首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Summmary The Ca2+ uptake activity of rat cardiac sacroplasmic reticulum (CSR) in ventricular homogenates is highly unstable, and this instability probably accounts for the low specific activity of Ca2+ uptake in previously reported fractions of isolated rat CSR. The instability was observed at either 0° or 37°, but the Ca2+ uptake activity was relatively stable at 25°. The decay of Ca2+ uptake activity at 0° could not be prevented by either PMSF or leupeptin, but dithiothreitol exerted some protective effects. Sodium metabisulfite prevented decay of the Ca2+ uptake activity of homogenates kept on ice but not of homogenates kept at 37°. We also found that release of the CSR from the cellular debris required homogenization in high KCI. This distinguishes rat CSR from canine CSR. Isolated CSR was produced by a combination of differential centrifugation and discontinuous sucrous gradient centrifugation. The average rate of the sustained oxalate-supported calcium uptake in the resulting CSR fraction was 0.36 mol/min-mg in the absence of CSR calcium channel blockers and 0.67 mol/min/mg in the presence of 10 M ruthenium red. Thus, this preparation has the advantage of containing both the releasing and non-releasing fractions of the CSR. The Ca2+-ATPase rates averaged 1.07 mol/min/mg and 0.88 mol/min-mg in the absence and presence of ruthenium red, respectively. Although these rates are higher than previously reported rates, this CSR preparation should still be considered a crude preparation. A major distinction between the rat CSR and dog CSR was the lower content of Ca2+-ATPase in rat CSR, as judged by SDS-PAGE. Preparations of CSR isolated by this method may be useful in evaluating alterations in CSR function.  相似文献   

2.
The role of the phosphorylation and dephosphorylation of sarcolemma and that of the alteration of membrane lipids in the endotoxin-induced impairment of the ATP-dependent Ca2+ transport in canine cardiac sarcolemma were investigated. The results indicate that the ATP-dependent Ca2+ transport in canine cardiac sarcolemma was decreased by 30–35% 4h after endotoxin administration. Phosphorylation of sarcolemma by the catalytic subunit of the cAMP-dependent protein kinase or calmodulin stimulated ATP-dependent Ca2+ transport in both groups, however, the phosphorylation-stimulated activities remained significantly lower in endotoxic animals. Dephosphorylation of sarcolemma decreased ATP-dependent Ca2+ transport in both groups, yet, the time required to reach maximal dephosphorylation was reduced from 120 to 90 min 4 h post-endotoxin. Analysis of sarcolemmal membranes reveals that phosphatidylcholine and phosphatidylethanolamine contents were decreased while their respective lysophosphatide levels were increased significantly after endotoxin injection. Digestion of control heart sarcolemma with phospholipase A2 inhibited Ca2+ transport and the inhibition was reversible by phosphatidylcholine. The inhibition caused by the in vivo administration of endotoxin was completely reversible by the addition of phosphatidylcholine. Based on these data, it is concluded that endotoxin administration impairs ATP-dependent Ca2+ transport in canine cardiac sarcolemma and that the impairment may be due to i) a defective phosphorylation of sarcolemma; ii) a reduced number of Ca2+ pumps; iii) an accelerated dephosphorylation of sarcolemma; and iv) an alteration in membrane phospholipid profile in response to phospholipase A activation.  相似文献   

3.
Summary The mechanism of voltage-sensitive dye responses was analyzed on sarcoplasmic reticulum vesicles to assess the changes in membrane potential related to Ca2+ transport. The absorbance and fluorescence responses of 3,3-diethyl-2,2-thiadicarbocyanine, 3,3-dimethyl-2,2-indodicarbocyanine and oxonol VI during ATP-dependent Ca2+ transport are influenced by the effect of accumulated Ca2+ upon the surface potential of the vesicle membrane. These observations place definite limitations on the use of these probes as indicators of ion-diffusion potential in processes which involve large fluctuations in free Ca2+ concentrations. Nile Blue A appeared to produce the cleanest optical signal to negative transmembrane potential, with least direct interference from Ca2+, encouraging the use of Nile Blue A for measurement of the membrane potential of sarcoplasmic reticulumin vivo andin vitro. 1,3-dibutylbarbituric acid (5)-1-(p-sulfophenyl)-3 methyl, 5-pyrazolone pentamethinoxonol (WW 781) gave no optical response during ATP-induced Ca2+ transport and responded primarily to changes in surface potential on the same side of the membrane where the dye was applied. Binding of these probes to the membrane plays a major role in the optical response to potential, and changes in surface potential influence the optical response by regulating the amount of membrane-bound dye. The observations are consistent with the electrogenic nature of ATP-dependent Ca2+ transport and indicate the generation of about 10 mV inside-positive membrane potential during the initial phase of Ca2+ translocation. The potential generated during Ca2+ transport is rapidly dissipated by passive ion fluxes across the membrane.  相似文献   

