首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental approach has been developed to study human erythrocyte vesiculation, using the fluorescent probes diphenylhexatriene (DPH), trimethylamino-diphenylhexatriene (TMA-DPH) and heptadecyl-hydroxycoumarin (C17-HC). Acetylcholinesterase (AChE) enzyme activity measurements confirmed the presence of exovesicles released from erythrocyte membranes labeled with DPH, TMA-DPH or C17-HC. The fluorescence intensity and anisotropy values obtained showed that the amphiphilic probes TMA-DPH and C17-HC are preferentially incorporated in the exovesicles (when compared with DPH). There is a significant decrease of the cholesterol content of the exovesicle suspensions with time, independently of the fluorescence probe used, reaching undetectable cholesterol levels for the samples incubated for 48 hr. The ratios between the concentration of cholesterol released in the exovesicles after 1 hr incubation with DPH, TMA-DPH or C17-HC and the probe concentration used in the incubation were 84.7, 3.82 and 0.074, respectively. The size of the released vesicles was evaluated by dynamic light scattering spectroscopy. Some hypotheses are proposed that could explain the resemblance and differences between the results obtained for erythrocytes labeled with each probe, considering the present knowledge of membrane vesiculation mechanisms, lipid microdomains (rafts), erythrocyte membrane phospholipid asymmetry and AChE inhibition by TMA-DPH and C17-HC. This work demonstrates that the fluorescent probes DPH, TMA-DPH and C17-HC induce rapid erythrocyte exovesiculation; their use can lead to new methodologies for the study of this still poorly understood mechanism.  相似文献   

2.
In an extension of our earlier work (Peng, Z.-y., V. Simplaceanu, I. J. Lowe, and C. Ho. 1988. Biophys. J. 54:81-95), the rotating-frame nuclear spin-lattice relaxation (T1 rho) technique has been used to investigate the slow molecular motions (10(-4) - 10(-6) s) in lipid bilayers prepared from protonated or perdeuterated 19F-labeled phospholipids in the absence and presence of cholesterol or gramicidin as membrane-interacting molecules. Complications caused by the 19F-1H cross-polarization observed previously can be removed by the substitution of 2H for 1H in the acyl chains. Only a weak dependence of the T-1(1 rho) on the locking field strength is found for a phospholipid molecule with perdeuterated acyl chains, indicating that there are no slow motions with a single, well-defined correlation time between 5 x 10(-6) and 4 x 10(-5) s. However, the orientation dependences of the T-1(1 rho) can be well fitted by motional models with either one slow motion having an unspecified geometry or with a superposition of two specific types of slow motions. Cholesterol and gramicidin show distinct effects in altering either the geometry or the weighting of slow motions in phospholipid bilayers, as reflected by changes in the orientation dependence. These two additives also exhibit quite different label-position specificities. A qualitative understanding of the induced effects of cholesterol and gramicidin on the dynamics of phospholipid bilayers will be discussed.  相似文献   

3.
The exchange diffusions of tracer cations (22Na+, 86Rb+) are studied on gramicidin-A-treated red blood cell (RBC) membranes. A time-dependent decrease in cation permeability has been observed and has been considered to be the result of a channel inactivation process. The channel inactivation appears at 20 and 30 degrees C but not at a temperature as low as 6 degrees C. The gramicidin A channel inactivation can be monitored by a conductivity decay of molecular lipid membranes (BLM) prepared either from cholesterol or from a mixture of cholesterol and phospholipids but not of pure phosphatidylethanolamine. The role of cholesterol in the channel inactivation is discussed.  相似文献   

