

18.
The murine serum amyloid A1 (SAA1), SAA2, and SAA3 genes are expressed in various tissues in response to acute inflammation. Prolonged expression may be accompanied by amyloid deposition in liver, spleen, and kidney. Shortly before and during deposition, an amyloid-enhancing factor (AEF) can be extracted from these tissues which accelerates amyloid formation when administered with an inflammatory agent. We have investigated the ability of liver AEF to alter expression of the three SAA genes in liver, spleen, and kidney when administered to normal mice or to mice in which inflammation was created with the injection of silver nitrate. In liver, both AEF and silver nitrate induce SAA1 and SAA2 mRNA accumulation. However, AEF elicits a more rapid response and also acts as a potent inducer of hepatic SAA3 mRNA. Silver nitrate does not induce any SAA mRNA species in kidney, whereas AEF induces all three species. In contrast, AEF induces only SAA3 mRNA in the spleen. We also show that the elevation in hepatic SAA mRNA levels induced by either AEF or silver nitrate is associated with a transient increase in the length of the poly(A) tail.  相似文献   

19.
Cloning and regulation of messenger RNA for mouse apolipoprotein E   总被引:9,自引:0,他引:9  
A cDNA clone for mouse apolipoprotein E has been identified from a mouse liver cDNA library by a combination of differential colony hybridization and hybrid selection-translation. The identity of the clone was unambiguously established by partial sequencing and comparison with human apolipoprotein E nucleotide and amino acid sequences. In conjunction with an in vitro translation assay for apolipoprotein E, the clone has been used to examine the relative levels of apolipoprotein E mRNA in various tissues of the mouse and the regulation of apolipoprotein E synthesis in response to a diet rich in saturated fat and cholesterol. In the tissues examined, the clone was found to hybridize to a polyadenylated RNA species of approximately 1400 nucleotides. Of the tissues involved in lipoprotein synthesis, liver is very rich (about 1% of total) in apolipoprotein E mRNA while intestine contains only trace amounts. Appreciable levels of active apolipoprotein E mRNA (up to 10% of that in liver) are also detected in peripheral tissues not associated with lipoprotein synthesis, including lung, kidney, spleen, and heart. Thus, extrahepatic apolipoprotein E synthesis may contribute significantly to the levels present in plasma, and a possible function in "reverse cholesterol transport" is considered. When mice were placed on a high lipid diet there was no discernible change in the level of apolipoprotein E mRNA in liver or intestine, although the level of the circulating protein increased about 3-fold. We conclude that in mice the effect of diet on apolipoprotein E levels in blood does not result from induction of mRNA in these tissues.  相似文献   

20.
Aggregated amyloid fibrils can induce further polymerization of precursor proteins in vitro, thus providing a possible basis for propagation or transmission in the pathogenesis of amyloidoses. Previously, we postulated that the transmission of amyloid fibrils induces conformational changes of endogenous amyloid protein in mouse senile amyloidosis (Xing, Y., Nakamura, A., Chiba, T., Kogishi, K., Matsushita, T., Fu, L., Guo Z., Hosokawa, M., Mori, M., and Higuchi, K. (2001) Lab. Invest. 81, 493-499). To further characterize this transmissibility, we injected amyloid fibrils (AApoAII(C)) of amyloidogenic C type apolipoprotein A-II (APOAIIC) intravenously into 2-month-old SAMR1 mice, which have B type apolipoprotein A-II (APOAIIB), and develop few if any amyloid deposits spontaneously. 10 months after amyloid injection, deposits were detected in the tongue, stomach, intestine, lungs, heart, liver, and kidneys. The intensity of deposition increased thereafter, whereas no amyloid was detected in distilled water-injected SAMR1 mice, even after 20 months. The deposited amyloid was composed of endogenous APOAIIB with a different amyloid fibril conformation. The injection of these amyloid fibrils of APOAIIB (AApoAII(B)) induced earlier and more severe amyloidosis in SAMR1 mice than the injection of AApoAII(C) amyloid fibrils. Thus, AApoAII(C) from amyloidogenic mice could induce a conformational change of less amyloidogenic APOAIIB to a different amyloid fibril structure, which could also induce amyloidosis in the less amyloidogenic strain. These results provide important insights into the pathogenesis of amyloid diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号