4.
This article discusses how changes in luminal calcium concentration affect calcium release rates from triad-enriched sarcoplasmic reticulum vesicles, as well as single channel opening probability of the ryanodine receptor/calcium release channels incorporated in bilayers. The possible participation of calsequestrin, or of other luminal proteins of sarcoplasmic reticulum in this regulation is addressed. A comparison with the regulation by luminal calcium of calcium release mediated by the inositol 1,4,5-trisphosphate receptor/calcium channel is presented as well.  相似文献   

5.
The effect of palmitic and oleic acids on Ca2+-ATPase activity in coupled preparations of sarcoplasmic reticulum isolated from rabbit hind leg muscle have been compared with their effects on vesicles uncoupled with Ca2+ ionophore, A23187. Palmitate at 2 µM · mg protein–1 has no significant effect on enzyme activity and does not uncouple catalytic activity from calcium accumulation within the vesicles. Oleic acid at 1 µM · mg protein–1 uncouples the vesicles, whereas 2 µM · mg protein–1 completely inhibits Ca2+-ATPase activity. Fluorescence anisotropy of diphenylhexatriene is not significantly altered by palmitate, but a large transient increase in motion of the probe is observed with addition of oleic acid. The effects of oleic acid on enzyme activity are not mediated via an effect on the bulk properties of the hydrophobic domain of the membrane lipids.  相似文献   

6.
Regulation of cardiac sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase   总被引:2,自引:0,他引:2  
Summary The two high affinity calcium binding sites of the cardiac (Ca2+ + Mg2+)-ATPase have been identified with the use of Eu3+. Eu3+ competes for the two high affinity calcium sites on the enzyme. With the use of laser-pulsed fluorescent spectroscopy, the environment of the two sites appear to be heterogeneous and contain different numbers of H2O molecules coordinated to the ion. The ion appears to be occluded even further in the presence of ATP. Using non-radiative energy transfer studies, we were able to estimate the distance between the two Ca2+ sites to be between 9.4 to 10.2 A in the presence of ATP. Finally, from the assumption that the calcium site must contain four carboxylic side chains to provide the 6–8 ligands needed to coordinate calcium, and based on our recently published data, we predict the peptidic backbone of the two sites.  相似文献   

7.
In order to study the conductances of the Sarcoplasmic Reticulum (SR) membrane, microsomal fractions from cardiac SR were isolated by differential and sucrose gradient centrifugations and fused into planar lipid bilayers (PLB) made of phospholipids. Using either KCl or K-gluconate solutions, a large conducting K+ selective channel was characterized by its ohmic conductance (152 pS in 150 mM K+), and the presence of short and long lasting subconducting states. Its open probability Po increased with depolarizing voltages, thus supporting the idea that this channel might allow counter-charge movements of monovalent cations during rapid SR Ca2+ release. An heterogeneity in the kinetic behavior of this channel would suggest that the cardiac SR K+ channels might be regulated by cytoplasmic, luminal, or intra SR membrane biochemical mechanisms. Since the behavior was not modified by variations of [Ca2+] nor by the addition of soluble metabolites such as ATP, GTP, cAMP, cGMP, nor by phosphorylation conditions on both sides of the PLB, a specific interaction with a SR membrane component is postulated. Another cation selective channel was studied in asymmetric Ca2+, Ba2+ or Mg2+-HEPES buffers. This channel displayed large conductance values for the above divalent cations 90, 100, and 40 pS, respectively. This channel was activated by µM Ca2+ while its Ca2+ sensitivity was potentiated by millimolar ATP. However Mg2+ and calmodulin modulated its gating behavior. Ca2+ releasing drugs such as caffeine and ryanodine increased its Po. All these features are characteristics of the SR Ca2+ release channel. The ryanodine receptor which has been purified and reconstituted into PLB, may form a cation selective pathway. This channel displays all the regulatory sites of the native cardiac SR Ca2+ release channel. However, when NA was used as charge carrier, multiple subconducting states were observed. In conclusion, the reconstitution experiments have yield a great deal of informations about the biochemical and biophysical events that may regulated the ionic flux across the SR membrane.  相似文献   