4.
Gramicidin-induced hexagonal HII phase formation in erythrocyte membranes   总被引:3,自引:0,他引:3  
Using 31P nuclear magnetic resonance (NMR), small-angle X-ray scattering (SAXS), and freeze-fracture electron microscopic (FFEM) techniques, it is shown that gramicidin induces a hexagonal HII phase not only in liposomes prepared from total lipids extracted from human erythrocytes but also in isolated human erythrocyte membranes (white ghosts). A 37 degrees C, HII phase formation is detected at a gramicidin to phospholipid molar ratio exceeding 1:80. At a molar ratio of 1:5, about 30% of the phospholipid is organized in the HII phase. The gramicidin-induced HII phase exhibits a very small 31P chemical shift anisotropy [(CSA) approximately 10 +/- 1 ppm], indicating decreased head-group order, and it displays a temperature-dependent increase in tube diameter from 60.2 A at 4 degrees C to 64.2 A at 37 degrees C in ghosts and from 62.8 to 69.4 A at 37 degrees C in total lipid extracts, both in the presence of 1 mol of gramicidin/10 mol of phospholipid. This anomalous temperature-dependent behavior is probably due to the presence of cholesterol. 31P NMR data indicate that the HII phase formation by gramicidin is temperature dependent and show the gradual disappearance of the HII phase at low temperatures (less than 20 degrees C), resulting in a bilayer type of 31P NMR line shape at 4 degrees C, whereas SAXS and FFEM data suggest equal amounts of HII phases at all temperatures. This apparent discrepancy is probably the result of a decrease in the rate of lateral diffusion of the membrane phospholipids which leads to incomplete averaging of the 31P CSA in the HII phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Using large (5-10 microns) vesicles formed in the presence of phospholipids fluorescently labeled on the acyl chain and visualized using a fluorescence microscope, charge-coupled-device camera, and digital image processor, we examined the effects of membrane proteins on phospholipid domain formation. In vesicles composed of phosphatidic acid and phosphatidylcholine, incubation with cytochrome c induced the reorganization of phospholipids into large phosphatidic acid-enriched domains with the exclusion of phosphatidylcholine. Cytochrome c binding was demonstrated to be highest in the phosphatidic acid-enriched domain of the vesicle using the absorbance of the heme moiety for visualization. Both binding of cytochrome c and phospholipid reorganization were blocked by pretreatment of the vesicles with 0.1 M NaCl. The pore forming peptide gramicidin was examined for the effects of an integral protein on domain formation. Initially, gramicidin distributed randomly within the vesicle and showed no phospholipid specificity. Phosphatidic acid domain formation in the presence of 2.0 mM CaCl2 or 100 microM cytochrome c was not affected by the presence of 5 mol % gramicidin within the vesicles. In both cases, gramicidin was preferentially excluded from the phosphatidic acid-enriched domain and became associated with phosphatidylcholine-enriched areas of the vesicle. Thus, cytochrome c caused a major reorganization of both the phospholipids and the proteins in the bilayer.  相似文献   

6.
Side chain oxysterols are cholesterol derivatives thought to signal the abundance of cell cholesterol to homeostatic effector proteins. Here, we investigated how plasma membrane (PM) cholesterol might regulate 27-hydroxycholesterol (HC) biosynthesis in cultured fibroblasts. We showed that PM cholesterol was a major substrate for 27-HC production. Biosynthesis commenced within minutes of loading depleted cells with cholesterol, concurrent with the rapid inactivation of hydroxy-3-methylglutaryl CoA reductase (HMGR). 27-HC production rose ∼30-fold in normal and Niemann-Pick C1 fibroblasts when PM cholesterol was increased by ∼60%. 27-HC production was also stimulated by 1-octanol, which displaces PM cholesterol from its phospholipid complexes and thereby increases its activity (escape tendency) and elevates its intracellular abundance. Conversely, lysophosphatidylserine and U18666A inhibited 27-HC biosynthesis and the inactivation of HMGR, presumably by reducing the activity of PM cholesterol and, therefore, its circulation to mitochondria. We conclude that, in this in vitro system, excess (active) PM cholesterol rapidly reaches mitochondria where, as the rate-limiting substrate, it stimulates 27-HC biosynthesis. The oxysterol product then promotes the rapid degradation of HMGR, along with other homeostatic effects. The regulation of 27-HC production by the active excess of PM cholesterol can thus provide a feedback mechanism in the homeostasis of PM cholesterol.  相似文献   