8.
Summary Oxalate-supported Ca accumulation by the sarcoplasmic reticulum (SR) of chemically skinned mammalian skeletal muscle fibers is activated by MgATP and Ca2+ and partially inhibited by caffeine. Inhibition by caffeine is greatest when Ca2+ exceeds 0.3 to 0.4 m, when free ATP exceeds 0.8 to 1mm, and when the inhibitor is present from the beginning of the loading period rather than when it is added after Ca oxalate has already begun to precipitate within the SR. Under the most favorable combination of these conditions, this effect of caffeine is maximal at 2.5 to 5mm and is half-maximal at approximately 0.5mm. For a given concentration of caffeine, inhibition decreases to one-half of its maximum value when free ATP is reduced to 0.2 to 0.3mm. Varying free Mg2+ (0.1 to 2mm) or MgATP (0.03 to 10mm) has no effect on inhibition. Average residual uptake rates in the presence of 5mm caffeine atpCa 6.4 range from 32 to 70% of the control rates in fibers from different animals. The extent of inhibition in whole-muscle homogenates is similar to that observed in skinned fibers, but further purification of SR membranes by differential centrifugation reduces their ability to respond to caffeine. In skinned fibers, caffeine does not alter the Ca2+ concentration dependence of Ca uptake (K 0.5, 0.5 to 0.8 m; Hilln, 1.5 to 2.1). Reductions in rate due to caffeine are accompanied by proportional reductions in maximum capacity of the fibers, and this configuration can be mimicked by treating fibers with the ionophore A23187. Caffeine induces a sustained release of Ca from fibers loaded with Ca oxalate. However, caffeine-induced Ca release is transient when fibers are loaded without oxalate. The effects of caffeine on rate and capacity of Ca uptake as well as the sustained and transient effects on uptake and release observed under different conditions can be accounted for by a single mode of action of caffeine: it increases Ca permeability in a limited population of SR membranes, and these membranes coexist with a population of caffeine-insensitive membranes within the same fiber.  相似文献   

9.
In resting muscle, cytoplasmic Ca2+ concentration is maintained at a low level by active Ca2+ transport mediated by the Ca2+ ATPase from sarcoplasmic reticulum. The region of the protein that contains the catalytic site faces the cytoplasmic side of the membrane, while the transmembrane helices form a channel-like structure that allows Ca2+ translocation across the membrane. When the coupling between the catalytic and transport domains is lost, the ATPase mediates Ca2+ efflux as a Ca2+ channel. The Ca2+ efflux through the ATPase channel is activated by different hydrophobic drugs and is arrested by ligands and substrates of the ATPase at physiological pH. At acid pH, the inhibitory effect of cations is no longer observed. It is concluded that the Ca2+ efflux through the ATPase may be sufficiently fast to support physiological Ca2+ oscillations in skeletal muscle, that occur mainly in conditions of intracellular acidosis.  相似文献   

10.
Calcium release from sarcoplasmic reticulum (SR) has been elicited in response to additions of many different agents. Activators of Ca2+ release are here tentatively classified as activators of a Ca2+-induced Ca2+ release channel preferentially localized in SR terminal or as likely activators of other Ca2+ efflux pathways. Some of these pathways may be associated with several different mechanisms for SR Ca2+ release that have been postulated previously. Studies of various inhibitors of excitation-contraction coupling and of certain forms of SR Ca2+ release are summarized. The sensitivity of isolated SR to certain agents is unusually affected by experimental conditions. These effects can seriously undermine attempts to anticipate effects of the same pharmacological agentsin situ. Finally, mention is made of a new preparation (sarcoballs) designed to make the pharmacological study of SR Ca2+ release more accessible to electrophysiologists, and some concluding speculations on the future of SR pharmacology are offered.  相似文献   

11.
The ability of the Ca2+-Mg2+ ATPase pump of skeletal SR to produce and maintain a Ca2+ gradient was studied as a function of the ATP/ADP/Pi ratio. The internal free Ca2+ concentration [Ca2+]i was monitored by changes in fluorescence of CTC. Increasing ADP concentrations in the medium reduce the maximal [Ca2+]i concentration achieved. The inclusion or the omission of 4×10–4 M Pi or doubling the absolute ATP and ADP concentrations at a constant ATP/ADP ratio does not affect the level obtained. The level depends primarily on the ATP/ADP ratio. The [Ca2+] concentration shows a 1.5 power dependence on the ATP/ADP ratio. Further, [Ca2+]i achieved at steady state does not depend on whether the pump had been working in the forward or the reverse direction prior to testing. Analysis shows that the levels of Ca2+ achieved are much lower than the levels predicted thermodynamically under the assumption of ideal coupling between Ca2+ transport and ATP hydrolysis with a stoichiometry of 2:1. Under this condition the osmotic energy of the [Ca2+]i/[Ca2+]o ratio was shown to be 48% as large as the free energy of hydrolysis of ATP, giving an overall thermodynamic efficiency of 48%. Analysis shows that maximal steady-state uptake is determined by the balance between the rates of uptake by the pump and rates of leak processes (intrinsic or extrinsic to the pump). Comparison with other studies shows that the [Ca2+]i achieved results in trans-inhibition of the pump by tying up the Ca2+ translocator in the inwardly oriented phosphorylated form. The absence of an effect of Pi can be taken as evidence that the dissociation of Ca2+ from the inwardly oriented translocator on the phosphoylated enzyme must precede the dephosphorylation of the enzyme.  相似文献   