7.
Cholesterol is essential for cell viability, and homeostasis of cellular cholesterol is crucial to various cell functions. Here we examined the effect of cholesterol depletion on apoptosis and the mechanisms underlying this effect in NIH3T3 cells. We show that chronic cholesterol depletion achieved with lipoprotein-deficient serum (LPDS) and 25-hydroxycholesterol (25-HC) treatment resulted in a significant increase in cellular apoptosis and caspase-3 activation. This effect is not due to a deficiency of nonsterol isoprenoids, intermediate metabolites of the cholesterol biosynthetic pathway, but rather to low cholesterol levels, since addition of cholesterol together with LPDS and 25-HC nearly abolished apoptosis, whereas addition of farnesyl pyrophosphate or geranylgeranyl-pyrophosphate did not reverse the cell viability loss induced by LPDS plus 25-HC treatment. These effects were accompanied by an increase in ERK, JNK and p38 MAPK activity. However, only the inhibition of p38 MAPK with the specific inhibitor SB203580 or the overexpression of a kinase defective MKK6 resulted in a significant decrease in apoptosis and caspase-3 cleavage induced by cholesterol depletion. Furthermore, LPDS plus 25-HC increased RhoA activity, and this effect was reversed by addition of exogenous cholesterol. Finally, overexpression of the dominant negative N19RhoA inhibited p38 MAPK phosphorylation and apoptosis induced by low cholesterol levels. Together, our results demonstrate that cholesterol depletion induces apoptosis through a RhoA- and p38 MAPK-dependent mechanism.  相似文献   

8.
Side-chain oxysterols are enzymatically generated oxidation products of cholesterol that serve a central role in mediating cholesterol homeostasis. Recent work has shown that side-chain oxysterols, such as 25-hydroxycholesterol (25-HC), alter membrane structure in very different ways from cholesterol, suggesting a possible mechanism for how these oxysterols regulate cholesterol homeostasis. Here we extend our previous work by using molecular-dynamics simulations of 25-HC and cholesterol mixtures in 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayers to examine the combined effects of 25-HC and cholesterol in the same bilayer. 25-HC causes larger changes in membrane structure when added to cholesterol-containing membranes than when added to cholesterol-free membranes. We also find that the presence of 25-HC changes the position, orientation, and solvent accessibility of cholesterol, shifting it into the water interface and thus increasing its availability to external acceptors. This is consistent with experimental results showing that oxysterols can trigger cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. These effects provide a potential mechanism for 25-HC-mediated regulation of cholesterol trafficking and homeostasis through modulation of cholesterol availability.  相似文献   

9.
The influence of cholesterol incorporation on gramicidin-induced hexagonal HII phase formation in different phosphatidylcholine model systems was investigated by 31P- and 2H-NMR, small-angle X-ray diffraction and differential scanning calorimetry. In liquid-crystalline distearoylphosphatidylcholine systems cholesterol inhibits gramicidin-induced HII phase formation. In dioleoylphosphatidylcholine the opposite effect is observed. Cholesterol appears to preferentially interact with gramicidin under liquid-crystalline conditions in both systems. Two phenomena that had been reported for gramicidin-treated erythrocyte membranes and derived liposomes (Tournois, H., Leunissen-Bijvelt, J., Haest, C.W.M., De Gier, J. and De Kruijff, B. (1987) Biochemistry, 26, 6613-6621) could also be observed in more simple dioleoylphosphatidylcholine-gramicidin-cholesterol systems. These are (i) an increase in tube diameter in the gramicidin-induced HII phase with increasing temperature, which is ascribed to the presence of cholesterol in this phase, and (ii) the loss of the hexagonal HII phase related 31P-NMR line shape at lower temperatures despite the presence of this phase as demonstrated with X-ray diffraction. This latter phenomenon appears to be due to restrictions in the rate of lateral diffusion of the phospholipids around the HII tubes due to the presence of gramicidin.  相似文献   

10.
24(S)-hydroxycholesterol [24(S)-HC] is a cholesterol metabolite that is formed almost exclusively in the brain. The concentrations of 24(S)-HC in cerebrospinal fluid (CSF) and/or plasma might be a sensitive marker of altered cholesterol metabolism in the CNS. A highly sensitive 2D-LC-MS/MS assay was developed for the quantification of 24(S)-HC in human plasma and CSF. In the development of an assay for 24(S)-HC in CSF, significant nonspecific binding of 24(S)-HC was observed and resolved with the addition of 2.5% 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) into CSF samples. The sample preparation consists of liquid-liquid extraction with methyl-tert-butyl ether and derivatization with nicotinic acid. Good linearity was observed in a range from 1 to 200 ng/ml and from 0.025 to 5 ng/ml, for plasma and CSF, respectively. Acceptable precision and accuracy were obtained for concentrations over the calibration curve ranges. Stability of 24(S)-HC was reported under a variety of storage conditions. This method has been successfully applied to support a National Institutes of Health-sponsored clinical trial of HP-β-CD in Niemann-Pick type C1 patients, in which 24(S)-HC is used as a pharmacodynamic biomarker.  相似文献   