12.
The sarcoplasmic reticulum (SR) of skeletal muscle controls the contraction-relaxation cycle by raising and lowering the myoplasmic free-Ca2+ concentration. The coupling between excitation, i.e., depolarization of sarcolemma and transvers tubule (TT) and Ca2+ release from the terminal cisternae (TC) of SR takes place at the triad. The triad junction is formed by a specialized region of the TC, the junctional SR, and the TT. The molecular architecture and protein composition of the junctional SR are under active investigation. Since the junctional SR plays a central role in excitation-contraction coupling and Ca2+ release, some of its protein constituents are directly involved in these processes. The biochemical evidence supporting this contention is reviewed in this article.  相似文献   

13.
Summary Two-dimensional crystalline arrays of Ca2+-ATPase molecules develop after treatment of sarcoplasmic reticulum vesicles with Na3VO4 in a Ca2+-free medium. The influence of membrane potential upon the rate of crystallization was studied by ion substitution using oxonol VI and 3,3-diethyl-2,2-thiadicarbocyanine (Di–S–C2(5)) to monitor inside positive or inside negative membrane, potentials, respectively. Positive transmembrane potential accelerates the rate of crystallization of Ca2+-ATPase, while negative potential disrupts preformed Ca2+-ATPase crystals, suggesting an influence of transmembrane potential upon the conformation of Ca2+-ATPase.  相似文献   

14.
(Ca2+ + Mg2+)-ATPase from sarcoplasmic reticulum has been reconstituted with dipalmitoylphosphatidylcholine, and the activating effect of ATP and Ca2+ on this enzyme has been studied at different temperatures. It has been found that two kinetic forms of the enzyme are interconverted at about 31°C, and this is possibly related to a phase change in the phospholipid which is more directly associated with the protein. Above 31°C the enzyme is less dependent on ATP activation at high ATP concentrations but shows positive cooperativity for Ca2+ activation. On the other hand, below 31°C, the reconstituted enzyme is more dependent on ATP for activation at high ATP concentrations than the purified ATPase and does not show cooperativity for Ca2+ activation.  相似文献   

15.
Effects of endotoxin administration on the ATP-dependent Ca2+ transport in canine cardiac sarcolemma were investigated. The results show that the sidedness of the sarcolemmal vesicles was not affected but the ATP-dependent Ca2+ transport in cardiac sarcolemma was decreased by 22 to 46% (p < 0.05) at 4 h following endotoxin administration. The kinetic analysis indicates that the Vmax for ATP and for Ca2+ were decreased by 50% (p < 0.01) and 32% (p < 0.01), respectively, while the Km values for ATP and Ca2+ were not significantly affected after endotoxin administration. Magnesium (1–5 mM) stimulated while vanadate (0.25–3.0 M) inhibited the ATP-dependent Ca2+ transport, but the Mg2+-stimulated and the vanadate-inhibitable activities remained significantly lower in the endotoxin-treated animals. These data demonstrate that endotoxin administration impairs the ATP-dependent Ca2+ transport in canine cardiac sarcolemma and that the impairment is associated with a mechanism not affecting the affinity towards ATP and Ca2+. Additional experiments show that the Ca2+ sensitivity of the Ca2+-ATPase activity was indifferent between the control and endotoxic groups suggesting that endotoxic injury impairs Ca2+ pumping without affecting Ca2+-ATPase activity. Since sarcolemmal ATP-dependent Ca2+ transport plays an important role in the regulation of cytosolic Ca2+ homeostasis, an impairment in the sarcolemmal ATP-dependent Ca2+ transport induced by endotoxin administration may have a pathophysiological significance in contributing to the development of myocardial dysfunction in endotoxin shock.  相似文献   