11.
S Wang  E Martin  J Cimino  G Omann  M Glaser 《Biochemistry》1988,27(6):2033-2039
A resonance energy transfer method was developed to study the distribution of phospholipids around integral membrane proteins. The method involved measuring the extent of energy transfer from tryptophan residues of the proteins to different phospholipids labeled with a dansyl moiety in the fatty acid chain. No specific interactions were observed between gramicidin and dansyl-labeled phosphatidylcholine, phosphatidylethanolamine, or phosphatidic acid. The results were consistent with a random distribution of each phospholipid in the bilayer in the presence of gramicidin. However, a redistribution of both gramicidin and dansyl-labeled phospholipids was easily observed when a phase separation was induced by adding Ca2+ to vesicles made up of phosphatidylcholine and phosphatidic acid. Polarization measurements showed that in the presence of Ca2+ a rigid phosphatidic acid rich region and a more fluid phosphatidylcholine-rich region were formed. Energy-transfer measurements from gramicidin to either dansylphosphatidylcholine or dansylphosphatidic acid showed gramicidin preferentially partitioned into the phosphatidylcholine-rich regions. Energy-transfer measurements were also carried out with D-beta-hydroxybutyrate dehydrogenase reconstituted in a vesicle composed of phosphatidylcholine, phosphatidylethanolamine, and phosphatidic acid. Although the enzyme has a specific requirement for phosphatidylcholine for activity, the extent of energy transfer decreased in the order dansylphosphatidic acid, dansylphosphatidylcholine, dansylphosphatidylethanolamine. Thus, the enzyme reorganized the phospholipids in the vesicle into a nonrandom distribution.  相似文献   

12.
Channel inactivation, a time-dependent decrease of the high-cationic permeability induced by gramicidin A, has been found both in cholesterol containing red blood cell membranes and lipid bilayers (Schagina et al., (1989) Biochim. Biophys. Acta 978, 145-150). The rate of channel inactivation strongly depends on the phospholipid to cholesterol molar ratio of the membrane. The channel inactivation is suggested to be the result of an interaction between gramicidin and cholesterol in a stoichiometry of 1:5. Cholesterol dependent inactivation is shown also for gramicidin A analogs: tryptophan-N-formylated gramicidin A, o-pyromellitilgramicidin and malonylbisdesformylgramicidin. When cholesterol in the membrane is substituted by sitosterol, the inactivation of gramicidin-induced cation permeability is preserved, while in the presence of either ergosterol or 7-dehydrocholesterol no indication of the channel inactivation is observed. Thus, the structure of the 'B', ring, not the apolar tail of the sterol molecule, appears to be important in the inactivation process.  相似文献   

13.
Defects in Niemann-Pick, Type C-1 protein (NPC1) cause cholesterol, sphingolipids, phospholipids, and glycolipids to accumulate in lysosomes of liver, spleen, and brain. In cultured fibroblasts, NPC1 deficiency causes lysosomal retention of lipoprotein-derived cholesterol after uptake by receptor-mediated endocytosis. NPC1 contains 1278 amino acids that form 13 membrane-spanning helices and three large loops that project into the lumen of lysosomes. We showed earlier that NPC1 binds cholesterol and oxysterols. Here we localize the binding site to luminal loop-1, a 240-amino acid domain with 18 cysteines. When produced in cultured cells, luminal loop-1 was secreted as a soluble dimer. This loop bound [(3)H]cholesterol (K(d), 130 nM) and [(3)H]25-hydroxycholesterol (25-HC, K(d), 10 nM) with one sterol binding site per dimer. Binding of both sterols was competed by oxysterols (24-, 25-, and 27-HC). Unlabeled cholesterol competed strongly for binding of [(3)H]cholesterol, but weakly for [(3)H]25-HC binding. Binding of [(3)H]cholesterol but not [(3)H]25-HC was inhibited by detergents. We also studied NPC2, a soluble protein whose deficiency causes a similar disease phenotype. NPC2 bound cholesterol, but not oxysterols. Epicholesterol and cholesteryl sulfate competed for [(3)H]cholesterol binding to NPC2, but not NPC1. Glutamine 79 in luminal loop-1 of NPC-1 is important for sterol binding; a Q79A mutation abolished binding of [(3)H]cholesterol and [(3)H]25-HC to full-length NPC1. Nevertheless, the Q79A mutant restored cholesterol transport to NPC1-deficient Chinese hamster ovary cells. Thus, the sterol binding site on luminal loop-1 is not essential for NPC1 function in fibroblasts, but it may function in other cells where NPC1 deficiency produces more complicated lipid abnormalities.  相似文献   

14.
Temporins are short (10-13 amino acids) and linear antimicrobial peptides first isolated from the skin of the European red frog, Rana temporaria, and are effective against Gram-positive bacteria and Candida albicans. To get insight into their mechanism(s) of action, we compared the effects on model membranes exerted by two members of this family, viz., temporin B (LLPIVGNLLKSLL-NH(2)) and temporin L (FVQWFSKFLGRIL-NH(2)). More specifically, we measured their insertion into lipid monolayers as well as their effects on the structural dynamics of liposomal bilayers as revealed by diphenylhexatriene (DPH)- and pyrene-labeled phospholipids. We also observed the impact of these peptides on the topology of giant vesicles. Both temporins readily penetrate into lipid monolayers, their intercalation being enhanced in the presence of the common bacterial negatively charged phospholipid phosphatidylglycerol. Instead, the eukaryotic lipid cholesterol did to some extent counteract their penetration into the lipid films. Both temporin B and temporin L caused an enrichment of phospholipids in the bilayers, and in the presence of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), these peptides increased acyl chain order. Temporin B had practically no effect on giant liposomes composed of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), whereas rapid vesiculation was observed when POPG was present. In contrast, temporin L induced vesiculation of both SOPC and SOPC/POPG giant vesicles while the presence of cholesterol in SOPC giant vesicles attenuated this effect.  相似文献   

15.
During incubation of intact human erythrocytes with sonicated dimyristoylphosphatidylcholine (DMPC) vesicles, the cells change their discoid morphology to form echinocytes and finally give rise to the release of membrane vesicles. In this process, the red cell membrane accumulates DMPC and loses up to 15% of its cholesterol. On the other hand, replacement of 25% of the endogenous phosphatidylcholine species by DMPC without affecting the cholesterol level of the erythrocytes can be achieved by incubation with DMPC/cholesterol (1:1, mol/mol) sonicated vesicles in the presence of the phosphatidylcholine-specific phospholipid-transfer protein from bovine liver. This replacement also gives rise to an echinocytic cell morphology, but no membrane vesiculation can be observed. However, the vesiculation process can as yet be initiated upon a subsequent decrease of the cholesterol level, by incubation of those modified cells in the presence of sonicated vesicles of pure egg phosphatidylcholine. Incubation of native erythrocytes with pure egg phosphatidylcholine vesicles, on the other hand, results in cholesterol depletion, but does neither induce the formation of echinocytes nor the release of membrane vesicles. Cellular ATP levels are not affected during these incubations. From these results, it can be concluded that a decrease in cholesterol content of the erythrocyte membrane is essential for the DMPC-induced vesiculation of those cells.  相似文献   

16.
Interactions of two antimicrobial peptides, magainin 2 and indolicidin, with three different model biomembranes, namely, monolayers, large unilamellar vesicles (LUVs), and giant liposomes, were studied. Insertion of both peptides into lipid monolayers was progressively enhanced when the content of an acidic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) in a film of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) was increased. Indolicidin and magainin 2 penetrated also into lipid monolayers containing cholesterol (mole fraction, X = 0.1). Membrane association of magainin 2 attenuated lipid lateral diffusion in POPG-containing LUVs as revealed by the decrease in the excimer/monomer fluorescence ratio I(e)/I(m) for the pyrene fatty-acid-containing phospholipid derivative 1-palmitoyl-2-[10-(pyren-1-yl) decanoyl]-sn-glycero-3-phospho-rac-glycerol (PPDPG). Likewise, an increase in steady-state fluorescence anisotropy of the membrane-incorporated diphenylhexatriene (DPH) was observed, revealing magainin 2 to increase acyl chain order and induce segregation of acidic phospholipids. Similar effects were observed for indolicidin. The topological effects of magainin 2 and indolicidin on phospholipid membranes were investigated using optical microscopy of giant vesicles. Magainin 2 had essentially no influence on either SOPC or SOPC:cholesterol (X = 0.1) giant liposomes. However, effective vesiculation was observed when acidic phospholipid (X(PG) = 0.1) was included in the giant vesicles. Indolicidin caused only a minor shrinkage of giant SOPC vesicles whereas the formation of endocytotic vesicles was observed when the giant liposome contained POPG (X(PG) = 0.1). Interestingly, for indolicidin, vesiculation was also observed for giant vesicles composed of SOPC/cholesterol (X(chol) = 0.1). Possible mechanisms of membrane transformation induced by these two peptides are discussed.  相似文献   