16.
Summary Ca2+-induced Ca2+ release at the terminal cisternae of skeletal sarcoplasmic reticulum was demonstrated using heavy sarcoplasmic reticulum vesicles. Ca2+ release was observed at 10 m Ca2+ in the presence of 1.25mm free Mg2+ and was sensitive to low concentrations of ruthenium red and was partially inhibited by valinomycin. These results suggest that the Ca2+-induced Ca2+ release is electrogenic and that an inside negative membrane potential created by the Ca2+ flux opens a second channel that releases Ca2+. Results in support of this formulation were obtained by applying a Cl gradient or K+ gradient to sarcoplasmic reticulum vesicles to initiate Ca2+ release. Based on experiments the following hypothesis for the excitation-contraction coupling of skeletal muscle was formulated. On excitation, small amounts of Ca2+ enter from the transverse tubule and interact with a Ca2+ receptor at the terminal cisternae and cause Ca2+ release (Ca2+-induced Ca2+ release). This Ca2+ flux generates an inside negative membrane potential which opens voltage-gated Ca2+ channels (membrane potential-dependent Ca2+ release) in amounts sufficient for contraction.  相似文献   

17.
Ca2+ transport by the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) is sensitive to monovalent cations. Possible K+ binding sites have been identified in both the cytoplasmic P-domain and the transmembrane transport-domain of the protein. We measured Ca2+ transport into SR vesicles and SERCA ATPase activity in the presence of different monovalent cations. We found that the effects of monovalent cations on Ca2+ transport correlated in most cases with their direct effects on SERCA. Choline+, however, inhibited uptake to a greater extent than could be accounted for by its direct effect on SERCA suggesting a possible effect of choline on compensatory charge movement during Ca2+ transport. Of the monovalent cations tested, only Cs+ significantly affected the Hill coefficient of Ca2+ transport (nH). An increase in nH from ∼2 in K+ to ∼3 in Cs+ was seen in all of the forms of SERCA examined. The effects of Cs+ on the maximum velocity of Ca2+ uptake were also different for different forms of SERCA but these differences could not be attributed to differences in the putative K+ binding sites of the different forms of the protein.  相似文献   

18.
Summary Preparations of cardiac sarcoplasmic reticulum (CSR) isolated from the rat by differential centrifugation have been widely used for measuring alterations in intracellular calcium flux in response to metabolic and pharmacologic disruptions. However, the purity of these SR fractions has not been firmly established.Using a combination of differential and linear sucrose gradient centrifugation, we have isolated rat CSR with high specific activity and purity. By SDS-PAGE analysis, the preparation is enriched in a protein (110 kD) of similar size to the Ca2+-ATPase of SR from other sources. Gels stained with the dye Stains All reveal a blue colored 55 kD band, confirming the presence of calsequestrin, the intraluminal low-affinity calcium binding protein of SR. The presence of the transmembrane 53 kD glycoprotein of SR was confirmed by endoglycosidase-H treatment followed by SDS-PAGE and also by a modified Western blotting technique. The rate of calcium uptake in this preparation averages 130 nmol/mg over the first minute of accumulation, approximately 4 times that previously reported for rat CSR. Calcium uptake in our preparation was essentially complete within 5 minutes. Preparations isolated by this method should be of value in future studies measuring alterations in rat CSR function.  相似文献   

19.
Summary Rapid mixing-vesicle ion flux and planar lipid bilayer-single channel measurements have shown that a high-conductance, ligand-gated Ca2+ release channel is present in heavy, junctional-derived membrane fractions of skeletal and cardiac muscle sarcoplasmic reticulum. Using the release channel-specific probe, ryanodine, a 30S protein complex composed of polypeptides of Mr 400 000 has been isolated from cardiac and skeletal muscle. Reconstitution of the complex into planar lipid bilayers has revealed a Ca2+ conductance with properties characteristic of the native Ca2+ release channel.  相似文献   

20.
In this work, we compared the effect of K+ on vesicles derived from the longitudinal (LSR) and terminal cisternae (HSR) of rabbit white muscle. In HSR, K+ was found to inhibit both the Ca2+ accumulation and the heat released during ATP hydrolysis by the Ca2+-ATPase (SERCA1). This was not observed in LSR. Valinomycin abolished the HSR Ca2+-uptake inhibition promoted by physiological K+ concentrations, but it did not modify the thermogenic activity of the Ca2+ pump. The results with HSR are difficult to interpret, assuming that a single K+ is binding to either the ryanodine channel or to the Ca2+-ATPase. It is suggested that an increase of K+ in the assay medium alters the interactions among the various proteins found in HSR, thus modifying the properties of both the ryanodine channel and SERCA1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号