17.
The effect of channel-forming peptide gramicidin A on the dipole potential of phospholipid monolayers and bilayers has been studied. Surface pressure and surface potential isotherms of monolayers have been measured with a Langmuir trough equipped with a Wilhelmy balance and a surface potential meter (Kelvin probe). Gramicidin has been shown to shift pressure-area isotherms of phospholipids and to reduce their monolayer surface potentials. Both effects increase with the increase in gramicidin concentration and depend on the kind of phosphatidylcholine used. Application of the dual-wavelength ratiometric fluorescence method using the potential-sensitive dye RH421 has revealed that the addition of gramicidin A to dipalmitoylphosphatidylcholine liposomes leads to a decrease in the fluorescence ratio of RH421. This is similar to the effect of phloretin, which is known to decrease the dipole potential. The comparison of the concentration dependences of the fluorescence ratio for gramicidin and phloretin shows that gramicidin is as potent as phloretin in modifying the membrane dipole potential.  相似文献   

18.
Hung WC  Lee MT  Chen FY  Huang HW 《Biophysical journal》2007,92(11):3960-3967
The condensing effect of cholesterol on phospholipid bilayers was systematically investigated for saturated and unsaturated chains, as a function of cholesterol concentration. X-ray lamellar diffraction was used to measure the phosphate-to-phosphate distances, PtP, across the bilayers. The measured PtP increases nonlinearly with the cholesterol concentration until it reaches a maximum. With further increase of cholesterol concentration, the PtP remains at the maximum level until the cholesterol content reaches the solubility limit. The data in all cases can be quantitatively explained with a simple model that cholesterol forms complexes with phospholipids in the bilayers. The phospholipid molecules complexed with cholesterol are lengthened and this lengthening effect extends into the uncomplexed phospholipids surrounding the cholesterol complexes. This long-range thickening effect is similar to the effect of gramicidin on the thickness of lipid bilayers due to hydrophobic matching.  相似文献   

19.
The ultrasonic absorption of large unilamellar vesicles (average diameter 0.2 micron) was determined in the frequency range 0.5-5 MHz. The liposomes were composed of a 4:1 mixture by weight of dipalmitoyl phosphatidylcholine and dipalmitoyl phosphatidylglycerol. They were studied with and without cholesterol or gramicidin incorporated into the bilayer. A large increase in absorption occurs at the solid to liquid-crystalline phase transition temperature (42 degrees C) of the pure lipid vesicles. This increase in absorption is interpreted as a structural relaxation of the 'melting' fatty acid chains occurring with an average relaxation time of 76 ns. The liposomes were also found to be extremely permeable near the transition temperature. Essentially complete release of cytosine arabinoside, a small water-soluble molecule, occurred at 42 degrees C. Addition of cholesterol or gramicidin to the bilayer of the liposomes broadened the ultrasonic absorption and reduced the efflux of cytosine arabinoside at the phase transition. No increase in absorption was observed at the transition temperature in the presence of 50 mol% of cholesterol. Gramicidin, in addition to broadening the transition, slows the isomerization of bonds in the hydrocarbon chains of the lipids. A concentration of 5 mol% gramicidin increased the average relaxation time to 211 ns.  相似文献   

20.
Phospholipid fractions were isolated from the cells of Bacillus brevis var. G.-B. variants, some, of which produced gramicidin S and some did not. As was found by thin layer chromatography, phosphatidyl ethanolamine predominated in the fraction of phospholipids. Interaction of the isolated phospholipids with gramicidin S in vitro resulted in a loss of the antibiotic activity. Presumably, formation of a complex between the polypeptide and phospholipids may decrease the actual concentration of gramicidin S in cells producing the antibiotic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号